Two‐Stage Enzymatic Hydrolysis for Fermentable Sugars Production from Damaged Wheat Grain Starch with Sequential Process Optimization and Reaction Kinetics
Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using...
Saved in:
Published in | Die Stärke Vol. 73; no. 1-2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL−1) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL−1 using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL−1) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL−1 fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation.
Wheat grains are often damaged during pre‐ and post‐harvest operations and are thrown away as waste which attracts pathogenic microorganisms and causes environmental pollution. This work optimizes a biochemical process that efficiently converts damage wheat grains to fermentable sugars that can be used for developing biodegradable plastics and industrial chemicals. The work has potential applications in biochemical/bioprocessing/downstream industries. |
---|---|
AbstractList | Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL−1) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL−1 using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL−1) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL−1 fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation.
Wheat grains are often damaged during pre‐ and post‐harvest operations and are thrown away as waste which attracts pathogenic microorganisms and causes environmental pollution. This work optimizes a biochemical process that efficiently converts damage wheat grains to fermentable sugars that can be used for developing biodegradable plastics and industrial chemicals. The work has potential applications in biochemical/bioprocessing/downstream industries. Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL −1 ) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL −1 using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL −1 ) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL −1 fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation. Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL⁻¹) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL⁻¹ using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL⁻¹) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL⁻¹ fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation. Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL−1) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL−1 using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL−1) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL−1 fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation. |
Author | Goel, Reeta Sirohi, Ranjna Pandey, Jai Prakash Singh, Anupama Lohani, Umesh C. Kumar, Anil |
Author_xml | – sequence: 1 givenname: Ranjna orcidid: 0000-0002-6829-0337 surname: Sirohi fullname: Sirohi, Ranjna email: ranjanabce@gmail.com organization: G. B. Pant University of Agriculture and Technology – sequence: 2 givenname: Jai Prakash surname: Pandey fullname: Pandey, Jai Prakash organization: G. B. Pant University of Agriculture and Technology – sequence: 3 givenname: Reeta surname: Goel fullname: Goel, Reeta organization: G. B. Pant University of Agriculture and Technology – sequence: 4 givenname: Anupama surname: Singh fullname: Singh, Anupama organization: National Institute of Food Technology Entrepreneurship and Management – sequence: 5 givenname: Umesh C. surname: Lohani fullname: Lohani, Umesh C. organization: G. B. Pant University of Agriculture and Technology – sequence: 6 givenname: Anil surname: Kumar fullname: Kumar, Anil organization: G. B. Pant University of Agriculture and Technology |
BookMark | eNqFkc1u1DAUhS3USkwLW9aW2LDJcOPEibOsSn8QlYo6g2AXOc51x1ViD7aj0XTVR-AFeDmeBE8HUakSwpu7Od_x0TlH5MA6i4S8yWGeA7D3IUo_Z8AgPcFekFnOWZ4VdfPtgMwACpE1wKuX5CiEO4CK12U-Iz-XG_fr4cciylukZ_Z-O8poFL3c9t4N22AC1c7Tc_Qj2ii7AeliupU-0M_e9ZOKxlmqvRvpBzkmi55-XaGM9MJLY2ly9WpFNyau6AK_T8nCyGGHKgyBXq-jGc29fDSRtqc3KPeOn4zFFCO8IodaDgFf_7nH5Mv52fL0Mru6vvh4enKVqYIDyxrsO6VkBUIVve4QUAvRl0zrohdac-CglAbeyb7qpBSs4TVUTaMbrABFXRyTd3vftXcpZojtaILCYZAW3RRa1ogqr0tWiSR9-0x65yZvU7qWlTWveSoWkmq-VynvQvCo27U3o_TbNod2t1a7W6v9u1YCymeAMvGxmZiqHP6NNXtsYwbc_ueTdrE8uXlifwNkLLF4 |
CitedBy_id | crossref_primary_10_1016_j_biortech_2021_124734 crossref_primary_10_15741_revbio_10_e1514 crossref_primary_10_1038_s41598_023_28487_2 crossref_primary_10_1016_j_jclepro_2022_131722 crossref_primary_10_1016_j_foodres_2021_110396 crossref_primary_10_1002_star_202200172 crossref_primary_10_1016_j_biortech_2021_124771 crossref_primary_10_1007_s12155_022_10431_3 crossref_primary_10_1007_s13399_024_05613_2 crossref_primary_10_1007_s10068_024_01742_6 crossref_primary_10_3390_foods11121793 |
Cites_doi | 10.1016/j.ijbiomac.2019.09.072 10.1016/j.indcrop.2019.111565 10.1016/j.biortech.2019.03.068 10.1016/j.biortech.2007.09.061 10.3923/jas.2014.1743.1749 10.1016/j.indcrop.2016.11.067 10.1016/j.bej.2020.107528 10.1016/j.indcrop.2020.112351 10.1016/j.bej.2016.07.002 10.1002/jctb.3873 10.1016/j.biortech.2009.11.067 10.1021/ac60147a030 10.1016/j.jspr.2008.12.002 10.1016/j.foodhyd.2020.106030 10.1016/j.procbio.2005.03.003 10.1016/j.biortech.2007.11.013 10.1016/0020-711X(88)90163-2 10.1016/j.jcs.2019.102819 10.3390/en12183526 10.1016/j.indcrop.2012.06.028 10.1385/ABAB:134:3:263 10.1007/s11947-020-02434-9 10.1016/j.fuel.2018.03.135 10.31545/intagr/103748 10.1590/S0104-66322011000400005 10.1016/j.biortech.2020.123536 10.1016/j.indcrop.2016.08.049 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1002/star.202000082 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-379X |
EndPage | n/a |
ExternalDocumentID | 10_1002_star_202000082 STAR202000082 |
Genre | article |
GrantInformation_xml | – fundername: Council of Scientific and Industrial Research, India funderid: 09/171(0136)/19 |
GroupedDBID | .GA 1L6 1OC 3WU 51W 51X 52N 52O 52P 52T 52W 52X 66C 7PT 930 A03 AANHP ACBWZ ACGFO ACRPL ACYXJ ADNMO ALMA_UNASSIGNED_HOLDINGS BDRZF BY8 FEDTE HHY HVGLF JPC LP6 LP7 P4D Q11 QRW RWI WIH WQJ XV2 AAYXX AGQPQ CITATION .3N 05W 0R~ 10A 123 1OB 33P 3SF 4.4 50Y 50Z 52M 52S 52U 5VS 702 7S9 8-0 8-1 8-3 8-4 8-5 8UM AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ACAHQ ACCZN ACGFS ACIWK ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BNHUX BROTX BRXPI D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM EBD EBS F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZ~ IX1 J0M L.6 LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X Q.N QB0 R.K ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIK WOHZO WXSBR WYISQ XG1 Y6R ZZTAW ~IA ~KM ~WT |
ID | FETCH-LOGICAL-c3502-9edbcca608c3dfbe0ef88d42ff3d8ff5050ccf05bad6baa829570699f9e60e873 |
IEDL.DBID | DR2 |
ISSN | 0038-9056 |
IngestDate | Fri Jul 11 18:30:17 EDT 2025 Mon Jun 30 09:07:53 EDT 2025 Tue Jul 01 01:00:51 EDT 2025 Thu Apr 24 23:15:51 EDT 2025 Wed Jan 22 16:30:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-9edbcca608c3dfbe0ef88d42ff3d8ff5050ccf05bad6baa829570699f9e60e873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6829-0337 |
PQID | 2475756570 |
PQPubID | 1046346 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2986174268 proquest_journals_2475756570 crossref_primary_10_1002_star_202000082 crossref_citationtrail_10_1002_star_202000082 wiley_primary_10_1002_star_202000082_STAR202000082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Die Stärke |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 45 2012 2013; 88 2019; 33 2019; 12 2010; 101 2013; 42 2018; 224 2005; 40 2020; 149 2016; 94 2020; 13 2008; 99 2019; 283 2019; 141 2006; 134 2020; 108 2017; 97 1959; 31 2016; 7 2014; 3 2019; 89 2019 2014; 14 2015 2020; 156 2019; 139 2020; 311 2016; 114 1988; 20 2011; 28 2014; 31 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Gangwar R. K. (e_1_2_7_4_1) 2014; 31 Gawande B. S. (e_1_2_7_7_1) 2014; 3 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 Patel H. (e_1_2_7_24_1) 2016; 7 e_1_2_7_20_1 |
References_xml | – volume: 141 start-page: 1210 year: 2019 publication-title: Int. J. Biol. Macromol. – volume: 28 start-page: 597 year: 2011 publication-title: Braz. J. Chem. Eng. – volume: 149 year: 2020 publication-title: Indus. Crops Prod. – volume: 97 start-page: 21 year: 2017 publication-title: Ind. Crops Prod. – volume: 42 start-page: 527 year: 2013 publication-title: Indus. Crops Prod. – volume: 283 start-page: 53 year: 2019 publication-title: Bioresour. Technol. – volume: 134 start-page: 263 year: 2006 publication-title: Appl. Biochem. Biotechnol. – volume: 108 year: 2020 publication-title: Food Hydrocoll. – volume: 94 start-page: 259 year: 2016 publication-title: Ind. Crops Prod. – volume: 31 start-page: 426 year: 1959 publication-title: Anal. Chem. – volume: 101 start-page: 4820 year: 2010 publication-title: Bioresour. Technol. – volume: 12 start-page: 3526 year: 2019 publication-title: Ener. – volume: 99 start-page: 4749 year: 2008 publication-title: Bioresour. Technol. – year: 2012 – volume: 33 start-page: 1 year: 2019 publication-title: Int. Agrophys. – volume: 13 start-page: 923 year: 2020 publication-title: Food Bioprocess Technol. – volume: 114 start-page: 140 year: 2016 publication-title: Biochem. Eng. J. – volume: 89 year: 2019 publication-title: J. Cer. Sci. – volume: 139 year: 2019 publication-title: Ind. Crops Prod. – volume: 45 start-page: 151 year: 2009 publication-title: J. Stored Prod. Res. – volume: 31 start-page: 48 year: 2014 publication-title: Food Sci. Qual. Manage. – volume: 7 start-page: 1 year: 2016 publication-title: J. Taiwan Inst. Chem. Eng. – volume: 311 year: 2020 publication-title: Bioresour. Technol. – volume: 20 start-page: 683 year: 1988 publication-title: Int. J. Biochem. – volume: 99 start-page: 5270 year: 2008 publication-title: Bioresour. Technol. – volume: 156 year: 2020 publication-title: Biochem. Eng. J. – volume: 40 start-page: 3360 year: 2005 publication-title: Process Biochem. – volume: 88 start-page: 615 year: 2013 publication-title: J. Chem. Technol. Biotechnol. – volume: 224 start-page: 591 year: 2018 publication-title: Fuel – year: 2019 – year: 2015 – volume: 3 start-page: 2277 year: 2014 publication-title: Int. J. Sci. Spirit. Business Technol. – volume: 14 start-page: 1347 year: 2014 publication-title: J. Appl. Sci. – volume: 31 start-page: 48 year: 2014 ident: e_1_2_7_4_1 publication-title: Food Sci. Qual. Manage. – ident: e_1_2_7_31_1 doi: 10.1016/j.ijbiomac.2019.09.072 – ident: e_1_2_7_11_1 doi: 10.1016/j.indcrop.2019.111565 – ident: e_1_2_7_28_1 doi: 10.1016/j.biortech.2019.03.068 – ident: e_1_2_7_27_1 doi: 10.1016/j.biortech.2007.09.061 – ident: e_1_2_7_26_1 doi: 10.3923/jas.2014.1743.1749 – ident: e_1_2_7_3_1 – volume: 7 start-page: 1 year: 2016 ident: e_1_2_7_24_1 publication-title: J. Taiwan Inst. Chem. Eng. – ident: e_1_2_7_10_1 doi: 10.1016/j.indcrop.2016.11.067 – ident: e_1_2_7_18_1 doi: 10.1016/j.bej.2020.107528 – ident: e_1_2_7_30_1 doi: 10.1016/j.indcrop.2020.112351 – ident: e_1_2_7_17_1 doi: 10.1016/j.bej.2016.07.002 – ident: e_1_2_7_14_1 doi: 10.1002/jctb.3873 – ident: e_1_2_7_1_1 – ident: e_1_2_7_9_1 doi: 10.1016/j.biortech.2009.11.067 – ident: e_1_2_7_19_1 doi: 10.1021/ac60147a030 – ident: e_1_2_7_2_1 doi: 10.1016/j.jspr.2008.12.002 – ident: e_1_2_7_32_1 doi: 10.1016/j.foodhyd.2020.106030 – ident: e_1_2_7_5_1 – ident: e_1_2_7_20_1 doi: 10.1016/j.procbio.2005.03.003 – ident: e_1_2_7_8_1 doi: 10.1016/j.biortech.2007.11.013 – ident: e_1_2_7_21_1 doi: 10.1016/0020-711X(88)90163-2 – ident: e_1_2_7_23_1 doi: 10.1016/j.jcs.2019.102819 – ident: e_1_2_7_22_1 doi: 10.3390/en12183526 – ident: e_1_2_7_33_1 doi: 10.1016/j.indcrop.2012.06.028 – ident: e_1_2_7_25_1 doi: 10.1385/ABAB:134:3:263 – ident: e_1_2_7_16_1 doi: 10.1007/s11947-020-02434-9 – ident: e_1_2_7_13_1 doi: 10.1016/j.fuel.2018.03.135 – ident: e_1_2_7_15_1 doi: 10.31545/intagr/103748 – ident: e_1_2_7_29_1 doi: 10.1590/S0104-66322011000400005 – ident: e_1_2_7_6_1 doi: 10.1016/j.biortech.2020.123536 – volume: 3 start-page: 2277 year: 2014 ident: e_1_2_7_7_1 publication-title: Int. J. Sci. Spirit. Business Technol. – ident: e_1_2_7_12_1 doi: 10.1016/j.indcrop.2016.08.049 |
SSID | ssj0065741 ssj0005453 |
Score | 2.3707793 |
Snippet | Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | alpha-amylase Amylases Conversion Dextrin dextrins enzymatic hydrolysis enzymes glucan 1,4-alpha-glucosidase Glucoamylase hydrolysates Hydrolysis Kinetics Liquefaction model validation modeling Oligosaccharides Optimization pollution Reaction kinetics Saccharification Starch Substrates Sugar Wheat |
Title | Two‐Stage Enzymatic Hydrolysis for Fermentable Sugars Production from Damaged Wheat Grain Starch with Sequential Process Optimization and Reaction Kinetics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstar.202000082 https://www.proquest.com/docview/2475756570 https://www.proquest.com/docview/2986174268 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUQm7LpgxZ1WoouUqWuAhnHTuwlAoYRiLaaGSR2kZ8sOmQqmFEFq35Cf6A_x5dw7TwGKqFK7TKK48T2fRw7955LyEe0iyrrG55k6D8SRp1NpKAm4ejNGec2Z5Hs-fRzPjxjx-f8_EEWf80P0R24Bc2I9joouNLXu0vSUARPgc-TRtQTjHAI2AqoaLTkj0J40NnlnBesrp8XVBz9fkvhmNLdx309dlFL3PkQvUb3M3hBVPvhddTJt53FXO-Y2z84Hf9nZC_J8wabwl4tTK_IiqvWybP9tiTca_J78mN29_MXAtQLB4fV7U3ke4Xhjb2aRWoTQAgMAzT2ISJdTx2MFxe4c4avNa8sygCEfBY4UJfYhYXoCuAolKkA7BV1DsLBMIxjgDcanyk0mQzwBW3bZZM0CqqyMHJ1Tgac4IAD2fQbcjY4nOwPk6a-Q2IyjoZYOqtRgPJUmMx67VLnhbCMep9Z4T1is9QYn3KtbK6VElTyIs2l9NLlqRNFtkFWq1nl3hJAufLKetnHDSHrW6sK5rTPtDQxk4_2SNIuaWka8vNQg2Na1rTNtAyTXnaT3iOfuvbfa9qPJ1tuthJSNup_XVJWIAwOUUU9st3dxsUKf2NU5WYLbCMFokcESKJHaBSHv7ypHE_2Rt3Vu3956D1ZoyEmJx4hbZLV-dXCfUBQNddbUXHuAUZuG8A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_hELBQYJxClt1okT58Ch6nbZsm1Bu1upt-DEdg9ss2h_VG1PPAIvwEPwKjwCT8LY-VmKhJCQeuAYxXEce34-OzPfALwguyiDds69gPyHFzKtvESw3OPkzUPOVRQ6sufDo6h3HL494Sdr8K3OhSn5IZoDN6sZzl5bBbcH0tsr1lBCT5bQkznYw6q4yr5entOubfZ6v0NL_JKx7t5ot-dVhQW8POBkARKtMhp55Is8UCbTvjZCqJAZEyhhDIECP8-NzzOpokxKwRIe-1GSmERHvhZxQP1eg-u2jLil6-8MVoxVBEgaTxDxOCwr9lmjQkijJo302fblwV92iiuk-ytedg6vewu-11NVxrl83FrMs6384jcWyf9qLm_DzQp-406pL3dgTRd3YWO3rnp3D76Ozic_Pn8hDH6qca-4WDpKW-wt1XTi2FuQUD52yZ_ZoPtsrHG4OJXTGb4vqXNJzNGm7GBHnlEXCp23wze2EgdSr_TBaM--cehi2Mm-jrFK1sB3ZL7PqrxYlIXCgS7TTrBPM2z5tO_D8ZXMzgNYLyaFfghIqmOkMkmb9rxhWykZhzozQZbkLlmRtcCrZSjNK353W2ZknJbM1Cy1i5w2i9yCV037TyWzyR9bbtYimVYWbpayMCakbwOnWvC8uU2LZX84yUJPFtQmEQSQCQOKFjAnf395Uzoc7Qyaq0f_8tAz2OiNDg_Sg_2j_mO4wWwIkjsx24T1-XShnxCGnGdPndYifLhq0f4J7Tl9Iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQI2vBEDBS4SiFXajOM8vGBRdTpMGSjVzFTqLjix3QXTTDUPVdMVn8AP8A_8Cr_Al3DtPIYiISSkLlhGcRzHvo9j595zAV6QXZRBOw-9gPyHx5lWnkhY7oXkzXkYqog7suf3-1HvkL89Co_W4FudC1PyQzQHblYznL22Cn6qzNaKNJTAk-XzZA71sCqssq-XZ7Rpm73e69AKv2Ssuzva6XlVXQEvD0IyAEKrjAYe-UkeKJNpX5skUZwZE6jEGMIEfp4bP8ykijIpEybC2I-EMEJHvk7igPq9Ald55AtbLKIzWBFWER5pHEEUxrws2GdtCgGNmjPSZ1sXB3_RJ66A7q9w2fm77i34Xs9UGebyaXMxzzbz899IJP-nqbwNNyvwjdulttyBNV3ches7dc27e_B1dDb58fkLIfBjjbvF-dIR2mJvqaYTx92ChPGxS97MhtxnY43DxbGczvCgJM4lIUebsIMdeUJdKHS-Dt_YOhxIvdIHoz35xqGLYCfrOsYqVQM_kPE-qbJiURYKB7pMOsE-TbBl074Ph5cyOw9gvZgU-iEgKY6Ryog27Xh5WykZc52ZIBO5S1VkLfBqEUrzit3dFhkZpyUvNUvtIqfNIrfgVdP-tOQ1-WPLjVoi08q-zVLGY8L5NmyqBc-b27RY9neTLPRkQW1EQvCYEGDSAubE7y9vSoej7UFz9ehfHnoG1w463fTd3n7_MdxgNv7IHZdtwPp8utBPCEDOs6dOZxE-XrZk_wTycnvS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90Stage+Enzymatic+Hydrolysis+for+Fermentable+Sugars+Production+from+Damaged+Wheat+Grain+Starch+with+Sequential+Process+Optimization+and+Reaction+Kinetics&rft.jtitle=Starch+-+St%C3%A4rke&rft.au=Sirohi%2C+Ranjna&rft.au=Pandey%2C+Jai+Prakash&rft.au=Goel%2C+Reeta&rft.au=Singh%2C+Anupama&rft.date=2021-01-01&rft.issn=0038-9056&rft.eissn=1521-379X&rft.volume=73&rft.issue=1-2&rft_id=info:doi/10.1002%2Fstar.202000082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_star_202000082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-9056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-9056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-9056&client=summon |