Reversible Light‐Controlled CO Adsorption via Tuning π‐Complexation of Cu+ Sites in Azobenzene‐Decorated Metal‐Organic Frameworks
Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 46; pp. e202212732 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
14.11.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π‐complexation adsorbents, which can adjust the π‐complexation of active sites via light irradiation. A typical metal‐organic framework, MIL‐101‐NH2, was decorated with azobenzene motifs, and Cu+ as π‐complexation active sites were introduced subsequently. The reversible light‐induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL‐101‐NH2 is negligible. This study provides a clue for designing target‐specific smart materials to meet the practical stimuli‐responsive adsorption demands.
Smart adsorbents are fabricated by introducing Cu+ into azobenzene‐decorated metal‐organic frameworks, in which azobenzene acts as light‐responsive motifs and Cu+ as π‐complexing sites. Ultraviolet‐/visible‐light irradiation triggers the isomerization of azobenzene, causing the changes in electrostatic potential around Cu+. This exposure/shelter effect adjusts CO capture and release by shifting light. |
---|---|
AbstractList | Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π‐complexation adsorbents, which can adjust the π‐complexation of active sites via light irradiation. A typical metal‐organic framework, MIL‐101‐NH2, was decorated with azobenzene motifs, and Cu+ as π‐complexation active sites were introduced subsequently. The reversible light‐induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL‐101‐NH2 is negligible. This study provides a clue for designing target‐specific smart materials to meet the practical stimuli‐responsive adsorption demands. Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π‐complexation adsorbents, which can adjust the π‐complexation of active sites via light irradiation. A typical metal‐organic framework, MIL‐101‐NH 2 , was decorated with azobenzene motifs, and Cu + as π‐complexation active sites were introduced subsequently. The reversible light‐induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu + from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL‐101‐NH 2 is negligible. This study provides a clue for designing target‐specific smart materials to meet the practical stimuli‐responsive adsorption demands. Light-responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π-complexation adsorbents, which can adjust the π-complexation of active sites via light irradiation. A typical metal-organic framework, MIL-101-NH2 , was decorated with azobenzene motifs, and Cu+ as π-complexation active sites were introduced subsequently. The reversible light-induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from -0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL-101-NH2 is negligible. This study provides a clue for designing target-specific smart materials to meet the practical stimuli-responsive adsorption demands.Light-responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π-complexation adsorbents, which can adjust the π-complexation of active sites via light irradiation. A typical metal-organic framework, MIL-101-NH2 , was decorated with azobenzene motifs, and Cu+ as π-complexation active sites were introduced subsequently. The reversible light-induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from -0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL-101-NH2 is negligible. This study provides a clue for designing target-specific smart materials to meet the practical stimuli-responsive adsorption demands. Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π‐complexation adsorbents, which can adjust the π‐complexation of active sites via light irradiation. A typical metal‐organic framework, MIL‐101‐NH2, was decorated with azobenzene motifs, and Cu+ as π‐complexation active sites were introduced subsequently. The reversible light‐induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL‐101‐NH2 is negligible. This study provides a clue for designing target‐specific smart materials to meet the practical stimuli‐responsive adsorption demands. Smart adsorbents are fabricated by introducing Cu+ into azobenzene‐decorated metal‐organic frameworks, in which azobenzene acts as light‐responsive motifs and Cu+ as π‐complexing sites. Ultraviolet‐/visible‐light irradiation triggers the isomerization of azobenzene, causing the changes in electrostatic potential around Cu+. This exposure/shelter effect adjusts CO capture and release by shifting light. |
Author | Zhou, Jin‐Jian Li, Yu‐Xia Qi, Shi‐Chao Liu, Xiao‐Qin Sun, Lin‐Bing Zhong, Wen |
Author_xml | – sequence: 1 givenname: Yu‐Xia orcidid: 0000-0003-1916-2707 surname: Li fullname: Li, Yu‐Xia organization: Nanjing Tech University – sequence: 2 givenname: Wen surname: Zhong fullname: Zhong, Wen organization: Nanjing Tech University – sequence: 3 givenname: Jin‐Jian surname: Zhou fullname: Zhou, Jin‐Jian organization: Nanjing Tech University – sequence: 4 givenname: Shi‐Chao surname: Qi fullname: Qi, Shi‐Chao organization: Nanjing Tech University – sequence: 5 givenname: Xiao‐Qin surname: Liu fullname: Liu, Xiao‐Qin organization: Nanjing Tech University – sequence: 6 givenname: Lin‐Bing orcidid: 0000-0002-6395-312X surname: Sun fullname: Sun, Lin‐Bing email: lbsun@njtech.edu.cn organization: Nanjing Tech University |
BookMark | eNqFkctu1DAUhi1UJNrClrUlNkgogy9J7CxHoYVKU0aCsrac5GRw8diD7bS0q65Z8Wa8A09SzwwCqRJi5cv5vqOj8x-hA-cdIPSckhklhL3WzsCMEcYoE5w9Qoe0YrTgQvCDfC85L4Ss6BN0FONl5qUk9SH6_gGuIETTWcALs_qcft39aL1LwVsLA26XeD5EHzbJeIevjMYXkzNuhX_e7cD1xsI3vSv6EbfTK_zRJIjYODy_9R24W3CQyTfQ-6BT7ngOSdv8swyrPHCPT4New7UPX-JT9HjUNsKz3-cx-nR6ctG-KxbLt2ftfFH0vCKs6EfO6g5K1tSNps0gWMXZSDWDuu6kEKDZmAtDfmk-NOPQcVJK2g01k4MmIz9GL_d9N8F_nSAmtTaxB2u1Az9FxQQVtZRNWWf0xQP00k_B5enUdscV44zLTJV7qg8-xgCj6k3aLSUFbayiRG0DUtuA1J-AsjZ7oG2CWetw82-h2QvXxsLNf2g1f3928te9B88Qq2o |
CitedBy_id | crossref_primary_10_1016_j_ecofro_2024_05_005 crossref_primary_10_1007_s11172_023_3826_8 crossref_primary_10_1002_adfm_202213743 crossref_primary_10_1002_ange_202311336 crossref_primary_10_1002_anie_202311336 crossref_primary_10_1021_acs_cgd_3c00722 crossref_primary_10_1039_D3CC00622K crossref_primary_10_1016_j_apsusc_2024_159882 crossref_primary_10_1021_acsmaterialslett_3c00476 crossref_primary_10_1002_ange_202301739 crossref_primary_10_1021_acssuschemeng_2c05388 crossref_primary_10_1039_D3TA01241G crossref_primary_10_1002_anie_202317435 crossref_primary_10_1002_smll_202406621 crossref_primary_10_1080_25740881_2024_2408346 crossref_primary_10_1002_ange_202317435 crossref_primary_10_1016_j_tifs_2023_104200 crossref_primary_10_1002_anie_202301739 crossref_primary_10_1016_j_seppur_2024_128904 crossref_primary_10_1002_aic_18722 crossref_primary_10_1039_D2MA01022D crossref_primary_10_1016_j_seppur_2023_124647 crossref_primary_10_1002_smll_202302885 |
Cites_doi | 10.1002/ange.201206359 10.1002/ange.202106523 10.1002/ange.201906606 10.1021/acsami.1c18368 10.1021/acsami.6b07853 10.1021/acs.chemrev.9b00350 10.1021/ja2115713 10.1016/j.eng.2020.03.005 10.1002/ange.201900141 10.1021/ja209197f 10.1002/anie.201807158 10.1002/anie.201206359 10.1016/j.cej.2007.07.074 10.1002/anie.201906606 10.1021/cm0207696 10.1039/D0NA00647E 10.1126/science.aam7232 10.1038/nmat3776 10.1039/c7pp00456g 10.1039/C4SC02305F 10.1038/s41467-022-29149-z 10.1002/anie.202004657 10.1039/c1cs15023e 10.1039/c2dt30672g 10.1007/s40843-020-1423-8 10.1126/science.aag2267 10.1016/0014-3057(94)00130-8 10.1016/j.cej.2012.03.025 10.1039/c3sc21659d 10.1002/adma.201905966 10.1039/c2cc36344e 10.1016/j.jhazmat.2017.07.065 10.1016/j.cej.2016.11.067 10.1002/anie.202106523 10.1038/s41598-017-13536-4 10.1093/nsr/nwac064 10.1126/science.aax5776 10.1002/ange.202004657 10.1002/chem.201602671 10.1039/C3CC49666J 10.1002/adfm.201502069 10.1021/nl080323 10.1039/C9CC02849H 10.1016/j.micromeso.2012.06.044 10.1039/C7CC01568B 10.1016/j.cej.2020.128315 10.1021/acs.chemmater.0c03726 10.1021/jacs.7b02979 10.1002/adma.201905227 10.1021/jacs.9b09643 10.1021/la402144g 10.1038/s41586-019-1798-7 10.1002/anie.201900141 10.1002/ange.201807158 10.1038/s41467-020-17042-6 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202212732 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202212732 ANIE202212732 |
Genre | article |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars funderid: 22125804 – fundername: National Natural Science Foundation of China funderid: 22078155; 22008112 – fundername: Postdoctoral Research Foundation of China funderid: 2019M661813 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3502-cf326be42969a19d72532f1a2e66b877ea2f9a1d66ba3d9fdb30481bd628da0f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:26:02 EDT 2025 Sun Jul 13 05:03:55 EDT 2025 Tue Jul 01 01:18:29 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Wed Jan 22 16:30:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-cf326be42969a19d72532f1a2e66b877ea2f9a1d66ba3d9fdb30481bd628da0f3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6395-312X 0000-0003-1916-2707 |
PQID | 2732523238 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2717688946 proquest_journals_2732523238 crossref_citationtrail_10_1002_anie_202212732 crossref_primary_10_1002_anie_202212732 wiley_primary_10_1002_anie_202212732_ANIE202212732 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 14, 2022 |
PublicationDateYYYYMMDD | 2022-11-14 |
PublicationDate_xml | – month: 11 year: 2022 text: November 14, 2022 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 31 2013; 29 2017; 7 2018; 341 2012; 164 2021; 64 2013; 4 2021; 3 2020; 120 2019; 55 2011; 40 2020 2020; 59 132 2003; 15 2008; 8 2020; 11 2022; nwac064 2020; 32 2019; 141 2017; 311 2017; 356 2019 2019; 58 131 2017; 139 2013 2013; 52 125 2017; 53 2020; 6 2015; 25 2018; 17 2014; 5 2012; 134 2021; 410 2013; 12 2018 2018; 57 130 2012; 191 2021 2021; 60 133 2022; 13 2016; 353 2022; 14 2019; 576 2021; 373 2008; 137 2012; 48 2014; 50 2016; 8 2012; 41 2016; 22 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_19_3 e_1_2_7_19_2 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_45_2 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_25_3 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_4_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_2 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_55_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_32_3 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 e_1_2_7_38_3 |
References_xml | – volume: 134 start-page: 4501 year: 2012 end-page: 4504 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 991 year: 2013 end-page: 1003 publication-title: Nat. Mater. – volume: 55 start-page: 8776 year: 2019 end-page: 8779 publication-title: Chem. Commun. – volume: 7 start-page: 13355 year: 2017 publication-title: Sci. Rep. – volume: 31 start-page: 135 year: 1995 end-page: 144 publication-title: Eur. Polym. J. – volume: 29 start-page: 11623 year: 2013 end-page: 11631 publication-title: Langmuir – volume: 50 start-page: 2653 year: 2014 end-page: 2656 publication-title: Chem. Commun. – volume: 120 start-page: 8790 year: 2020 end-page: 8813 publication-title: Chem. Rev. – volume: 58 131 start-page: 12862 12994 year: 2019 2019 end-page: 12867 12999 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 3206 year: 2020 publication-title: Nat. Commun. – volume: 32 start-page: 10621 year: 2020 end-page: 10627 publication-title: Chem. Mater. – volume: 52 125 start-page: 3695 3783 year: 2013 2013 end-page: 3698 3786 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 311 start-page: 20 year: 2017 end-page: 27 publication-title: Chem. Eng. J. – volume: 4 start-page: 2858 year: 2013 end-page: 2864 publication-title: Chem. Sci. – volume: 137 start-page: 4 year: 2008 end-page: 13 publication-title: Chem. Eng. J. – volume: 64 start-page: 383 year: 2021 end-page: 392 publication-title: Sci. China Mater. – volume: nwac064 year: 2022 publication-title: Natl. Sci. Rev. – volume: 60 133 start-page: 19063 19211 year: 2021 2021 end-page: 19067 19215 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 6600 6672 year: 2019 2019 end-page: 6604 6676 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 191 start-page: 326 year: 2012 end-page: 330 publication-title: Chem. Eng. J. – volume: 353 start-page: 121 year: 2016 end-page: 122 publication-title: Science – volume: 5 start-page: 4957 year: 2014 end-page: 4961 publication-title: Chem. Sci. – volume: 134 start-page: 99 year: 2012 end-page: 102 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 8690 year: 2012 end-page: 8696 publication-title: Dalton Trans. – volume: 356 start-page: 1193 year: 2017 end-page: 1196 publication-title: Science – volume: 15 start-page: 20 year: 2003 end-page: 28 publication-title: Chem. Mater. – volume: 139 start-page: 8784 year: 2017 end-page: 8787 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 4405 year: 2015 end-page: 4411 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 24 year: 2021 end-page: 40 publication-title: Nanoscale Adv. – volume: 341 start-page: 321 year: 2018 end-page: 327 publication-title: J. Hazard. Mater. – volume: 59 132 start-page: 13051 13151 year: 2020 2020 end-page: 13056 13156 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 576 start-page: 253 year: 2019 end-page: 256 publication-title: Nature – volume: 57 130 start-page: 13114 13298 year: 2018 2018 end-page: 13119 13303 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 1644 year: 2008 end-page: 1648 publication-title: Nano Lett. – volume: 13 start-page: 1951 year: 2022 publication-title: Nat. Commun. – volume: 17 start-page: 864 year: 2018 end-page: 873 publication-title: Photochem. Photobiol. Sci. – volume: 141 start-page: 19078 year: 2019 end-page: 19087 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 164 start-page: 38 year: 2012 end-page: 43 publication-title: Microporous Mesoporous Mater. – volume: 14 start-page: 1519 year: 2022 end-page: 1525 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 23404 year: 2016 end-page: 23411 publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 4422 year: 2011 end-page: 4437 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 4635 year: 2017 end-page: 4652 publication-title: Chem. Commun. – volume: 410 year: 2021 publication-title: Chem. Eng. J. – volume: 48 start-page: 12053 year: 2012 end-page: 12055 publication-title: Chem. Commun. – volume: 6 start-page: 569 year: 2020 end-page: 576 publication-title: Engineering – volume: 22 start-page: 11176 year: 2016 end-page: 11179 publication-title: Chem. Eur. J. – volume: 373 start-page: 315 year: 2021 end-page: 320 publication-title: Science – ident: e_1_2_7_32_3 doi: 10.1002/ange.201206359 – ident: e_1_2_7_7_3 doi: 10.1002/ange.202106523 – ident: e_1_2_7_38_3 doi: 10.1002/ange.201906606 – ident: e_1_2_7_51_1 – ident: e_1_2_7_15_2 doi: 10.1021/acsami.1c18368 – ident: e_1_2_7_37_2 doi: 10.1021/acsami.6b07853 – ident: e_1_2_7_29_2 doi: 10.1021/acs.chemrev.9b00350 – ident: e_1_2_7_24_2 doi: 10.1021/ja2115713 – ident: e_1_2_7_17_1 – ident: e_1_2_7_63_2 doi: 10.1016/j.eng.2020.03.005 – ident: e_1_2_7_19_3 doi: 10.1002/ange.201900141 – ident: e_1_2_7_40_2 doi: 10.1021/ja209197f – ident: e_1_2_7_18_2 doi: 10.1002/anie.201807158 – ident: e_1_2_7_39_1 – ident: e_1_2_7_5_1 – ident: e_1_2_7_32_2 doi: 10.1002/anie.201206359 – ident: e_1_2_7_36_2 doi: 10.1016/j.cej.2007.07.074 – ident: e_1_2_7_2_1 – ident: e_1_2_7_38_2 doi: 10.1002/anie.201906606 – ident: e_1_2_7_59_2 doi: 10.1021/cm0207696 – ident: e_1_2_7_30_1 – ident: e_1_2_7_27_1 – ident: e_1_2_7_28_2 doi: 10.1039/D0NA00647E – ident: e_1_2_7_35_1 – ident: e_1_2_7_6_2 doi: 10.1126/science.aam7232 – ident: e_1_2_7_43_1 – ident: e_1_2_7_11_2 doi: 10.1038/nmat3776 – ident: e_1_2_7_21_2 doi: 10.1039/c7pp00456g – ident: e_1_2_7_62_2 doi: 10.1039/C4SC02305F – ident: e_1_2_7_12_2 doi: 10.1038/s41467-022-29149-z – ident: e_1_2_7_25_2 doi: 10.1002/anie.202004657 – ident: e_1_2_7_57_2 doi: 10.1039/c1cs15023e – ident: e_1_2_7_47_1 doi: 10.1039/c2dt30672g – ident: e_1_2_7_10_2 doi: 10.1007/s40843-020-1423-8 – ident: e_1_2_7_8_1 doi: 10.1126/science.aag2267 – ident: e_1_2_7_48_1 doi: 10.1016/0014-3057(94)00130-8 – ident: e_1_2_7_52_2 doi: 10.1016/j.cej.2012.03.025 – ident: e_1_2_7_54_1 doi: 10.1039/c3sc21659d – ident: e_1_2_7_22_2 doi: 10.1002/adma.201905966 – ident: e_1_2_7_49_1 doi: 10.1039/c2cc36344e – ident: e_1_2_7_50_1 doi: 10.1016/j.jhazmat.2017.07.065 – ident: e_1_2_7_44_2 doi: 10.1016/j.cej.2016.11.067 – ident: e_1_2_7_7_2 doi: 10.1002/anie.202106523 – ident: e_1_2_7_41_2 doi: 10.1038/s41598-017-13536-4 – ident: e_1_2_7_1_1 doi: 10.1093/nsr/nwac064 – ident: e_1_2_7_4_2 doi: 10.1126/science.aax5776 – ident: e_1_2_7_25_3 doi: 10.1002/ange.202004657 – ident: e_1_2_7_42_2 doi: 10.1002/chem.201602671 – ident: e_1_2_7_33_2 doi: 10.1039/C3CC49666J – ident: e_1_2_7_55_1 – ident: e_1_2_7_13_2 doi: 10.1002/adfm.201502069 – ident: e_1_2_7_56_2 doi: 10.1021/nl080323 – ident: e_1_2_7_34_2 doi: 10.1039/C9CC02849H – ident: e_1_2_7_53_2 doi: 10.1016/j.micromeso.2012.06.044 – ident: e_1_2_7_58_1 – ident: e_1_2_7_31_2 doi: 10.1039/C7CC01568B – ident: e_1_2_7_46_1 doi: 10.1016/j.cej.2020.128315 – ident: e_1_2_7_16_2 doi: 10.1021/acs.chemmater.0c03726 – ident: e_1_2_7_61_1 – ident: e_1_2_7_14_2 doi: 10.1021/jacs.7b02979 – ident: e_1_2_7_20_2 doi: 10.1002/adma.201905227 – ident: e_1_2_7_26_2 doi: 10.1021/jacs.9b09643 – ident: e_1_2_7_60_2 doi: 10.1021/la402144g – ident: e_1_2_7_3_2 doi: 10.1038/s41586-019-1798-7 – ident: e_1_2_7_19_2 doi: 10.1002/anie.201900141 – ident: e_1_2_7_9_1 – ident: e_1_2_7_18_3 doi: 10.1002/ange.201807158 – ident: e_1_2_7_23_1 – ident: e_1_2_7_45_2 doi: 10.1038/s41467-020-17042-6 |
SSID | ssj0028806 |
Score | 2.5356338 |
Snippet | Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is... Light-responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202212732 |
SubjectTerms | Adsorbates Adsorbents Adsorption Azo compounds Carbon monoxide CO Adsorption Complexation Copper Cu+ Sites Irradiation Isomerization Light irradiation Light-Responsive Property Smart Adsorbents Smart materials Steric hindrance Strong interactions (field theory) Tuning π-Complexation Interaction |
Title | Reversible Light‐Controlled CO Adsorption via Tuning π‐Complexation of Cu+ Sites in Azobenzene‐Decorated Metal‐Organic Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212732 https://www.proquest.com/docview/2732523238 https://www.proquest.com/docview/2717688946 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLvTSQh_qFqiMVKmHKpDYeWyOq7ArqAqVKEjcovFLQl0liGwQ2tOeOfHP-A_8EmaSTYBKVaX2FscTxfHY42-cmc-Mfba-CYQ22ksdpeQAhB7ECOSUBpVYpazxKVH48CjePw2_nUVnT7L4W36IfsONZkZjr2mCg6p2H0lDKQMb_TtBFOWSjDAFbBEqOu75owQOzja9SEqPTqHvWBt9sfv88eer0iPUfApYmxVn8ppB19Y20OTXTj1TO3r-G43j_3zMGnu1hKN81I6fdfbCFm_YatadAveW3RzbJnBDTS3_To78_eI2a8Pbp9bw7Acfmaq8bAwPvzoHflLTTgu_WzSCxD183Sifl45n9Vf-EzFuxc8LPpqXyhZztLUouUdeMMJeww8tugN4p00S1XzSRY9V79jpZHyS7XvL8xs8LSM0tNohNlQWV7w4hSA1iYikcAEIG8dqmCQWhMMKgyWQJnVGSWKvUSYWQwO-k-_ZSlEW9gPjoHznwKUyCiEMdQSR09IYmSiL_pISA-Z1-sv1ktycztiY5i0ts8iph_O-hwfsSy9_0dJ6_FFysxsO-XJ6VzlVoAePcGfAtvtq1Az9bYHCljXJBNi0YRrGAyYa3f_lTfno6GDclz7-y0Mb7CVdU65kEG6yldllbbcQNM3Up2ZiPADqqRXq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5CekgvfZc6TdstFHIoSqRdPayjUWKc1HYgdaA3sU8IMVKIrVJ8yrmn_rP8h_ySzkiW0hRKoT1qdxat9jH7zWrmG4AP1jcB10Z7qaOQHClDT8YI5JSWKrFKWeNToPBkGo_OwuMvUetNSLEwDT9Ed-FGO6PW17TB6UJ6_441lEKw0cDjxFEuUAs_oLTeRJ9_cNoxSHFcnk2AkRAe5aFveRt9vn-__f1z6Q5s_gpZ6zNn-BhU29vG1eRir1qqPb36jcjxvz7nCTxaI1I2aJbQU9iwxTPYytpEcM_h-6mtfTfU3LIx2fK31z-yxsN9bg3LTtjALMqrWvewr-eSzSq6bGE317Ug0Q9_q-eflY5l1Uf2GWHugp0XbLAqlS1WqG5R8oAMYUS-hk0sWgRY0sSJajZsHcgWL-BseDjLRt46hYOnRYS6VjuEh8rioRenMkhNwiPBXSC5jWPVTxIrucMKg09SmNQZJYjARpmY9430nXgJm0VZ2FfApPKdky4VUSjDUEcycloYIxJl0WRSvAdeO4G5XvObU5qNed4wM_OcRjjvRrgHu538ZcPs8UfJnXY95OsdvsipAo14RDw9eN9V48zQDxdZ2LIimQC71k_DuAe8nvy_vCkfTI8Ou6ftf2n0DrZGs8k4Hx9NP72Gh1ROoZNBuAOby6vKvkEMtVRv613yEy7lGgY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JatxAEC2CA4kvWR08sZN0IJCDkS11axkdB40Hr5PgBXwTvYLJIBnPKJg5-ZxT_iz_kC9JlTSS7YAJxEd1V6NWL9WvWlWvAD5Z3wRcG-2ljkJypAw9GSOQU1qqxCpljU-BwofjeOc03DuLzm5F8Tf8EN2FG-2MWl_TBr8wbuuGNJQisNG-40RRLlAJPw5jP6XkDcOjjkCK4-ps4ouE8CgNfUvb6POtu-3vHks3WPM2Yq2PnNFzkG1nG0-Tb5vVTG3q-V88jg_5mhfwbIFH2aBZQC_hkS1ewdOsTQP3Gn4c2dpzQ00sOyBL_vf1z6zxb59Yw7IvbGCm5WWtedj3c8lOKrpqYb-ua0EiH76qZ5-VjmXVBjtGkDtl5wUbzEtlizkqW5QckhmMuNewQ4v2AJY0UaKajVr3sekKnI62T7Idb5HAwdMiQk2rHYJDZfHIi1MZpCbhkeAukNzGseoniZXcYYXBJylM6owSRF-jTMz7RvpOvIGloizsKjCpfOekS0UUyjDUkYycFsaIRFk0mBTvgdfOX64X7OaUZGOSN7zMPKcRzrsR7sHnTv6i4fW4V3K9XQ75Yn9Pc6pAEx7xTg8-dtU4M_S7RRa2rEgmwK710zDuAa_n_h9vygfj3e3u6e3_NPoAT74OR_nB7nh_DZapmOImg3AdlmaXlX2HAGqm3td75A_X8xi1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Light%E2%80%90Controlled+CO+Adsorption+via+Tuning+%CF%80%E2%80%90Complexation+of+Cu+%2B+Sites+in+Azobenzene%E2%80%90Decorated+Metal%E2%80%90Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Yu%E2%80%90Xia&rft.au=Zhong%2C+Wen&rft.au=Zhou%2C+Jin%E2%80%90Jian&rft.au=Qi%2C+Shi%E2%80%90Chao&rft.date=2022-11-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=46&rft_id=info:doi/10.1002%2Fanie.202212732&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202212732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |