Reversible Light‐Controlled CO Adsorption via Tuning π‐Complexation of Cu+ Sites in Azobenzene‐Decorated Metal‐Organic Frameworks

Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 46; pp. e202212732 - n/a
Main Authors Li, Yu‐Xia, Zhong, Wen, Zhou, Jin‐Jian, Qi, Shi‐Chao, Liu, Xiao‐Qin, Sun, Lin‐Bing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 14.11.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π‐complexation adsorbents, which can adjust the π‐complexation of active sites via light irradiation. A typical metal‐organic framework, MIL‐101‐NH2, was decorated with azobenzene motifs, and Cu+ as π‐complexation active sites were introduced subsequently. The reversible light‐induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL‐101‐NH2 is negligible. This study provides a clue for designing target‐specific smart materials to meet the practical stimuli‐responsive adsorption demands. Smart adsorbents are fabricated by introducing Cu+ into azobenzene‐decorated metal‐organic frameworks, in which azobenzene acts as light‐responsive motifs and Cu+ as π‐complexing sites. Ultraviolet‐/visible‐light irradiation triggers the isomerization of azobenzene, causing the changes in electrostatic potential around Cu+. This exposure/shelter effect adjusts CO capture and release by shifting light.
AbstractList Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π‐complexation adsorbents, which can adjust the π‐complexation of active sites via light irradiation. A typical metal‐organic framework, MIL‐101‐NH2, was decorated with azobenzene motifs, and Cu+ as π‐complexation active sites were introduced subsequently. The reversible light‐induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL‐101‐NH2 is negligible. This study provides a clue for designing target‐specific smart materials to meet the practical stimuli‐responsive adsorption demands.
Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π‐complexation adsorbents, which can adjust the π‐complexation of active sites via light irradiation. A typical metal‐organic framework, MIL‐101‐NH 2 , was decorated with azobenzene motifs, and Cu + as π‐complexation active sites were introduced subsequently. The reversible light‐induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu + from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL‐101‐NH 2 is negligible. This study provides a clue for designing target‐specific smart materials to meet the practical stimuli‐responsive adsorption demands.
Light-responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π-complexation adsorbents, which can adjust the π-complexation of active sites via light irradiation. A typical metal-organic framework, MIL-101-NH2 , was decorated with azobenzene motifs, and Cu+ as π-complexation active sites were introduced subsequently. The reversible light-induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from -0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL-101-NH2 is negligible. This study provides a clue for designing target-specific smart materials to meet the practical stimuli-responsive adsorption demands.Light-responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π-complexation adsorbents, which can adjust the π-complexation of active sites via light irradiation. A typical metal-organic framework, MIL-101-NH2 , was decorated with azobenzene motifs, and Cu+ as π-complexation active sites were introduced subsequently. The reversible light-induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from -0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL-101-NH2 is negligible. This study provides a clue for designing target-specific smart materials to meet the practical stimuli-responsive adsorption demands.
Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π‐complexation adsorbents, which can adjust the π‐complexation of active sites via light irradiation. A typical metal‐organic framework, MIL‐101‐NH2, was decorated with azobenzene motifs, and Cu+ as π‐complexation active sites were introduced subsequently. The reversible light‐induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL‐101‐NH2 is negligible. This study provides a clue for designing target‐specific smart materials to meet the practical stimuli‐responsive adsorption demands. Smart adsorbents are fabricated by introducing Cu+ into azobenzene‐decorated metal‐organic frameworks, in which azobenzene acts as light‐responsive motifs and Cu+ as π‐complexing sites. Ultraviolet‐/visible‐light irradiation triggers the isomerization of azobenzene, causing the changes in electrostatic potential around Cu+. This exposure/shelter effect adjusts CO capture and release by shifting light.
Author Zhou, Jin‐Jian
Li, Yu‐Xia
Qi, Shi‐Chao
Liu, Xiao‐Qin
Sun, Lin‐Bing
Zhong, Wen
Author_xml – sequence: 1
  givenname: Yu‐Xia
  orcidid: 0000-0003-1916-2707
  surname: Li
  fullname: Li, Yu‐Xia
  organization: Nanjing Tech University
– sequence: 2
  givenname: Wen
  surname: Zhong
  fullname: Zhong, Wen
  organization: Nanjing Tech University
– sequence: 3
  givenname: Jin‐Jian
  surname: Zhou
  fullname: Zhou, Jin‐Jian
  organization: Nanjing Tech University
– sequence: 4
  givenname: Shi‐Chao
  surname: Qi
  fullname: Qi, Shi‐Chao
  organization: Nanjing Tech University
– sequence: 5
  givenname: Xiao‐Qin
  surname: Liu
  fullname: Liu, Xiao‐Qin
  organization: Nanjing Tech University
– sequence: 6
  givenname: Lin‐Bing
  orcidid: 0000-0002-6395-312X
  surname: Sun
  fullname: Sun, Lin‐Bing
  email: lbsun@njtech.edu.cn
  organization: Nanjing Tech University
BookMark eNqFkctu1DAUhi1UJNrClrUlNkgogy9J7CxHoYVKU0aCsrac5GRw8diD7bS0q65Z8Wa8A09SzwwCqRJi5cv5vqOj8x-hA-cdIPSckhklhL3WzsCMEcYoE5w9Qoe0YrTgQvCDfC85L4Ss6BN0FONl5qUk9SH6_gGuIETTWcALs_qcft39aL1LwVsLA26XeD5EHzbJeIevjMYXkzNuhX_e7cD1xsI3vSv6EbfTK_zRJIjYODy_9R24W3CQyTfQ-6BT7ngOSdv8swyrPHCPT4New7UPX-JT9HjUNsKz3-cx-nR6ctG-KxbLt2ftfFH0vCKs6EfO6g5K1tSNps0gWMXZSDWDuu6kEKDZmAtDfmk-NOPQcVJK2g01k4MmIz9GL_d9N8F_nSAmtTaxB2u1Az9FxQQVtZRNWWf0xQP00k_B5enUdscV44zLTJV7qg8-xgCj6k3aLSUFbayiRG0DUtuA1J-AsjZ7oG2CWetw82-h2QvXxsLNf2g1f3928te9B88Qq2o
CitedBy_id crossref_primary_10_1016_j_ecofro_2024_05_005
crossref_primary_10_1007_s11172_023_3826_8
crossref_primary_10_1002_adfm_202213743
crossref_primary_10_1002_ange_202311336
crossref_primary_10_1002_anie_202311336
crossref_primary_10_1021_acs_cgd_3c00722
crossref_primary_10_1039_D3CC00622K
crossref_primary_10_1016_j_apsusc_2024_159882
crossref_primary_10_1021_acsmaterialslett_3c00476
crossref_primary_10_1002_ange_202301739
crossref_primary_10_1021_acssuschemeng_2c05388
crossref_primary_10_1039_D3TA01241G
crossref_primary_10_1002_anie_202317435
crossref_primary_10_1002_smll_202406621
crossref_primary_10_1080_25740881_2024_2408346
crossref_primary_10_1002_ange_202317435
crossref_primary_10_1016_j_tifs_2023_104200
crossref_primary_10_1002_anie_202301739
crossref_primary_10_1016_j_seppur_2024_128904
crossref_primary_10_1002_aic_18722
crossref_primary_10_1039_D2MA01022D
crossref_primary_10_1016_j_seppur_2023_124647
crossref_primary_10_1002_smll_202302885
Cites_doi 10.1002/ange.201206359
10.1002/ange.202106523
10.1002/ange.201906606
10.1021/acsami.1c18368
10.1021/acsami.6b07853
10.1021/acs.chemrev.9b00350
10.1021/ja2115713
10.1016/j.eng.2020.03.005
10.1002/ange.201900141
10.1021/ja209197f
10.1002/anie.201807158
10.1002/anie.201206359
10.1016/j.cej.2007.07.074
10.1002/anie.201906606
10.1021/cm0207696
10.1039/D0NA00647E
10.1126/science.aam7232
10.1038/nmat3776
10.1039/c7pp00456g
10.1039/C4SC02305F
10.1038/s41467-022-29149-z
10.1002/anie.202004657
10.1039/c1cs15023e
10.1039/c2dt30672g
10.1007/s40843-020-1423-8
10.1126/science.aag2267
10.1016/0014-3057(94)00130-8
10.1016/j.cej.2012.03.025
10.1039/c3sc21659d
10.1002/adma.201905966
10.1039/c2cc36344e
10.1016/j.jhazmat.2017.07.065
10.1016/j.cej.2016.11.067
10.1002/anie.202106523
10.1038/s41598-017-13536-4
10.1093/nsr/nwac064
10.1126/science.aax5776
10.1002/ange.202004657
10.1002/chem.201602671
10.1039/C3CC49666J
10.1002/adfm.201502069
10.1021/nl080323
10.1039/C9CC02849H
10.1016/j.micromeso.2012.06.044
10.1039/C7CC01568B
10.1016/j.cej.2020.128315
10.1021/acs.chemmater.0c03726
10.1021/jacs.7b02979
10.1002/adma.201905227
10.1021/jacs.9b09643
10.1021/la402144g
10.1038/s41586-019-1798-7
10.1002/anie.201900141
10.1002/ange.201807158
10.1038/s41467-020-17042-6
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202212732
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202212732
ANIE202212732
Genre article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  funderid: 22125804
– fundername: National Natural Science Foundation of China
  funderid: 22078155; 22008112
– fundername: Postdoctoral Research Foundation of China
  funderid: 2019M661813
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3502-cf326be42969a19d72532f1a2e66b877ea2f9a1d66ba3d9fdb30481bd628da0f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:26:02 EDT 2025
Sun Jul 13 05:03:55 EDT 2025
Tue Jul 01 01:18:29 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Wed Jan 22 16:30:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-cf326be42969a19d72532f1a2e66b877ea2f9a1d66ba3d9fdb30481bd628da0f3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6395-312X
0000-0003-1916-2707
PQID 2732523238
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2717688946
proquest_journals_2732523238
crossref_citationtrail_10_1002_anie_202212732
crossref_primary_10_1002_anie_202212732
wiley_primary_10_1002_anie_202212732_ANIE202212732
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 14, 2022
PublicationDateYYYYMMDD 2022-11-14
PublicationDate_xml – month: 11
  year: 2022
  text: November 14, 2022
  day: 14
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 31
2013; 29
2017; 7
2018; 341
2012; 164
2021; 64
2013; 4
2021; 3
2020; 120
2019; 55
2011; 40
2020 2020; 59 132
2003; 15
2008; 8
2020; 11
2022; nwac064
2020; 32
2019; 141
2017; 311
2017; 356
2019 2019; 58 131
2017; 139
2013 2013; 52 125
2017; 53
2020; 6
2015; 25
2018; 17
2014; 5
2012; 134
2021; 410
2013; 12
2018 2018; 57 130
2012; 191
2021 2021; 60 133
2022; 13
2016; 353
2022; 14
2019; 576
2021; 373
2008; 137
2012; 48
2014; 50
2016; 8
2012; 41
2016; 22
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_19_3
e_1_2_7_19_2
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_45_2
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_25_3
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_4_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_55_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_32_3
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
e_1_2_7_59_2
e_1_2_7_38_3
References_xml – volume: 134
  start-page: 4501
  year: 2012
  end-page: 4504
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 991
  year: 2013
  end-page: 1003
  publication-title: Nat. Mater.
– volume: 55
  start-page: 8776
  year: 2019
  end-page: 8779
  publication-title: Chem. Commun.
– volume: 7
  start-page: 13355
  year: 2017
  publication-title: Sci. Rep.
– volume: 31
  start-page: 135
  year: 1995
  end-page: 144
  publication-title: Eur. Polym. J.
– volume: 29
  start-page: 11623
  year: 2013
  end-page: 11631
  publication-title: Langmuir
– volume: 50
  start-page: 2653
  year: 2014
  end-page: 2656
  publication-title: Chem. Commun.
– volume: 120
  start-page: 8790
  year: 2020
  end-page: 8813
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 12862 12994
  year: 2019 2019
  end-page: 12867 12999
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 3206
  year: 2020
  publication-title: Nat. Commun.
– volume: 32
  start-page: 10621
  year: 2020
  end-page: 10627
  publication-title: Chem. Mater.
– volume: 52 125
  start-page: 3695 3783
  year: 2013 2013
  end-page: 3698 3786
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 311
  start-page: 20
  year: 2017
  end-page: 27
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 2858
  year: 2013
  end-page: 2864
  publication-title: Chem. Sci.
– volume: 137
  start-page: 4
  year: 2008
  end-page: 13
  publication-title: Chem. Eng. J.
– volume: 64
  start-page: 383
  year: 2021
  end-page: 392
  publication-title: Sci. China Mater.
– volume: nwac064
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 60 133
  start-page: 19063 19211
  year: 2021 2021
  end-page: 19067 19215
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 6600 6672
  year: 2019 2019
  end-page: 6604 6676
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 191
  start-page: 326
  year: 2012
  end-page: 330
  publication-title: Chem. Eng. J.
– volume: 353
  start-page: 121
  year: 2016
  end-page: 122
  publication-title: Science
– volume: 5
  start-page: 4957
  year: 2014
  end-page: 4961
  publication-title: Chem. Sci.
– volume: 134
  start-page: 99
  year: 2012
  end-page: 102
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 8690
  year: 2012
  end-page: 8696
  publication-title: Dalton Trans.
– volume: 356
  start-page: 1193
  year: 2017
  end-page: 1196
  publication-title: Science
– volume: 15
  start-page: 20
  year: 2003
  end-page: 28
  publication-title: Chem. Mater.
– volume: 139
  start-page: 8784
  year: 2017
  end-page: 8787
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 4405
  year: 2015
  end-page: 4411
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 24
  year: 2021
  end-page: 40
  publication-title: Nanoscale Adv.
– volume: 341
  start-page: 321
  year: 2018
  end-page: 327
  publication-title: J. Hazard. Mater.
– volume: 59 132
  start-page: 13051 13151
  year: 2020 2020
  end-page: 13056 13156
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 576
  start-page: 253
  year: 2019
  end-page: 256
  publication-title: Nature
– volume: 57 130
  start-page: 13114 13298
  year: 2018 2018
  end-page: 13119 13303
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 1644
  year: 2008
  end-page: 1648
  publication-title: Nano Lett.
– volume: 13
  start-page: 1951
  year: 2022
  publication-title: Nat. Commun.
– volume: 17
  start-page: 864
  year: 2018
  end-page: 873
  publication-title: Photochem. Photobiol. Sci.
– volume: 141
  start-page: 19078
  year: 2019
  end-page: 19087
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 164
  start-page: 38
  year: 2012
  end-page: 43
  publication-title: Microporous Mesoporous Mater.
– volume: 14
  start-page: 1519
  year: 2022
  end-page: 1525
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 23404
  year: 2016
  end-page: 23411
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 4422
  year: 2011
  end-page: 4437
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 4635
  year: 2017
  end-page: 4652
  publication-title: Chem. Commun.
– volume: 410
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 12053
  year: 2012
  end-page: 12055
  publication-title: Chem. Commun.
– volume: 6
  start-page: 569
  year: 2020
  end-page: 576
  publication-title: Engineering
– volume: 22
  start-page: 11176
  year: 2016
  end-page: 11179
  publication-title: Chem. Eur. J.
– volume: 373
  start-page: 315
  year: 2021
  end-page: 320
  publication-title: Science
– ident: e_1_2_7_32_3
  doi: 10.1002/ange.201206359
– ident: e_1_2_7_7_3
  doi: 10.1002/ange.202106523
– ident: e_1_2_7_38_3
  doi: 10.1002/ange.201906606
– ident: e_1_2_7_51_1
– ident: e_1_2_7_15_2
  doi: 10.1021/acsami.1c18368
– ident: e_1_2_7_37_2
  doi: 10.1021/acsami.6b07853
– ident: e_1_2_7_29_2
  doi: 10.1021/acs.chemrev.9b00350
– ident: e_1_2_7_24_2
  doi: 10.1021/ja2115713
– ident: e_1_2_7_17_1
– ident: e_1_2_7_63_2
  doi: 10.1016/j.eng.2020.03.005
– ident: e_1_2_7_19_3
  doi: 10.1002/ange.201900141
– ident: e_1_2_7_40_2
  doi: 10.1021/ja209197f
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.201807158
– ident: e_1_2_7_39_1
– ident: e_1_2_7_5_1
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.201206359
– ident: e_1_2_7_36_2
  doi: 10.1016/j.cej.2007.07.074
– ident: e_1_2_7_2_1
– ident: e_1_2_7_38_2
  doi: 10.1002/anie.201906606
– ident: e_1_2_7_59_2
  doi: 10.1021/cm0207696
– ident: e_1_2_7_30_1
– ident: e_1_2_7_27_1
– ident: e_1_2_7_28_2
  doi: 10.1039/D0NA00647E
– ident: e_1_2_7_35_1
– ident: e_1_2_7_6_2
  doi: 10.1126/science.aam7232
– ident: e_1_2_7_43_1
– ident: e_1_2_7_11_2
  doi: 10.1038/nmat3776
– ident: e_1_2_7_21_2
  doi: 10.1039/c7pp00456g
– ident: e_1_2_7_62_2
  doi: 10.1039/C4SC02305F
– ident: e_1_2_7_12_2
  doi: 10.1038/s41467-022-29149-z
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.202004657
– ident: e_1_2_7_57_2
  doi: 10.1039/c1cs15023e
– ident: e_1_2_7_47_1
  doi: 10.1039/c2dt30672g
– ident: e_1_2_7_10_2
  doi: 10.1007/s40843-020-1423-8
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aag2267
– ident: e_1_2_7_48_1
  doi: 10.1016/0014-3057(94)00130-8
– ident: e_1_2_7_52_2
  doi: 10.1016/j.cej.2012.03.025
– ident: e_1_2_7_54_1
  doi: 10.1039/c3sc21659d
– ident: e_1_2_7_22_2
  doi: 10.1002/adma.201905966
– ident: e_1_2_7_49_1
  doi: 10.1039/c2cc36344e
– ident: e_1_2_7_50_1
  doi: 10.1016/j.jhazmat.2017.07.065
– ident: e_1_2_7_44_2
  doi: 10.1016/j.cej.2016.11.067
– ident: e_1_2_7_7_2
  doi: 10.1002/anie.202106523
– ident: e_1_2_7_41_2
  doi: 10.1038/s41598-017-13536-4
– ident: e_1_2_7_1_1
  doi: 10.1093/nsr/nwac064
– ident: e_1_2_7_4_2
  doi: 10.1126/science.aax5776
– ident: e_1_2_7_25_3
  doi: 10.1002/ange.202004657
– ident: e_1_2_7_42_2
  doi: 10.1002/chem.201602671
– ident: e_1_2_7_33_2
  doi: 10.1039/C3CC49666J
– ident: e_1_2_7_55_1
– ident: e_1_2_7_13_2
  doi: 10.1002/adfm.201502069
– ident: e_1_2_7_56_2
  doi: 10.1021/nl080323
– ident: e_1_2_7_34_2
  doi: 10.1039/C9CC02849H
– ident: e_1_2_7_53_2
  doi: 10.1016/j.micromeso.2012.06.044
– ident: e_1_2_7_58_1
– ident: e_1_2_7_31_2
  doi: 10.1039/C7CC01568B
– ident: e_1_2_7_46_1
  doi: 10.1016/j.cej.2020.128315
– ident: e_1_2_7_16_2
  doi: 10.1021/acs.chemmater.0c03726
– ident: e_1_2_7_61_1
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.7b02979
– ident: e_1_2_7_20_2
  doi: 10.1002/adma.201905227
– ident: e_1_2_7_26_2
  doi: 10.1021/jacs.9b09643
– ident: e_1_2_7_60_2
  doi: 10.1021/la402144g
– ident: e_1_2_7_3_2
  doi: 10.1038/s41586-019-1798-7
– ident: e_1_2_7_19_2
  doi: 10.1002/anie.201900141
– ident: e_1_2_7_9_1
– ident: e_1_2_7_18_3
  doi: 10.1002/ange.201807158
– ident: e_1_2_7_23_1
– ident: e_1_2_7_45_2
  doi: 10.1038/s41467-020-17042-6
SSID ssj0028806
Score 2.5356338
Snippet Light‐responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is...
Light-responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202212732
SubjectTerms Adsorbates
Adsorbents
Adsorption
Azo compounds
Carbon monoxide
CO Adsorption
Complexation
Copper
Cu+ Sites
Irradiation
Isomerization
Light irradiation
Light-Responsive Property
Smart Adsorbents
Smart materials
Steric hindrance
Strong interactions (field theory)
Tuning
π-Complexation Interaction
Title Reversible Light‐Controlled CO Adsorption via Tuning π‐Complexation of Cu+ Sites in Azobenzene‐Decorated Metal‐Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212732
https://www.proquest.com/docview/2732523238
https://www.proquest.com/docview/2717688946
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLvTSQh_qFqiMVKmHKpDYeWyOq7ArqAqVKEjcovFLQl0liGwQ2tOeOfHP-A_8EmaSTYBKVaX2FscTxfHY42-cmc-Mfba-CYQ22ksdpeQAhB7ECOSUBpVYpazxKVH48CjePw2_nUVnT7L4W36IfsONZkZjr2mCg6p2H0lDKQMb_TtBFOWSjDAFbBEqOu75owQOzja9SEqPTqHvWBt9sfv88eer0iPUfApYmxVn8ppB19Y20OTXTj1TO3r-G43j_3zMGnu1hKN81I6fdfbCFm_YatadAveW3RzbJnBDTS3_To78_eI2a8Pbp9bw7Acfmaq8bAwPvzoHflLTTgu_WzSCxD183Sifl45n9Vf-EzFuxc8LPpqXyhZztLUouUdeMMJeww8tugN4p00S1XzSRY9V79jpZHyS7XvL8xs8LSM0tNohNlQWV7w4hSA1iYikcAEIG8dqmCQWhMMKgyWQJnVGSWKvUSYWQwO-k-_ZSlEW9gPjoHznwKUyCiEMdQSR09IYmSiL_pISA-Z1-sv1ktycztiY5i0ts8iph_O-hwfsSy9_0dJ6_FFysxsO-XJ6VzlVoAePcGfAtvtq1Az9bYHCljXJBNi0YRrGAyYa3f_lTfno6GDclz7-y0Mb7CVdU65kEG6yldllbbcQNM3Up2ZiPADqqRXq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5CekgvfZc6TdstFHIoSqRdPayjUWKc1HYgdaA3sU8IMVKIrVJ8yrmn_rP8h_ySzkiW0hRKoT1qdxat9jH7zWrmG4AP1jcB10Z7qaOQHClDT8YI5JSWKrFKWeNToPBkGo_OwuMvUetNSLEwDT9Ed-FGO6PW17TB6UJ6_441lEKw0cDjxFEuUAs_oLTeRJ9_cNoxSHFcnk2AkRAe5aFveRt9vn-__f1z6Q5s_gpZ6zNn-BhU29vG1eRir1qqPb36jcjxvz7nCTxaI1I2aJbQU9iwxTPYytpEcM_h-6mtfTfU3LIx2fK31z-yxsN9bg3LTtjALMqrWvewr-eSzSq6bGE317Ug0Q9_q-eflY5l1Uf2GWHugp0XbLAqlS1WqG5R8oAMYUS-hk0sWgRY0sSJajZsHcgWL-BseDjLRt46hYOnRYS6VjuEh8rioRenMkhNwiPBXSC5jWPVTxIrucMKg09SmNQZJYjARpmY9430nXgJm0VZ2FfApPKdky4VUSjDUEcycloYIxJl0WRSvAdeO4G5XvObU5qNed4wM_OcRjjvRrgHu538ZcPs8UfJnXY95OsdvsipAo14RDw9eN9V48zQDxdZ2LIimQC71k_DuAe8nvy_vCkfTI8Ou6ftf2n0DrZGs8k4Hx9NP72Gh1ROoZNBuAOby6vKvkEMtVRv613yEy7lGgY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JatxAEC2CA4kvWR08sZN0IJCDkS11axkdB40Hr5PgBXwTvYLJIBnPKJg5-ZxT_iz_kC9JlTSS7YAJxEd1V6NWL9WvWlWvAD5Z3wRcG-2ljkJypAw9GSOQU1qqxCpljU-BwofjeOc03DuLzm5F8Tf8EN2FG-2MWl_TBr8wbuuGNJQisNG-40RRLlAJPw5jP6XkDcOjjkCK4-ps4ouE8CgNfUvb6POtu-3vHks3WPM2Yq2PnNFzkG1nG0-Tb5vVTG3q-V88jg_5mhfwbIFH2aBZQC_hkS1ewdOsTQP3Gn4c2dpzQ00sOyBL_vf1z6zxb59Yw7IvbGCm5WWtedj3c8lOKrpqYb-ua0EiH76qZ5-VjmXVBjtGkDtl5wUbzEtlizkqW5QckhmMuNewQ4v2AJY0UaKajVr3sekKnI62T7Idb5HAwdMiQk2rHYJDZfHIi1MZpCbhkeAukNzGseoniZXcYYXBJylM6owSRF-jTMz7RvpOvIGloizsKjCpfOekS0UUyjDUkYycFsaIRFk0mBTvgdfOX64X7OaUZGOSN7zMPKcRzrsR7sHnTv6i4fW4V3K9XQ75Yn9Pc6pAEx7xTg8-dtU4M_S7RRa2rEgmwK710zDuAa_n_h9vygfj3e3u6e3_NPoAT74OR_nB7nh_DZapmOImg3AdlmaXlX2HAGqm3td75A_X8xi1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Light%E2%80%90Controlled+CO+Adsorption+via+Tuning+%CF%80%E2%80%90Complexation+of+Cu+%2B+Sites+in+Azobenzene%E2%80%90Decorated+Metal%E2%80%90Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Yu%E2%80%90Xia&rft.au=Zhong%2C+Wen&rft.au=Zhou%2C+Jin%E2%80%90Jian&rft.au=Qi%2C+Shi%E2%80%90Chao&rft.date=2022-11-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=46&rft_id=info:doi/10.1002%2Fanie.202212732&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202212732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon