Construction of Catalytic Covalent Organic Frameworks with Redox‐Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction
Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the C...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 49; pp. e202213522 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.12.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co‐porphyrin based frameworks. Both of the new COFs (CoTAPP‐PATA‐COF and CoTAPP‐BDTA‐COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox‐active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox‐active units. CoTAPP‐PATA‐COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis.
Catalytic covalent organic frameworks (COFs) with bifunctional roles in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been prepared by integrating redox‐active sites into the cobalt‐porphyrin frameworks. The COFs have high electrochemical surface areas and electron transfer abilities, and have good catalytic activities in oxygen electrocatalysis. |
---|---|
AbstractList | Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co‐porphyrin based frameworks. Both of the new COFs (CoTAPP‐PATA‐COF and CoTAPP‐BDTA‐COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox‐active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox‐active units. CoTAPP‐PATA‐COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis. Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co-porphyrin based frameworks. Both of the new COFs (CoTAPP-PATA-COF and CoTAPP-BDTA-COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox-active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox-active units. CoTAPP-PATA-COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis.Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co-porphyrin based frameworks. Both of the new COFs (CoTAPP-PATA-COF and CoTAPP-BDTA-COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox-active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox-active units. CoTAPP-PATA-COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis. Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely demonstrated. In this work, we have first constructed bifunctional COFs towards ORR and OER by integrating diarylamine derivatives into the Co‐porphyrin based frameworks. Both of the new COFs (CoTAPP‐PATA‐COF and CoTAPP‐BDTA‐COF) have good ordered structures, high surface areas, and robust chemical stability. The diarylamine units, as a typical electron donor and redox‐active cores, promote intramolecular electron transport along the frameworks and improve the electrochemically active surface areas. Thus, the COFs showed higher catalytic activities than that of the COF without redox‐active units. CoTAPP‐PATA‐COF had a halfwave potential of 0.80 V towards ORR, and delieved an overpotential of 420 mV for OER in 0.1 M KOH. The theoretical calculation revealed introducing diarylamine unites improved the oxygen electrocatalysis. Catalytic covalent organic frameworks (COFs) with bifunctional roles in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been prepared by integrating redox‐active sites into the cobalt‐porphyrin frameworks. The COFs have high electrochemical surface areas and electron transfer abilities, and have good catalytic activities in oxygen electrocatalysis. |
Author | Cui, Cheng‐Xing Liu, Sijia Miao, Qiyang Zeng, Gaofeng Liu, Minghao Li, Xuewen Xu, Qing He, Yue |
Author_xml | – sequence: 1 givenname: Minghao surname: Liu fullname: Liu, Minghao organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Sijia surname: Liu fullname: Liu, Sijia organization: Chinese Academy of Sciences (CAS) – sequence: 3 givenname: Cheng‐Xing surname: Cui fullname: Cui, Cheng‐Xing organization: Henan Institute of Science and Technology – sequence: 4 givenname: Qiyang surname: Miao fullname: Miao, Qiyang organization: Chinese Academy of Sciences (CAS) – sequence: 5 givenname: Yue surname: He fullname: He, Yue email: hey1683@sh9hospital.org.cn organization: Shanghai Jiao Tong University – sequence: 6 givenname: Xuewen surname: Li fullname: Li, Xuewen organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Qing orcidid: 0000-0002-9066-9837 surname: Xu fullname: Xu, Qing email: xuqing@sari.ac.cn organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Gaofeng surname: Zeng fullname: Zeng, Gaofeng email: zenggf@sari.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNqFkc1OGzEUha0KpPLTbdeW2LCZ1D_jjGcZjQJFQo1E6Xrk8VyD6cQG25OQXddd9Rn7JHUIaiskxMqW7vcdX_kcoj3nHSD0kZIJJYR9Us7ChBHGKBeMvUMHVDBa8Krie_lecl5UUtD36DDGu8xLSaYH6GfjXUxh1Ml6h73BjUpq2CSrceNXagCX8CLc5GyNz4JawtqH7xGvbbrFV9D7x98_fs2yvAL81SaI2PiA0y3gxePmBtyWec5Wrv9_MF_5YXwaXIF6Io7RvlFDhA_P5xH6dja_bj4Xl4vzi2Z2WWguCCs060UtZMkM16XoayCsJtNOCzCcSSFqU3EpgRvK67qbaq5KU_ad7E3HFdCOH6HTXe598A8jxNQubdQwDMqBH2PLKiYYoVSWGT15gd75Mbi8XaZKMq0qQkimJjtKBx9jANPeB7tUYdNS0m6rabfVtH-ryUL5QtA2qe0fpKDs8LpW77S1HWDzxiPt7MvF_J_7B-lYqFM |
CitedBy_id | crossref_primary_10_1002_ange_202414075 crossref_primary_10_1039_D3TA03534D crossref_primary_10_1002_ange_202308344 crossref_primary_10_1002_chem_202302474 crossref_primary_10_1002_ange_202422814 crossref_primary_10_1021_acsami_3c10802 crossref_primary_10_1002_elt2_39 crossref_primary_10_1021_acsanm_4c00397 crossref_primary_10_1039_D4TA05404K crossref_primary_10_1007_s40843_024_3255_y crossref_primary_10_1016_j_memsci_2024_122645 crossref_primary_10_1016_j_ccr_2024_216235 crossref_primary_10_1039_D4QM00359D crossref_primary_10_1016_j_cej_2025_160788 crossref_primary_10_1002_ange_202404941 crossref_primary_10_1002_anie_202218742 crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1002_ece2_32 crossref_primary_10_1021_acscatal_4c02881 crossref_primary_10_1016_j_cej_2023_147682 crossref_primary_10_1021_acsanm_4c05974 crossref_primary_10_1002_adfm_202304071 crossref_primary_10_1002_aenm_202400521 crossref_primary_10_1021_acsanm_3c00852 crossref_primary_10_1016_j_ccr_2024_215894 crossref_primary_10_1002_anie_202401750 crossref_primary_10_1002_aenm_202402657 crossref_primary_10_1002_cjoc_202400986 crossref_primary_10_1039_D4CP02749C crossref_primary_10_1002_smll_202303324 crossref_primary_10_1016_j_jcis_2023_08_038 crossref_primary_10_1016_j_cej_2023_142253 crossref_primary_10_1016_j_cej_2023_147424 crossref_primary_10_1002_anie_202418347 crossref_primary_10_1039_D3QM01315D crossref_primary_10_1021_acsmaterialslett_3c00168 crossref_primary_10_1039_D4CC03535F crossref_primary_10_1002_smsc_202200115 crossref_primary_10_1002_ange_202404886 crossref_primary_10_1002_smll_202408817 crossref_primary_10_1021_acsami_3c17662 crossref_primary_10_1021_acssuschemeng_3c00322 crossref_primary_10_1021_jacs_4c18645 crossref_primary_10_1002_anie_202308344 crossref_primary_10_1002_anie_202303871 crossref_primary_10_1002_ange_202313029 crossref_primary_10_1016_j_fuel_2025_134800 crossref_primary_10_1039_D4TA00998C crossref_primary_10_1002_ange_202319247 crossref_primary_10_1002_anie_202319247 crossref_primary_10_1002_anie_202404886 crossref_primary_10_1021_acs_analchem_4c05606 crossref_primary_10_1002_adfm_202303235 crossref_primary_10_1002_ange_202218742 crossref_primary_10_1016_j_jcis_2023_01_011 crossref_primary_10_1002_ange_202303871 crossref_primary_10_1002_cptc_202400131 crossref_primary_10_1002_smll_202308143 crossref_primary_10_1002_smm2_1309 crossref_primary_10_1016_j_cej_2024_150812 crossref_primary_10_1002_ange_202317015 crossref_primary_10_1016_j_saa_2025_126110 crossref_primary_10_1002_smll_202403775 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1002_ange_202401750 crossref_primary_10_1002_anie_202313029 crossref_primary_10_1007_s12598_024_02681_1 crossref_primary_10_1016_j_ensm_2023_103014 crossref_primary_10_3390_nano14231907 crossref_primary_10_1021_jacs_4c06438 crossref_primary_10_1002_anie_202424720 crossref_primary_10_1039_D4QI01298D crossref_primary_10_1002_adfm_202408255 crossref_primary_10_1039_D4SC01780C crossref_primary_10_1002_ange_202418347 crossref_primary_10_1002_cplu_202400069 crossref_primary_10_1016_j_mtcata_2024_100044 crossref_primary_10_1021_acs_accounts_3c00730 crossref_primary_10_1055_a_2222_7218 crossref_primary_10_3390_molecules29245845 crossref_primary_10_1002_anie_202404941 crossref_primary_10_1016_j_cej_2024_156754 crossref_primary_10_1016_j_jcis_2023_02_148 crossref_primary_10_1021_acssuschemeng_4c01950 crossref_primary_10_1016_j_mtcomm_2023_107157 crossref_primary_10_20517_energymater_2023_66 crossref_primary_10_1002_adsu_202300301 crossref_primary_10_1016_j_jcis_2024_07_020 crossref_primary_10_1016_j_xinn_2024_100778 crossref_primary_10_1002_sus2_167 crossref_primary_10_1021_acscatal_4c01720 crossref_primary_10_1039_D3TA03382A crossref_primary_10_3390_catal14090555 crossref_primary_10_1021_acs_chemrev_3c00926 crossref_primary_10_1002_ange_202500336 crossref_primary_10_1016_j_jcat_2024_115497 crossref_primary_10_1039_D3QM01172K crossref_primary_10_1039_D3TA01907A crossref_primary_10_1002_adfm_202302637 crossref_primary_10_1016_j_cej_2025_160681 crossref_primary_10_1002_anie_202414075 crossref_primary_10_1002_adfm_202301947 crossref_primary_10_1002_ange_202304356 crossref_primary_10_1002_smll_202308801 crossref_primary_10_1002_anie_202500336 crossref_primary_10_1002_smll_202306295 crossref_primary_10_1002_adma_202402184 crossref_primary_10_1002_anie_202422814 crossref_primary_10_1002_smll_202308598 crossref_primary_10_1016_j_ensm_2024_103985 crossref_primary_10_1002_ange_202424720 crossref_primary_10_1002_cctc_202401674 crossref_primary_10_1002_anie_202317015 crossref_primary_10_1038_s41467_024_44899_8 crossref_primary_10_1039_D3CE00607G crossref_primary_10_1093_nsr_nwae332 crossref_primary_10_1002_anie_202304356 crossref_primary_10_1039_D3NJ03487A crossref_primary_10_1016_j_apcatb_2025_125246 |
Cites_doi | 10.1038/s41557-018-0201-x 10.1002/advs.201801410 10.1002/ange.201804349 10.1038/s41570-018-0032-8 10.1038/s41570-022-00379-5 10.1021/jacs.9b01226 10.1021/acs.chemrev.0c00594 10.1038/s41467-022-31383-4 10.1038/s41560-021-00940-4 10.1002/adma.202003075 10.1038/s41586-022-04443-4 10.1002/ange.202007221 10.1021/jacs.1c08265 10.1039/D0CS00187B 10.1002/ange.201905713 10.1016/j.apcatb.2021.120897 10.1002/ange.202104564 10.1039/D2QI00336H 10.1002/anie.201804349 10.1021/jacs.2c01996 10.1038/s41467-021-24179-5 10.1038/s41467-019-13739-5 10.1002/anie.202007221 10.1039/D0CS00199F 10.1002/anie.201905713 10.1038/s41929-021-00705-y 10.1126/science.aat7679 10.1038/s41467-022-31461-7 10.1038/s41557-019-0238-5 10.1039/D2TA03579K 10.1002/adma.201706330 10.1002/adma.201905681 10.1126/science.aan0202 10.1002/anie.202104564 10.1002/ange.201702430 10.1039/C7DT01694H 10.1038/s41929-021-00650-w 10.1126/science.1120411 10.1002/ange.202114951 10.1021/jacs.7b06081 10.1002/ange.201915234 10.1038/s41467-021-24079-8 10.1039/D2QM00578F 10.1038/s41570-022-00397-3 10.1038/s41565-021-00974-5 10.1021/jacs.0c10636 10.1002/anie.201702430 10.1002/anie.202114951 10.1021/jacs.1c02932 10.1038/s41467-021-24052-5 10.1021/jacs.1c02145 10.1021/jacs.8b06460 10.1002/anie.201915234 10.1021/acs.chemmater.6b01370 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202213522 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202213522 ANIE202213522 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2021M692908 – fundername: Natural Science Foundation of Shanghai funderid: 20ZR1464000 – fundername: National Natural Science Foundation of China funderid: 21878322; 22075309 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 19ZR1479200; 22ZR1470100 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3502-c2d595842f3c45d9e02906bc5ef328559f7388e3f1399b6c3a4f4db8dfb3ae1b3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:11:21 EDT 2025 Sun Jul 13 05:28:49 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 01:46:56 EDT 2025 Wed Jan 22 16:22:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-c2d595842f3c45d9e02906bc5ef328559f7388e3f1399b6c3a4f4db8dfb3ae1b3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9066-9837 |
PQID | 2740677000 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2725201184 proquest_journals_2740677000 crossref_primary_10_1002_anie_202213522 crossref_citationtrail_10_1002_anie_202213522 wiley_primary_10_1002_anie_202213522_ANIE202213522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 5, 2022 |
PublicationDateYYYYMMDD | 2022-12-05 |
PublicationDate_xml | – month: 12 year: 2022 text: December 5, 2022 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2021; 6 2021; 4 2018; 140 2019; 6 2019; 11 2020; 120 2005; 310 2020; 142 2017; 46 2020 2020; 59 132 2020; 11 2017 2017; 56 129 2020; 32 2021; 143 2021; 50 2019; 141 2017; 357 2019 2019; 58 131 2022; 144 2021; 16 2022 2022; 61 134 2018; 2 2021; 12 2021; 33 2022; 6 2018 2018; 57 130 2022; 9 2022; 13 2020; 49 2021 2021; 60 133 2018; 30 2022; 10 2022; 604 2016; 28 2022; 303 e_1_2_3_50_2 e_1_2_3_37_3 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_2_3 e_1_2_3_18_1 e_1_2_3_2_2 e_1_2_3_39_2 e_1_2_3_10_3 e_1_2_3_12_1 e_1_2_3_56_2 e_1_2_3_33_2 e_1_2_3_8_1 e_1_2_3_35_3 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_35_2 e_1_2_3_52_2 e_1_2_3_10_2 e_1_2_3_31_2 e_1_2_3_54_1 e_1_2_3_26_2 e_1_2_3_49_1 e_1_2_3_28_2 e_1_2_3_22_2 e_1_2_3_45_1 e_1_2_3_24_2 e_1_2_3_47_2 e_1_2_3_41_2 e_1_2_3_20_2 e_1_2_3_43_1 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_19_3 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_55_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_5_3 e_1_2_3_34_3 e_1_2_3_36_1 e_1_2_3_57_2 e_1_2_3_30_1 e_1_2_3_53_1 e_1_2_3_51_2 e_1_2_3_32_2 e_1_2_3_27_2 e_1_2_3_48_2 e_1_2_3_29_2 e_1_2_3_23_1 e_1_2_3_25_2 e_1_2_3_46_2 e_1_2_3_40_2 e_1_2_3_44_1 e_1_2_3_21_2 e_1_2_3_42_2 |
References_xml | – volume: 57 130 start-page: 8614 8750 year: 2018 2018 end-page: 8618 8754 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 10941 year: 2018 end-page: 10945 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 615 year: 2021 end-page: 622 publication-title: Nat. Catal. – volume: 16 start-page: 1386 year: 2021 end-page: 1393 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 587 year: 2019 end-page: 594 publication-title: Nat. Chem. – volume: 11 start-page: 222 year: 2019 end-page: 228 publication-title: Nat. Chem. – volume: 60 133 start-page: 17108 17245 year: 2021 2021 end-page: 17114 17251 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 3689 year: 2022 publication-title: Nat. Commun. – volume: 4 start-page: 1024 year: 2021 end-page: 1031 publication-title: Nat. Catal. – volume: 49 start-page: 2852 year: 2020 end-page: 2868 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 3217 year: 2022 end-page: 3223 publication-title: Inorg. Chem. Front. – volume: 46 start-page: 9344 year: 2017 end-page: 9348 publication-title: Dalton Trans. – volume: 10 start-page: 16595 year: 2022 end-page: 16601 publication-title: J. Mater. Chem. A – volume: 56 129 start-page: 7121 7227 year: 2017 2017 end-page: 7125 7231 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 505 year: 2022 end-page: 517 publication-title: Nat. Chem. Rev. – volume: 143 start-page: 7897 year: 2021 end-page: 7902 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 244 year: 2018 end-page: 252 publication-title: Nat. Chem. Rev. – volume: 12 start-page: 3783 year: 2021 publication-title: Nat. Commun. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 publication-title: Science – volume: 361 start-page: 48 year: 2018 end-page: 52 publication-title: Science – volume: 6 start-page: 303 year: 2022 end-page: 319 publication-title: Nat. Chem. Rev. – volume: 12 start-page: 3934 year: 2021 publication-title: Nat. Commun. – volume: 12 start-page: 4088 year: 2021 publication-title: Nat. Commun. – volume: 59 132 start-page: 4557 4587 year: 2020 2020 end-page: 4563 4593 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 604 start-page: 72 year: 2022 end-page: 79 publication-title: Nature – volume: 142 start-page: 21861 year: 2020 end-page: 21871 publication-title: J. Am. Chem. Soc. – volume: 357 start-page: 673 year: 2017 end-page: 676 publication-title: Science – volume: 50 start-page: 2388 year: 2021 end-page: 2443 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 3699 year: 2022 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 143 start-page: 7104 year: 2021 end-page: 7113 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 120 start-page: 12217 year: 2020 end-page: 12314 publication-title: Chem. Rev. – volume: 6 start-page: 2545 year: 2022 end-page: 2550 publication-title: Mater. Chem. Front. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 144 start-page: 8267 year: 2022 end-page: 8277 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 178 year: 2020 publication-title: Nat. Commun. – volume: 303 year: 2022 publication-title: Appl. Catal. B – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 59 132 start-page: 16013 16147 year: 2020 2020 end-page: 16022 16156 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 6623 year: 2019 end-page: 6630 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 4375 year: 2016 end-page: 4379 publication-title: Chem. Mater. – volume: 58 131 start-page: 12065 12193 year: 2019 2019 end-page: 12069 12197 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 2085 year: 2018 end-page: 2092 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 17701 year: 2021 end-page: 17707 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1144 year: 2021 end-page: 1153 publication-title: Nat. Energy – ident: e_1_2_3_15_2 doi: 10.1038/s41557-018-0201-x – ident: e_1_2_3_33_2 doi: 10.1002/advs.201801410 – ident: e_1_2_3_10_3 doi: 10.1002/ange.201804349 – ident: e_1_2_3_18_1 – ident: e_1_2_3_56_2 doi: 10.1038/s41570-018-0032-8 – ident: e_1_2_3_57_2 doi: 10.1038/s41570-022-00379-5 – ident: e_1_2_3_47_2 doi: 10.1021/jacs.9b01226 – ident: e_1_2_3_49_1 – ident: e_1_2_3_12_1 – ident: e_1_2_3_22_2 doi: 10.1021/acs.chemrev.0c00594 – ident: e_1_2_3_7_2 doi: 10.1038/s41467-022-31383-4 – ident: e_1_2_3_14_2 doi: 10.1038/s41560-021-00940-4 – ident: e_1_2_3_20_2 doi: 10.1002/adma.202003075 – ident: e_1_2_3_29_2 doi: 10.1038/s41586-022-04443-4 – ident: e_1_2_3_5_3 doi: 10.1002/ange.202007221 – ident: e_1_2_3_41_2 doi: 10.1021/jacs.1c08265 – ident: e_1_2_3_9_2 doi: 10.1039/D0CS00187B – ident: e_1_2_3_34_3 doi: 10.1002/ange.201905713 – ident: e_1_2_3_40_2 doi: 10.1016/j.apcatb.2021.120897 – ident: e_1_2_3_37_3 doi: 10.1002/ange.202104564 – ident: e_1_2_3_50_2 doi: 10.1039/D2QI00336H – ident: e_1_2_3_10_2 doi: 10.1002/anie.201804349 – ident: e_1_2_3_8_1 – ident: e_1_2_3_42_2 doi: 10.1021/jacs.2c01996 – ident: e_1_2_3_27_2 doi: 10.1038/s41467-021-24179-5 – ident: e_1_2_3_48_2 doi: 10.1038/s41467-019-13739-5 – ident: e_1_2_3_5_2 doi: 10.1002/anie.202007221 – ident: e_1_2_3_28_2 doi: 10.1039/D0CS00199F – ident: e_1_2_3_34_2 doi: 10.1002/anie.201905713 – ident: e_1_2_3_1_1 – ident: e_1_2_3_16_2 doi: 10.1038/s41929-021-00705-y – ident: e_1_2_3_26_2 doi: 10.1126/science.aat7679 – ident: e_1_2_3_6_2 doi: 10.1038/s41467-022-31461-7 – ident: e_1_2_3_23_1 – ident: e_1_2_3_39_2 doi: 10.1038/s41557-019-0238-5 – ident: e_1_2_3_51_2 doi: 10.1039/D2TA03579K – ident: e_1_2_3_3_2 doi: 10.1002/adma.201706330 – ident: e_1_2_3_11_2 doi: 10.1002/adma.201905681 – ident: e_1_2_3_54_1 – ident: e_1_2_3_25_2 doi: 10.1126/science.aan0202 – ident: e_1_2_3_37_2 doi: 10.1002/anie.202104564 – ident: e_1_2_3_2_3 doi: 10.1002/ange.201702430 – ident: e_1_2_3_44_1 doi: 10.1039/C7DT01694H – ident: e_1_2_3_21_2 doi: 10.1038/s41929-021-00650-w – ident: e_1_2_3_24_2 doi: 10.1126/science.1120411 – ident: e_1_2_3_19_3 doi: 10.1002/ange.202114951 – ident: e_1_2_3_32_2 doi: 10.1021/jacs.7b06081 – ident: e_1_2_3_35_3 doi: 10.1002/ange.201915234 – ident: e_1_2_3_13_2 doi: 10.1038/s41467-021-24079-8 – ident: e_1_2_3_45_1 – ident: e_1_2_3_52_2 doi: 10.1039/D2QM00578F – ident: e_1_2_3_36_1 – ident: e_1_2_3_30_1 – ident: e_1_2_3_55_2 doi: 10.1038/s41570-022-00397-3 – ident: e_1_2_3_17_2 doi: 10.1038/s41565-021-00974-5 – ident: e_1_2_3_53_1 doi: 10.1021/jacs.0c10636 – ident: e_1_2_3_2_2 doi: 10.1002/anie.201702430 – ident: e_1_2_3_19_2 doi: 10.1002/anie.202114951 – ident: e_1_2_3_46_2 doi: 10.1021/jacs.1c02932 – ident: e_1_2_3_4_2 doi: 10.1038/s41467-021-24052-5 – ident: e_1_2_3_38_2 doi: 10.1021/jacs.1c02145 – ident: e_1_2_3_31_2 doi: 10.1021/jacs.8b06460 – ident: e_1_2_3_35_2 doi: 10.1002/anie.201915234 – ident: e_1_2_3_43_1 doi: 10.1021/acs.chemmater.6b01370 |
SSID | ssj0028806 |
Score | 2.6678908 |
Snippet | Construction of catalytic covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant but rarely... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202213522 |
SubjectTerms | Bifunctional Catalysts Chemical reduction Covalent Organic Frameworks Electron transport Oxygen Oxygen Evolution Reaction Oxygen evolution reactions Oxygen Reduction Reaction Oxygen reduction reactions Porphyrins Redox-Active Sites Surface area Surface stability |
Title | Construction of Catalytic Covalent Organic Frameworks with Redox‐Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202213522 https://www.proquest.com/docview/2740677000 https://www.proquest.com/docview/2725201184 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7Ei17cxboxguAp2sySpMdSWqpgBRfwFma9KInQKurJsyd_o7_E97JZBRH0lpA3WWbe8s1k3vcI2TdWQpjjJggdpuQIEwUqYjrQru2xvoizMSY4n46i4ZU4uZbXU1n8JT9Es-CGllH4azRwpcdHn6ShmIEN8zvGQsQQ4IRxwxaiovOGP4qBcpbpRZwHWIW-Zm1ss6Ovzb9GpU-oOQ1Yi4gzWCSqftdyo8nN4f1EH5rnbzSO__mYJbJQwVHaLfVnmcy4bIXM9eoqcKvkFSt61hyzNPe0h-s9TyBOezloKcQsWuZzGjqoN3qNKS7v0nNn88f3l7du4VPpBaDbMQWQTAF00rPHJ9BdlKnurTI7faH_UBkFiJTJF2vkatC_7A2Dqn5DYLgER2uYlR0AOMxzI6TtuDZyy2sjnecsgamMj3mSOO4BhXZ0ZLgSXlidWK-5cqHm62Q2yzO3QaiLvVCWtx0PvXDCaBmLSGlmWWJiFYctEtTjl5qK3BxrbNymJS0zS7GH06aHW-Sgkb8raT1-lNyu1SGtzHucwlQemfcgnLTIXnMZRgb_tqjM5fcowySiq0S0CCvG_pcnpd3Rcb852_xLoy0yj8fFdhu5TWZBPdwOgKaJ3i0M4wMOVhFb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTtxAEC0BOcAlISERQ4A0UiROhnEvtuc4GmY0bBOJgMTNcm-XRDbSQAScOHPiG_kSqryxSCgSHG1Xe-mu6npd7noF8NNYhW5OmCB0lJIjTRRkEdeBdl1P9UWcjSnB-XASjU_k3qlqdhNSLkzFD9EG3MgyyvmaDJwC0tuPrKGUgo0LPM5DAhGz8IHKehN9_s5RyyDFUT2rBCMhAqpD3_A2dvn28_bP_dIj2HwKWUufM_oEunnbaqvJn62Lc71lrl8QOb7rcxbhY41IWb9Soc8w4_IvMD9oCsEtwS0V9WxoZlnh2YBCPlcozgYFKiq6LValdBo2avZ6TRlFeNmRs8Xl_c1dv5xW2W8EuFOGOJkh7mS_Lq9QfUmmvneW26cXhv9qu0CRKv_iK5yMhseDcVCXcAiMUDjXGm5VDzEO98JIZXuuS_Ty2ijnBU9wNeNjkSROeASiPR0ZkUkvrU6s1yJzoRbfYC4vcrcMzMVeZlZ0nQi9dNJoFcso09zyxMRZHHYgaAYwNTW_OZXZ-JtWzMw8pR5O2x7uwGYrf1Yxe7wqudroQ1pb-DTF1TyR76FH6cBGexlHhn64ZLkrLkiGKwJYiewALwf_P09K-5PdYXu08pZGP2B-fHx4kB7sTva_wwKdL3ffqFWYQ1Vxa4ihzvV6aSUPGJkVdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFouhT4Q2wJ1pUo9BRI_kuxxtewK-thWtEjcIj8vrRKkhQp64sypv7G_pDN5sSBVSO0x8Thx7BnPZ8fzDcAb6xS6OWGjxFNIjrRppFNuIuPjQPlFvMsowPnjLD04lu9O1MlCFH_DD9FvuJFl1PM1GfipC3s3pKEUgY3rO84TwhAPYEWm8ZCSN-wf9QRSHLWziS8SIqI09B1tY8z3bte_7ZZusOYiYq1dznQNdNfY5qTJt93zM7Nrf97hcfyfr1mHxy0eZaNGgZ7Aki-fwqNxlwbuGVxTSs-OZJZVgY1pw-cSxdm4QjVFp8WagE7Lpt1Jrzmj_V125F118fvq16ieVNkXhLdzhiiZIepkny4uUXlJpn22Lt1iweRHaxUo0kRfPIfj6eTr-CBqEzhEViicaS13aogIhwdhpXJDHxO5vLHKB8FzXMuETOS5FwFh6NCkVmgZpDO5C0ZonxixActlVfpNYD4LUjsRe5EE6aU1KpOpNtzx3GY6SwYQdeNX2JbdnJJsfC8aXmZeUA8XfQ8P4G0vf9rwevxVcqtTh6K173mBa3mi3kN_MoDXfTGODP1u0aWvzkmGK4JXuRwAr8f-njcVo9nhpL968S-VXsHDz_vT4sPh7P1LWKXb9dEbtQXLqCl-GwHUmdmpbeQPyFMUJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Catalytic+Covalent+Organic+Frameworks+with+Redox-Active+Sites+for+the+Oxygen+Reduction+and+the+Oxygen+Evolution+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Minghao&rft.au=Liu%2C+Sijia&rft.au=Cui%2C+Cheng-Xing&rft.au=Miao%2C+Qiyang&rft.date=2022-12-05&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=49&rft.spage=e202213522&rft_id=info:doi/10.1002%2Fanie.202213522&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |