Construction of Catalytic Covalent Organic Frameworks with Redox‐Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction

Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the C...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 49; pp. e202213522 - n/a
Main Authors Liu, Minghao, Liu, Sijia, Cui, Cheng‐Xing, Miao, Qiyang, He, Yue, Li, Xuewen, Xu, Qing, Zeng, Gaofeng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.12.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co‐porphyrin based frameworks. Both of the new COFs (CoTAPP‐PATA‐COF and CoTAPP‐BDTA‐COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox‐active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox‐active units. CoTAPP‐PATA‐COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis. Catalytic covalent organic frameworks (COFs) with bifunctional roles in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been prepared by integrating redox‐active sites into the cobalt‐porphyrin frameworks. The COFs have high electrochemical surface areas and electron transfer abilities, and have good catalytic activities in oxygen electrocatalysis.
AbstractList Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co‐porphyrin based frameworks. Both of the new COFs (CoTAPP‐PATA‐COF and CoTAPP‐BDTA‐COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox‐active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox‐active units. CoTAPP‐PATA‐COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis.
Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co-porphyrin based frameworks. Both of the new COFs (CoTAPP-PATA-COF and CoTAPP-BDTA-COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox-active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox-active units. CoTAPP-PATA-COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis.Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co-porphyrin based frameworks. Both of the new COFs (CoTAPP-PATA-COF and CoTAPP-BDTA-COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox-active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox-active units. CoTAPP-PATA-COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis.
Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co‐porphyrin based frameworks. Both of the new COFs (CoTAPP‐PATA‐COF and CoTAPP‐BDTA‐COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox‐active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox‐active units. CoTAPP‐PATA‐COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis. Catalytic covalent organic frameworks (COFs) with bifunctional roles in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been prepared by integrating redox‐active sites into the cobalt‐porphyrin frameworks. The COFs have high electrochemical surface areas and electron transfer abilities, and have good catalytic activities in oxygen electrocatalysis.
Author Cui, Cheng‐Xing
Liu, Sijia
Miao, Qiyang
Zeng, Gaofeng
Liu, Minghao
Li, Xuewen
Xu, Qing
He, Yue
Author_xml – sequence: 1
  givenname: Minghao
  surname: Liu
  fullname: Liu, Minghao
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Sijia
  surname: Liu
  fullname: Liu, Sijia
  organization: Chinese Academy of Sciences (CAS)
– sequence: 3
  givenname: Cheng‐Xing
  surname: Cui
  fullname: Cui, Cheng‐Xing
  organization: Henan Institute of Science and Technology
– sequence: 4
  givenname: Qiyang
  surname: Miao
  fullname: Miao, Qiyang
  organization: Chinese Academy of Sciences (CAS)
– sequence: 5
  givenname: Yue
  surname: He
  fullname: He, Yue
  email: hey1683@sh9hospital.org.cn
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Xuewen
  surname: Li
  fullname: Li, Xuewen
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Qing
  orcidid: 0000-0002-9066-9837
  surname: Xu
  fullname: Xu, Qing
  email: xuqing@sari.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Gaofeng
  surname: Zeng
  fullname: Zeng, Gaofeng
  email: zenggf@sari.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkc1OGzEUha0KpPLTbdeW2LCZ1D_jjGcZjQJFQo1E6Xrk8VyD6cQG25OQXddd9Rn7JHUIaiskxMqW7vcdX_kcoj3nHSD0kZIJJYR9Us7ChBHGKBeMvUMHVDBa8Krie_lecl5UUtD36DDGu8xLSaYH6GfjXUxh1Ml6h73BjUpq2CSrceNXagCX8CLc5GyNz4JawtqH7xGvbbrFV9D7x98_fs2yvAL81SaI2PiA0y3gxePmBtyWec5Wrv9_MF_5YXwaXIF6Io7RvlFDhA_P5xH6dja_bj4Xl4vzi2Z2WWguCCs060UtZMkM16XoayCsJtNOCzCcSSFqU3EpgRvK67qbaq5KU_ad7E3HFdCOH6HTXe598A8jxNQubdQwDMqBH2PLKiYYoVSWGT15gd75Mbi8XaZKMq0qQkimJjtKBx9jANPeB7tUYdNS0m6rabfVtH-ryUL5QtA2qe0fpKDs8LpW77S1HWDzxiPt7MvF_J_7B-lYqFM
CitedBy_id crossref_primary_10_1002_ange_202414075
crossref_primary_10_1039_D3TA03534D
crossref_primary_10_1002_ange_202308344
crossref_primary_10_1002_chem_202302474
crossref_primary_10_1002_ange_202422814
crossref_primary_10_1021_acsami_3c10802
crossref_primary_10_1002_elt2_39
crossref_primary_10_1021_acsanm_4c00397
crossref_primary_10_1039_D4TA05404K
crossref_primary_10_1007_s40843_024_3255_y
crossref_primary_10_1016_j_memsci_2024_122645
crossref_primary_10_1016_j_ccr_2024_216235
crossref_primary_10_1039_D4QM00359D
crossref_primary_10_1016_j_cej_2025_160788
crossref_primary_10_1002_ange_202404941
crossref_primary_10_1002_anie_202218742
crossref_primary_10_1002_adfm_202310195
crossref_primary_10_1002_ece2_32
crossref_primary_10_1021_acscatal_4c02881
crossref_primary_10_1016_j_cej_2023_147682
crossref_primary_10_1021_acsanm_4c05974
crossref_primary_10_1002_adfm_202304071
crossref_primary_10_1002_aenm_202400521
crossref_primary_10_1021_acsanm_3c00852
crossref_primary_10_1016_j_ccr_2024_215894
crossref_primary_10_1002_anie_202401750
crossref_primary_10_1002_aenm_202402657
crossref_primary_10_1002_cjoc_202400986
crossref_primary_10_1039_D4CP02749C
crossref_primary_10_1002_smll_202303324
crossref_primary_10_1016_j_jcis_2023_08_038
crossref_primary_10_1016_j_cej_2023_142253
crossref_primary_10_1016_j_cej_2023_147424
crossref_primary_10_1002_anie_202418347
crossref_primary_10_1039_D3QM01315D
crossref_primary_10_1021_acsmaterialslett_3c00168
crossref_primary_10_1039_D4CC03535F
crossref_primary_10_1002_smsc_202200115
crossref_primary_10_1002_ange_202404886
crossref_primary_10_1002_smll_202408817
crossref_primary_10_1021_acsami_3c17662
crossref_primary_10_1021_acssuschemeng_3c00322
crossref_primary_10_1021_jacs_4c18645
crossref_primary_10_1002_anie_202308344
crossref_primary_10_1002_anie_202303871
crossref_primary_10_1002_ange_202313029
crossref_primary_10_1016_j_fuel_2025_134800
crossref_primary_10_1039_D4TA00998C
crossref_primary_10_1002_ange_202319247
crossref_primary_10_1002_anie_202319247
crossref_primary_10_1002_anie_202404886
crossref_primary_10_1021_acs_analchem_4c05606
crossref_primary_10_1002_adfm_202303235
crossref_primary_10_1002_ange_202218742
crossref_primary_10_1016_j_jcis_2023_01_011
crossref_primary_10_1002_ange_202303871
crossref_primary_10_1002_cptc_202400131
crossref_primary_10_1002_smll_202308143
crossref_primary_10_1002_smm2_1309
crossref_primary_10_1016_j_cej_2024_150812
crossref_primary_10_1002_ange_202317015
crossref_primary_10_1016_j_saa_2025_126110
crossref_primary_10_1002_smll_202403775
crossref_primary_10_1039_D3CS00727H
crossref_primary_10_1002_ange_202401750
crossref_primary_10_1002_anie_202313029
crossref_primary_10_1007_s12598_024_02681_1
crossref_primary_10_1016_j_ensm_2023_103014
crossref_primary_10_3390_nano14231907
crossref_primary_10_1021_jacs_4c06438
crossref_primary_10_1002_anie_202424720
crossref_primary_10_1039_D4QI01298D
crossref_primary_10_1002_adfm_202408255
crossref_primary_10_1039_D4SC01780C
crossref_primary_10_1002_ange_202418347
crossref_primary_10_1002_cplu_202400069
crossref_primary_10_1016_j_mtcata_2024_100044
crossref_primary_10_1021_acs_accounts_3c00730
crossref_primary_10_1055_a_2222_7218
crossref_primary_10_3390_molecules29245845
crossref_primary_10_1002_anie_202404941
crossref_primary_10_1016_j_cej_2024_156754
crossref_primary_10_1016_j_jcis_2023_02_148
crossref_primary_10_1021_acssuschemeng_4c01950
crossref_primary_10_1016_j_mtcomm_2023_107157
crossref_primary_10_20517_energymater_2023_66
crossref_primary_10_1002_adsu_202300301
crossref_primary_10_1016_j_jcis_2024_07_020
crossref_primary_10_1016_j_xinn_2024_100778
crossref_primary_10_1002_sus2_167
crossref_primary_10_1021_acscatal_4c01720
crossref_primary_10_1039_D3TA03382A
crossref_primary_10_3390_catal14090555
crossref_primary_10_1021_acs_chemrev_3c00926
crossref_primary_10_1002_ange_202500336
crossref_primary_10_1016_j_jcat_2024_115497
crossref_primary_10_1039_D3QM01172K
crossref_primary_10_1039_D3TA01907A
crossref_primary_10_1002_adfm_202302637
crossref_primary_10_1016_j_cej_2025_160681
crossref_primary_10_1002_anie_202414075
crossref_primary_10_1002_adfm_202301947
crossref_primary_10_1002_ange_202304356
crossref_primary_10_1002_smll_202308801
crossref_primary_10_1002_anie_202500336
crossref_primary_10_1002_smll_202306295
crossref_primary_10_1002_adma_202402184
crossref_primary_10_1002_anie_202422814
crossref_primary_10_1002_smll_202308598
crossref_primary_10_1016_j_ensm_2024_103985
crossref_primary_10_1002_ange_202424720
crossref_primary_10_1002_cctc_202401674
crossref_primary_10_1002_anie_202317015
crossref_primary_10_1038_s41467_024_44899_8
crossref_primary_10_1039_D3CE00607G
crossref_primary_10_1093_nsr_nwae332
crossref_primary_10_1002_anie_202304356
crossref_primary_10_1039_D3NJ03487A
crossref_primary_10_1016_j_apcatb_2025_125246
Cites_doi 10.1038/s41557-018-0201-x
10.1002/advs.201801410
10.1002/ange.201804349
10.1038/s41570-018-0032-8
10.1038/s41570-022-00379-5
10.1021/jacs.9b01226
10.1021/acs.chemrev.0c00594
10.1038/s41467-022-31383-4
10.1038/s41560-021-00940-4
10.1002/adma.202003075
10.1038/s41586-022-04443-4
10.1002/ange.202007221
10.1021/jacs.1c08265
10.1039/D0CS00187B
10.1002/ange.201905713
10.1016/j.apcatb.2021.120897
10.1002/ange.202104564
10.1039/D2QI00336H
10.1002/anie.201804349
10.1021/jacs.2c01996
10.1038/s41467-021-24179-5
10.1038/s41467-019-13739-5
10.1002/anie.202007221
10.1039/D0CS00199F
10.1002/anie.201905713
10.1038/s41929-021-00705-y
10.1126/science.aat7679
10.1038/s41467-022-31461-7
10.1038/s41557-019-0238-5
10.1039/D2TA03579K
10.1002/adma.201706330
10.1002/adma.201905681
10.1126/science.aan0202
10.1002/anie.202104564
10.1002/ange.201702430
10.1039/C7DT01694H
10.1038/s41929-021-00650-w
10.1126/science.1120411
10.1002/ange.202114951
10.1021/jacs.7b06081
10.1002/ange.201915234
10.1038/s41467-021-24079-8
10.1039/D2QM00578F
10.1038/s41570-022-00397-3
10.1038/s41565-021-00974-5
10.1021/jacs.0c10636
10.1002/anie.201702430
10.1002/anie.202114951
10.1021/jacs.1c02932
10.1038/s41467-021-24052-5
10.1021/jacs.1c02145
10.1021/jacs.8b06460
10.1002/anie.201915234
10.1021/acs.chemmater.6b01370
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202213522
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202213522
ANIE202213522
Genre shortCommunication
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2021M692908
– fundername: Natural Science Foundation of Shanghai
  funderid: 20ZR1464000
– fundername: National Natural Science Foundation of China
  funderid: 21878322; 22075309
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 19ZR1479200; 22ZR1470100
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3502-c2d595842f3c45d9e02906bc5ef328559f7388e3f1399b6c3a4f4db8dfb3ae1b3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:11:21 EDT 2025
Sun Jul 13 05:28:49 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 01:46:56 EDT 2025
Wed Jan 22 16:22:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-c2d595842f3c45d9e02906bc5ef328559f7388e3f1399b6c3a4f4db8dfb3ae1b3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9066-9837
PQID 2740677000
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2725201184
proquest_journals_2740677000
crossref_primary_10_1002_anie_202213522
crossref_citationtrail_10_1002_anie_202213522
wiley_primary_10_1002_anie_202213522_ANIE202213522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 5, 2022
PublicationDateYYYYMMDD 2022-12-05
PublicationDate_xml – month: 12
  year: 2022
  text: December 5, 2022
  day: 05
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2021; 6
2021; 4
2018; 140
2019; 6
2019; 11
2020; 120
2005; 310
2020; 142
2017; 46
2020 2020; 59 132
2020; 11
2017 2017; 56 129
2020; 32
2021; 143
2021; 50
2019; 141
2017; 357
2019 2019; 58 131
2022; 144
2021; 16
2022 2022; 61 134
2018; 2
2021; 12
2021; 33
2022; 6
2018 2018; 57 130
2022; 9
2022; 13
2020; 49
2021 2021; 60 133
2018; 30
2022; 10
2022; 604
2016; 28
2022; 303
e_1_2_3_50_2
e_1_2_3_37_3
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_2_3
e_1_2_3_18_1
e_1_2_3_2_2
e_1_2_3_39_2
e_1_2_3_10_3
e_1_2_3_12_1
e_1_2_3_56_2
e_1_2_3_33_2
e_1_2_3_8_1
e_1_2_3_35_3
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_35_2
e_1_2_3_52_2
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_54_1
e_1_2_3_26_2
e_1_2_3_49_1
e_1_2_3_28_2
e_1_2_3_22_2
e_1_2_3_45_1
e_1_2_3_24_2
e_1_2_3_47_2
e_1_2_3_41_2
e_1_2_3_20_2
e_1_2_3_43_1
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_19_3
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_55_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_5_3
e_1_2_3_34_3
e_1_2_3_36_1
e_1_2_3_57_2
e_1_2_3_30_1
e_1_2_3_53_1
e_1_2_3_51_2
e_1_2_3_32_2
e_1_2_3_27_2
e_1_2_3_48_2
e_1_2_3_29_2
e_1_2_3_23_1
e_1_2_3_25_2
e_1_2_3_46_2
e_1_2_3_40_2
e_1_2_3_44_1
e_1_2_3_21_2
e_1_2_3_42_2
References_xml – volume: 57 130
  start-page: 8614 8750
  year: 2018 2018
  end-page: 8618 8754
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 10941
  year: 2018
  end-page: 10945
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 615
  year: 2021
  end-page: 622
  publication-title: Nat. Catal.
– volume: 16
  start-page: 1386
  year: 2021
  end-page: 1393
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 587
  year: 2019
  end-page: 594
  publication-title: Nat. Chem.
– volume: 11
  start-page: 222
  year: 2019
  end-page: 228
  publication-title: Nat. Chem.
– volume: 60 133
  start-page: 17108 17245
  year: 2021 2021
  end-page: 17114 17251
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 3689
  year: 2022
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1024
  year: 2021
  end-page: 1031
  publication-title: Nat. Catal.
– volume: 49
  start-page: 2852
  year: 2020
  end-page: 2868
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 3217
  year: 2022
  end-page: 3223
  publication-title: Inorg. Chem. Front.
– volume: 46
  start-page: 9344
  year: 2017
  end-page: 9348
  publication-title: Dalton Trans.
– volume: 10
  start-page: 16595
  year: 2022
  end-page: 16601
  publication-title: J. Mater. Chem. A
– volume: 56 129
  start-page: 7121 7227
  year: 2017 2017
  end-page: 7125 7231
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 505
  year: 2022
  end-page: 517
  publication-title: Nat. Chem. Rev.
– volume: 143
  start-page: 7897
  year: 2021
  end-page: 7902
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 244
  year: 2018
  end-page: 252
  publication-title: Nat. Chem. Rev.
– volume: 12
  start-page: 3783
  year: 2021
  publication-title: Nat. Commun.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  publication-title: Science
– volume: 361
  start-page: 48
  year: 2018
  end-page: 52
  publication-title: Science
– volume: 6
  start-page: 303
  year: 2022
  end-page: 319
  publication-title: Nat. Chem. Rev.
– volume: 12
  start-page: 3934
  year: 2021
  publication-title: Nat. Commun.
– volume: 12
  start-page: 4088
  year: 2021
  publication-title: Nat. Commun.
– volume: 59 132
  start-page: 4557 4587
  year: 2020 2020
  end-page: 4563 4593
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 604
  start-page: 72
  year: 2022
  end-page: 79
  publication-title: Nature
– volume: 142
  start-page: 21861
  year: 2020
  end-page: 21871
  publication-title: J. Am. Chem. Soc.
– volume: 357
  start-page: 673
  year: 2017
  end-page: 676
  publication-title: Science
– volume: 50
  start-page: 2388
  year: 2021
  end-page: 2443
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 3699
  year: 2022
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 143
  start-page: 7104
  year: 2021
  end-page: 7113
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 120
  start-page: 12217
  year: 2020
  end-page: 12314
  publication-title: Chem. Rev.
– volume: 6
  start-page: 2545
  year: 2022
  end-page: 2550
  publication-title: Mater. Chem. Front.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 144
  start-page: 8267
  year: 2022
  end-page: 8277
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 178
  year: 2020
  publication-title: Nat. Commun.
– volume: 303
  year: 2022
  publication-title: Appl. Catal. B
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 59 132
  start-page: 16013 16147
  year: 2020 2020
  end-page: 16022 16156
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 6623
  year: 2019
  end-page: 6630
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 4375
  year: 2016
  end-page: 4379
  publication-title: Chem. Mater.
– volume: 58 131
  start-page: 12065 12193
  year: 2019 2019
  end-page: 12069 12197
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 2085
  year: 2018
  end-page: 2092
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 17701
  year: 2021
  end-page: 17707
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1144
  year: 2021
  end-page: 1153
  publication-title: Nat. Energy
– ident: e_1_2_3_15_2
  doi: 10.1038/s41557-018-0201-x
– ident: e_1_2_3_33_2
  doi: 10.1002/advs.201801410
– ident: e_1_2_3_10_3
  doi: 10.1002/ange.201804349
– ident: e_1_2_3_18_1
– ident: e_1_2_3_56_2
  doi: 10.1038/s41570-018-0032-8
– ident: e_1_2_3_57_2
  doi: 10.1038/s41570-022-00379-5
– ident: e_1_2_3_47_2
  doi: 10.1021/jacs.9b01226
– ident: e_1_2_3_49_1
– ident: e_1_2_3_12_1
– ident: e_1_2_3_22_2
  doi: 10.1021/acs.chemrev.0c00594
– ident: e_1_2_3_7_2
  doi: 10.1038/s41467-022-31383-4
– ident: e_1_2_3_14_2
  doi: 10.1038/s41560-021-00940-4
– ident: e_1_2_3_20_2
  doi: 10.1002/adma.202003075
– ident: e_1_2_3_29_2
  doi: 10.1038/s41586-022-04443-4
– ident: e_1_2_3_5_3
  doi: 10.1002/ange.202007221
– ident: e_1_2_3_41_2
  doi: 10.1021/jacs.1c08265
– ident: e_1_2_3_9_2
  doi: 10.1039/D0CS00187B
– ident: e_1_2_3_34_3
  doi: 10.1002/ange.201905713
– ident: e_1_2_3_40_2
  doi: 10.1016/j.apcatb.2021.120897
– ident: e_1_2_3_37_3
  doi: 10.1002/ange.202104564
– ident: e_1_2_3_50_2
  doi: 10.1039/D2QI00336H
– ident: e_1_2_3_10_2
  doi: 10.1002/anie.201804349
– ident: e_1_2_3_8_1
– ident: e_1_2_3_42_2
  doi: 10.1021/jacs.2c01996
– ident: e_1_2_3_27_2
  doi: 10.1038/s41467-021-24179-5
– ident: e_1_2_3_48_2
  doi: 10.1038/s41467-019-13739-5
– ident: e_1_2_3_5_2
  doi: 10.1002/anie.202007221
– ident: e_1_2_3_28_2
  doi: 10.1039/D0CS00199F
– ident: e_1_2_3_34_2
  doi: 10.1002/anie.201905713
– ident: e_1_2_3_1_1
– ident: e_1_2_3_16_2
  doi: 10.1038/s41929-021-00705-y
– ident: e_1_2_3_26_2
  doi: 10.1126/science.aat7679
– ident: e_1_2_3_6_2
  doi: 10.1038/s41467-022-31461-7
– ident: e_1_2_3_23_1
– ident: e_1_2_3_39_2
  doi: 10.1038/s41557-019-0238-5
– ident: e_1_2_3_51_2
  doi: 10.1039/D2TA03579K
– ident: e_1_2_3_3_2
  doi: 10.1002/adma.201706330
– ident: e_1_2_3_11_2
  doi: 10.1002/adma.201905681
– ident: e_1_2_3_54_1
– ident: e_1_2_3_25_2
  doi: 10.1126/science.aan0202
– ident: e_1_2_3_37_2
  doi: 10.1002/anie.202104564
– ident: e_1_2_3_2_3
  doi: 10.1002/ange.201702430
– ident: e_1_2_3_44_1
  doi: 10.1039/C7DT01694H
– ident: e_1_2_3_21_2
  doi: 10.1038/s41929-021-00650-w
– ident: e_1_2_3_24_2
  doi: 10.1126/science.1120411
– ident: e_1_2_3_19_3
  doi: 10.1002/ange.202114951
– ident: e_1_2_3_32_2
  doi: 10.1021/jacs.7b06081
– ident: e_1_2_3_35_3
  doi: 10.1002/ange.201915234
– ident: e_1_2_3_13_2
  doi: 10.1038/s41467-021-24079-8
– ident: e_1_2_3_45_1
– ident: e_1_2_3_52_2
  doi: 10.1039/D2QM00578F
– ident: e_1_2_3_36_1
– ident: e_1_2_3_30_1
– ident: e_1_2_3_55_2
  doi: 10.1038/s41570-022-00397-3
– ident: e_1_2_3_17_2
  doi: 10.1038/s41565-021-00974-5
– ident: e_1_2_3_53_1
  doi: 10.1021/jacs.0c10636
– ident: e_1_2_3_2_2
  doi: 10.1002/anie.201702430
– ident: e_1_2_3_19_2
  doi: 10.1002/anie.202114951
– ident: e_1_2_3_46_2
  doi: 10.1021/jacs.1c02932
– ident: e_1_2_3_4_2
  doi: 10.1038/s41467-021-24052-5
– ident: e_1_2_3_38_2
  doi: 10.1021/jacs.1c02145
– ident: e_1_2_3_31_2
  doi: 10.1021/jacs.8b06460
– ident: e_1_2_3_35_2
  doi: 10.1002/anie.201915234
– ident: e_1_2_3_43_1
  doi: 10.1021/acs.chemmater.6b01370
SSID ssj0028806
Score 2.6678908
Snippet Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202213522
SubjectTerms Bifunctional Catalysts
Chemical reduction
Covalent Organic Frameworks
Electron transport
Oxygen
Oxygen Evolution Reaction
Oxygen evolution reactions
Oxygen Reduction Reaction
Oxygen reduction reactions
Porphyrins
Redox-Active Sites
Surface area
Surface stability
Title Construction of Catalytic Covalent Organic Frameworks with Redox‐Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202213522
https://www.proquest.com/docview/2740677000
https://www.proquest.com/docview/2725201184
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7Ei17cxboxguAp2sySpMdSWqpgBRfwFma9KInQKurJsyd_o7_E97JZBRH0lpA3WWbe8s1k3vcI2TdWQpjjJggdpuQIEwUqYjrQru2xvoizMSY4n46i4ZU4uZbXU1n8JT9Es-CGllH4azRwpcdHn6ShmIEN8zvGQsQQ4IRxwxaiovOGP4qBcpbpRZwHWIW-Zm1ss6Ovzb9GpU-oOQ1Yi4gzWCSqftdyo8nN4f1EH5rnbzSO__mYJbJQwVHaLfVnmcy4bIXM9eoqcKvkFSt61hyzNPe0h-s9TyBOezloKcQsWuZzGjqoN3qNKS7v0nNn88f3l7du4VPpBaDbMQWQTAF00rPHJ9BdlKnurTI7faH_UBkFiJTJF2vkatC_7A2Dqn5DYLgER2uYlR0AOMxzI6TtuDZyy2sjnecsgamMj3mSOO4BhXZ0ZLgSXlidWK-5cqHm62Q2yzO3QaiLvVCWtx0PvXDCaBmLSGlmWWJiFYctEtTjl5qK3BxrbNymJS0zS7GH06aHW-Sgkb8raT1-lNyu1SGtzHucwlQemfcgnLTIXnMZRgb_tqjM5fcowySiq0S0CCvG_pcnpd3Rcb852_xLoy0yj8fFdhu5TWZBPdwOgKaJ3i0M4wMOVhFb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTtxAEC0BOcAlISERQ4A0UiROhnEvtuc4GmY0bBOJgMTNcm-XRDbSQAScOHPiG_kSqryxSCgSHG1Xe-mu6npd7noF8NNYhW5OmCB0lJIjTRRkEdeBdl1P9UWcjSnB-XASjU_k3qlqdhNSLkzFD9EG3MgyyvmaDJwC0tuPrKGUgo0LPM5DAhGz8IHKehN9_s5RyyDFUT2rBCMhAqpD3_A2dvn28_bP_dIj2HwKWUufM_oEunnbaqvJn62Lc71lrl8QOb7rcxbhY41IWb9Soc8w4_IvMD9oCsEtwS0V9WxoZlnh2YBCPlcozgYFKiq6LValdBo2avZ6TRlFeNmRs8Xl_c1dv5xW2W8EuFOGOJkh7mS_Lq9QfUmmvneW26cXhv9qu0CRKv_iK5yMhseDcVCXcAiMUDjXGm5VDzEO98JIZXuuS_Ty2ijnBU9wNeNjkSROeASiPR0ZkUkvrU6s1yJzoRbfYC4vcrcMzMVeZlZ0nQi9dNJoFcso09zyxMRZHHYgaAYwNTW_OZXZ-JtWzMw8pR5O2x7uwGYrf1Yxe7wqudroQ1pb-DTF1TyR76FH6cBGexlHhn64ZLkrLkiGKwJYiewALwf_P09K-5PdYXu08pZGP2B-fHx4kB7sTva_wwKdL3ffqFWYQ1Vxa4ihzvV6aSUPGJkVdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFouhT4Q2wJ1pUo9BRI_kuxxtewK-thWtEjcIj8vrRKkhQp64sypv7G_pDN5sSBVSO0x8Thx7BnPZ8fzDcAb6xS6OWGjxFNIjrRppFNuIuPjQPlFvMsowPnjLD04lu9O1MlCFH_DD9FvuJFl1PM1GfipC3s3pKEUgY3rO84TwhAPYEWm8ZCSN-wf9QRSHLWziS8SIqI09B1tY8z3bte_7ZZusOYiYq1dznQNdNfY5qTJt93zM7Nrf97hcfyfr1mHxy0eZaNGgZ7Aki-fwqNxlwbuGVxTSs-OZJZVgY1pw-cSxdm4QjVFp8WagE7Lpt1Jrzmj_V125F118fvq16ieVNkXhLdzhiiZIepkny4uUXlJpn22Lt1iweRHaxUo0kRfPIfj6eTr-CBqEzhEViicaS13aogIhwdhpXJDHxO5vLHKB8FzXMuETOS5FwFh6NCkVmgZpDO5C0ZonxixActlVfpNYD4LUjsRe5EE6aU1KpOpNtzx3GY6SwYQdeNX2JbdnJJsfC8aXmZeUA8XfQ8P4G0vf9rwevxVcqtTh6K173mBa3mi3kN_MoDXfTGODP1u0aWvzkmGK4JXuRwAr8f-njcVo9nhpL968S-VXsHDz_vT4sPh7P1LWKXb9dEbtQXLqCl-GwHUmdmpbeQPyFMUJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Catalytic+Covalent+Organic+Frameworks+with+Redox-Active+Sites+for+the+Oxygen+Reduction+and+the+Oxygen+Evolution+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Minghao&rft.au=Liu%2C+Sijia&rft.au=Cui%2C+Cheng-Xing&rft.au=Miao%2C+Qiyang&rft.date=2022-12-05&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=49&rft.spage=e202213522&rft_id=info:doi/10.1002%2Fanie.202213522&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon