Two‐Stage Enzymatic Hydrolysis for Fermentable Sugars Production from Damaged Wheat Grain Starch with Sequential Process Optimization and Reaction Kinetics

Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using...

Full description

Saved in:
Bibliographic Details
Published inDie Stärke Vol. 73; no. 1-2
Main Authors Sirohi, Ranjna, Pandey, Jai Prakash, Goel, Reeta, Singh, Anupama, Lohani, Umesh C., Kumar, Anil
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL−1) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL−1 using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL−1) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL−1 fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation. Wheat grains are often damaged during pre‐ and post‐harvest operations and are thrown away as waste which attracts pathogenic microorganisms and causes environmental pollution. This work optimizes a biochemical process that efficiently converts damage wheat grains to fermentable sugars that can be used for developing biodegradable plastics and industrial chemicals. The work has potential applications in biochemical/bioprocessing/downstream industries.
AbstractList Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL−1) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL−1 using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL−1) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL−1 fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation. Wheat grains are often damaged during pre‐ and post‐harvest operations and are thrown away as waste which attracts pathogenic microorganisms and causes environmental pollution. This work optimizes a biochemical process that efficiently converts damage wheat grains to fermentable sugars that can be used for developing biodegradable plastics and industrial chemicals. The work has potential applications in biochemical/bioprocessing/downstream industries.
Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL −1 ) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL −1 using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL −1 ) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL −1 fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation.
Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL⁻¹) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL⁻¹ using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL⁻¹) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL⁻¹ fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation.
Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy substrates to usable fermentable sugars is the subject of this study. Wheat grains in different quantities (10–20%, w/v) are liquefied using different concentrations of α‐amylase (1−5% v/v; 12−60 U mL−1) to generate hydrolysate. The process is optimized to obtain the maximum concentration of reducing sugars. The concentration of reducing sugars obtained after 60 min of liquefaction is quantified as 85.2 mg mL−1 using 5% v/v α‐amylase and 19.4% w/v substrate in the hydrolysis media. Reaction kinetics confirm that substrate concentrations higher than 10% w/v can enhance the production of fermentable sugars. The obtained hydrolysate is subjected to saccharification using glucoamylase (1−3% v/v; 46−138 U mL−1) for the conversion of remaining oligosaccharides and α‐limit dextrins to fermentable sugars. Optimum glucoamylase concentration of 2.4% v/v in the reaction media yields 147.5 mg mL−1 fermentable sugars in 103 min. Predictive second‐order models are established for the process with good accuracy. Subsequent experiments at optimum conditions are performed for model validation.
Author Goel, Reeta
Sirohi, Ranjna
Pandey, Jai Prakash
Singh, Anupama
Lohani, Umesh C.
Kumar, Anil
Author_xml – sequence: 1
  givenname: Ranjna
  orcidid: 0000-0002-6829-0337
  surname: Sirohi
  fullname: Sirohi, Ranjna
  email: ranjanabce@gmail.com
  organization: G. B. Pant University of Agriculture and Technology
– sequence: 2
  givenname: Jai Prakash
  surname: Pandey
  fullname: Pandey, Jai Prakash
  organization: G. B. Pant University of Agriculture and Technology
– sequence: 3
  givenname: Reeta
  surname: Goel
  fullname: Goel, Reeta
  organization: G. B. Pant University of Agriculture and Technology
– sequence: 4
  givenname: Anupama
  surname: Singh
  fullname: Singh, Anupama
  organization: National Institute of Food Technology Entrepreneurship and Management
– sequence: 5
  givenname: Umesh C.
  surname: Lohani
  fullname: Lohani, Umesh C.
  organization: G. B. Pant University of Agriculture and Technology
– sequence: 6
  givenname: Anil
  surname: Kumar
  fullname: Kumar, Anil
  organization: G. B. Pant University of Agriculture and Technology
BookMark eNqFkc1u1DAUhS3USkwLW9aW2LDJcOPEibOsSn8QlYo6g2AXOc51x1ViD7aj0XTVR-AFeDmeBE8HUakSwpu7Od_x0TlH5MA6i4S8yWGeA7D3IUo_Z8AgPcFekFnOWZ4VdfPtgMwACpE1wKuX5CiEO4CK12U-Iz-XG_fr4cciylukZ_Z-O8poFL3c9t4N22AC1c7Tc_Qj2ii7AeliupU-0M_e9ZOKxlmqvRvpBzkmi55-XaGM9MJLY2ly9WpFNyau6AK_T8nCyGGHKgyBXq-jGc29fDSRtqc3KPeOn4zFFCO8IodaDgFf_7nH5Mv52fL0Mru6vvh4enKVqYIDyxrsO6VkBUIVve4QUAvRl0zrohdac-CglAbeyb7qpBSs4TVUTaMbrABFXRyTd3vftXcpZojtaILCYZAW3RRa1ogqr0tWiSR9-0x65yZvU7qWlTWveSoWkmq-VynvQvCo27U3o_TbNod2t1a7W6v9u1YCymeAMvGxmZiqHP6NNXtsYwbc_ueTdrE8uXlifwNkLLF4
CitedBy_id crossref_primary_10_1016_j_biortech_2021_124734
crossref_primary_10_15741_revbio_10_e1514
crossref_primary_10_1038_s41598_023_28487_2
crossref_primary_10_1016_j_jclepro_2022_131722
crossref_primary_10_1016_j_foodres_2021_110396
crossref_primary_10_1002_star_202200172
crossref_primary_10_1016_j_biortech_2021_124771
crossref_primary_10_1007_s12155_022_10431_3
crossref_primary_10_1007_s13399_024_05613_2
crossref_primary_10_1007_s10068_024_01742_6
crossref_primary_10_3390_foods11121793
Cites_doi 10.1016/j.ijbiomac.2019.09.072
10.1016/j.indcrop.2019.111565
10.1016/j.biortech.2019.03.068
10.1016/j.biortech.2007.09.061
10.3923/jas.2014.1743.1749
10.1016/j.indcrop.2016.11.067
10.1016/j.bej.2020.107528
10.1016/j.indcrop.2020.112351
10.1016/j.bej.2016.07.002
10.1002/jctb.3873
10.1016/j.biortech.2009.11.067
10.1021/ac60147a030
10.1016/j.jspr.2008.12.002
10.1016/j.foodhyd.2020.106030
10.1016/j.procbio.2005.03.003
10.1016/j.biortech.2007.11.013
10.1016/0020-711X(88)90163-2
10.1016/j.jcs.2019.102819
10.3390/en12183526
10.1016/j.indcrop.2012.06.028
10.1385/ABAB:134:3:263
10.1007/s11947-020-02434-9
10.1016/j.fuel.2018.03.135
10.31545/intagr/103748
10.1590/S0104-66322011000400005
10.1016/j.biortech.2020.123536
10.1016/j.indcrop.2016.08.049
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1002/star.202000082
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-379X
EndPage n/a
ExternalDocumentID 10_1002_star_202000082
STAR202000082
Genre article
GrantInformation_xml – fundername: Council of Scientific and Industrial Research, India
  funderid: 09/171(0136)/19
GroupedDBID .GA
1L6
1OC
3WU
51W
51X
52N
52O
52P
52T
52W
52X
66C
7PT
930
A03
AANHP
ACBWZ
ACGFO
ACRPL
ACYXJ
ADNMO
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BY8
FEDTE
HHY
HVGLF
JPC
LP6
LP7
P4D
Q11
QRW
RWI
WIH
WQJ
XV2
AAYXX
AGQPQ
CITATION
.3N
05W
0R~
10A
123
1OB
33P
3SF
4.4
50Y
50Z
52M
52S
52U
5VS
702
7S9
8-0
8-1
8-3
8-4
8-5
8UM
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
EBD
EBS
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
IX1
J0M
L.6
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
Q.N
QB0
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIK
WOHZO
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~IA
~KM
~WT
ID FETCH-LOGICAL-c3502-9edbcca608c3dfbe0ef88d42ff3d8ff5050ccf05bad6baa829570699f9e60e873
IEDL.DBID DR2
ISSN 0038-9056
IngestDate Fri Jul 11 18:30:17 EDT 2025
Mon Jun 30 09:07:53 EDT 2025
Tue Jul 01 01:00:51 EDT 2025
Thu Apr 24 23:15:51 EDT 2025
Wed Jan 22 16:30:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-9edbcca608c3dfbe0ef88d42ff3d8ff5050ccf05bad6baa829570699f9e60e873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6829-0337
PQID 2475756570
PQPubID 1046346
PageCount 9
ParticipantIDs proquest_miscellaneous_2986174268
proquest_journals_2475756570
crossref_primary_10_1002_star_202000082
crossref_citationtrail_10_1002_star_202000082
wiley_primary_10_1002_star_202000082_STAR202000082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Die Stärke
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 45
2012
2013; 88
2019; 33
2019; 12
2010; 101
2013; 42
2018; 224
2005; 40
2020; 149
2016; 94
2020; 13
2008; 99
2019; 283
2019; 141
2006; 134
2020; 108
2017; 97
1959; 31
2016; 7
2014; 3
2019; 89
2019
2014; 14
2015
2020; 156
2019; 139
2020; 311
2016; 114
1988; 20
2011; 28
2014; 31
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Gangwar R. K. (e_1_2_7_4_1) 2014; 31
Gawande B. S. (e_1_2_7_7_1) 2014; 3
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
Patel H. (e_1_2_7_24_1) 2016; 7
e_1_2_7_20_1
References_xml – volume: 141
  start-page: 1210
  year: 2019
  publication-title: Int. J. Biol. Macromol.
– volume: 28
  start-page: 597
  year: 2011
  publication-title: Braz. J. Chem. Eng.
– volume: 149
  year: 2020
  publication-title: Indus. Crops Prod.
– volume: 97
  start-page: 21
  year: 2017
  publication-title: Ind. Crops Prod.
– volume: 42
  start-page: 527
  year: 2013
  publication-title: Indus. Crops Prod.
– volume: 283
  start-page: 53
  year: 2019
  publication-title: Bioresour. Technol.
– volume: 134
  start-page: 263
  year: 2006
  publication-title: Appl. Biochem. Biotechnol.
– volume: 108
  year: 2020
  publication-title: Food Hydrocoll.
– volume: 94
  start-page: 259
  year: 2016
  publication-title: Ind. Crops Prod.
– volume: 31
  start-page: 426
  year: 1959
  publication-title: Anal. Chem.
– volume: 101
  start-page: 4820
  year: 2010
  publication-title: Bioresour. Technol.
– volume: 12
  start-page: 3526
  year: 2019
  publication-title: Ener.
– volume: 99
  start-page: 4749
  year: 2008
  publication-title: Bioresour. Technol.
– year: 2012
– volume: 33
  start-page: 1
  year: 2019
  publication-title: Int. Agrophys.
– volume: 13
  start-page: 923
  year: 2020
  publication-title: Food Bioprocess Technol.
– volume: 114
  start-page: 140
  year: 2016
  publication-title: Biochem. Eng. J.
– volume: 89
  year: 2019
  publication-title: J. Cer. Sci.
– volume: 139
  year: 2019
  publication-title: Ind. Crops Prod.
– volume: 45
  start-page: 151
  year: 2009
  publication-title: J. Stored Prod. Res.
– volume: 31
  start-page: 48
  year: 2014
  publication-title: Food Sci. Qual. Manage.
– volume: 7
  start-page: 1
  year: 2016
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 311
  year: 2020
  publication-title: Bioresour. Technol.
– volume: 20
  start-page: 683
  year: 1988
  publication-title: Int. J. Biochem.
– volume: 99
  start-page: 5270
  year: 2008
  publication-title: Bioresour. Technol.
– volume: 156
  year: 2020
  publication-title: Biochem. Eng. J.
– volume: 40
  start-page: 3360
  year: 2005
  publication-title: Process Biochem.
– volume: 88
  start-page: 615
  year: 2013
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 224
  start-page: 591
  year: 2018
  publication-title: Fuel
– year: 2019
– year: 2015
– volume: 3
  start-page: 2277
  year: 2014
  publication-title: Int. J. Sci. Spirit. Business Technol.
– volume: 14
  start-page: 1347
  year: 2014
  publication-title: J. Appl. Sci.
– volume: 31
  start-page: 48
  year: 2014
  ident: e_1_2_7_4_1
  publication-title: Food Sci. Qual. Manage.
– ident: e_1_2_7_31_1
  doi: 10.1016/j.ijbiomac.2019.09.072
– ident: e_1_2_7_11_1
  doi: 10.1016/j.indcrop.2019.111565
– ident: e_1_2_7_28_1
  doi: 10.1016/j.biortech.2019.03.068
– ident: e_1_2_7_27_1
  doi: 10.1016/j.biortech.2007.09.061
– ident: e_1_2_7_26_1
  doi: 10.3923/jas.2014.1743.1749
– ident: e_1_2_7_3_1
– volume: 7
  start-page: 1
  year: 2016
  ident: e_1_2_7_24_1
  publication-title: J. Taiwan Inst. Chem. Eng.
– ident: e_1_2_7_10_1
  doi: 10.1016/j.indcrop.2016.11.067
– ident: e_1_2_7_18_1
  doi: 10.1016/j.bej.2020.107528
– ident: e_1_2_7_30_1
  doi: 10.1016/j.indcrop.2020.112351
– ident: e_1_2_7_17_1
  doi: 10.1016/j.bej.2016.07.002
– ident: e_1_2_7_14_1
  doi: 10.1002/jctb.3873
– ident: e_1_2_7_1_1
– ident: e_1_2_7_9_1
  doi: 10.1016/j.biortech.2009.11.067
– ident: e_1_2_7_19_1
  doi: 10.1021/ac60147a030
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jspr.2008.12.002
– ident: e_1_2_7_32_1
  doi: 10.1016/j.foodhyd.2020.106030
– ident: e_1_2_7_5_1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.procbio.2005.03.003
– ident: e_1_2_7_8_1
  doi: 10.1016/j.biortech.2007.11.013
– ident: e_1_2_7_21_1
  doi: 10.1016/0020-711X(88)90163-2
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jcs.2019.102819
– ident: e_1_2_7_22_1
  doi: 10.3390/en12183526
– ident: e_1_2_7_33_1
  doi: 10.1016/j.indcrop.2012.06.028
– ident: e_1_2_7_25_1
  doi: 10.1385/ABAB:134:3:263
– ident: e_1_2_7_16_1
  doi: 10.1007/s11947-020-02434-9
– ident: e_1_2_7_13_1
  doi: 10.1016/j.fuel.2018.03.135
– ident: e_1_2_7_15_1
  doi: 10.31545/intagr/103748
– ident: e_1_2_7_29_1
  doi: 10.1590/S0104-66322011000400005
– ident: e_1_2_7_6_1
  doi: 10.1016/j.biortech.2020.123536
– volume: 3
  start-page: 2277
  year: 2014
  ident: e_1_2_7_7_1
  publication-title: Int. J. Sci. Spirit. Business Technol.
– ident: e_1_2_7_12_1
  doi: 10.1016/j.indcrop.2016.08.049
SSID ssj0065741
ssj0005453
Score 2.3707793
Snippet Damaged wheat grains are usually discarded following which they decompose naturally to cause environmental pollution. The potential conversion of these starchy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms alpha-amylase
Amylases
Conversion
Dextrin
dextrins
enzymatic hydrolysis
enzymes
glucan 1,4-alpha-glucosidase
Glucoamylase
hydrolysates
Hydrolysis
Kinetics
Liquefaction
model validation
modeling
Oligosaccharides
Optimization
pollution
Reaction kinetics
Saccharification
Starch
Substrates
Sugar
Wheat
Title Two‐Stage Enzymatic Hydrolysis for Fermentable Sugars Production from Damaged Wheat Grain Starch with Sequential Process Optimization and Reaction Kinetics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstar.202000082
https://www.proquest.com/docview/2475756570
https://www.proquest.com/docview/2986174268
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUQm7LpgxZ1WoouUqWuAhnHTuwlAoYRiLaaGSR2kZ8sOmQqmFEFq35Cf6A_x5dw7TwGKqFK7TKK48T2fRw7955LyEe0iyrrG55k6D8SRp1NpKAm4ejNGec2Z5Hs-fRzPjxjx-f8_EEWf80P0R24Bc2I9joouNLXu0vSUARPgc-TRtQTjHAI2AqoaLTkj0J40NnlnBesrp8XVBz9fkvhmNLdx309dlFL3PkQvUb3M3hBVPvhddTJt53FXO-Y2z84Hf9nZC_J8wabwl4tTK_IiqvWybP9tiTca_J78mN29_MXAtQLB4fV7U3ke4Xhjb2aRWoTQAgMAzT2ISJdTx2MFxe4c4avNa8sygCEfBY4UJfYhYXoCuAolKkA7BV1DsLBMIxjgDcanyk0mQzwBW3bZZM0CqqyMHJ1Tgac4IAD2fQbcjY4nOwPk6a-Q2IyjoZYOqtRgPJUmMx67VLnhbCMep9Z4T1is9QYn3KtbK6VElTyIs2l9NLlqRNFtkFWq1nl3hJAufLKetnHDSHrW6sK5rTPtDQxk4_2SNIuaWka8vNQg2Na1rTNtAyTXnaT3iOfuvbfa9qPJ1tuthJSNup_XVJWIAwOUUU9st3dxsUKf2NU5WYLbCMFokcESKJHaBSHv7ypHE_2Rt3Vu3956D1ZoyEmJx4hbZLV-dXCfUBQNddbUXHuAUZuG8A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_hELBQYJxClt1okT58Ch6nbZsm1Bu1upt-DEdg9ss2h_VG1PPAIvwEPwKjwCT8LY-VmKhJCQeuAYxXEce34-OzPfALwguyiDds69gPyHFzKtvESw3OPkzUPOVRQ6sufDo6h3HL494Sdr8K3OhSn5IZoDN6sZzl5bBbcH0tsr1lBCT5bQkznYw6q4yr5entOubfZ6v0NL_JKx7t5ot-dVhQW8POBkARKtMhp55Is8UCbTvjZCqJAZEyhhDIECP8-NzzOpokxKwRIe-1GSmERHvhZxQP1eg-u2jLil6-8MVoxVBEgaTxDxOCwr9lmjQkijJo302fblwV92iiuk-ytedg6vewu-11NVxrl83FrMs6384jcWyf9qLm_DzQp-406pL3dgTRd3YWO3rnp3D76Ozic_Pn8hDH6qca-4WDpKW-wt1XTi2FuQUD52yZ_ZoPtsrHG4OJXTGb4vqXNJzNGm7GBHnlEXCp23wze2EgdSr_TBaM--cehi2Mm-jrFK1sB3ZL7PqrxYlIXCgS7TTrBPM2z5tO_D8ZXMzgNYLyaFfghIqmOkMkmb9rxhWykZhzozQZbkLlmRtcCrZSjNK353W2ZknJbM1Cy1i5w2i9yCV037TyWzyR9bbtYimVYWbpayMCakbwOnWvC8uU2LZX84yUJPFtQmEQSQCQOKFjAnf395Uzoc7Qyaq0f_8tAz2OiNDg_Sg_2j_mO4wWwIkjsx24T1-XShnxCGnGdPndYifLhq0f4J7Tl9Iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQI2vBEDBS4SiFXajOM8vGBRdTpMGSjVzFTqLjix3QXTTDUPVdMVn8AP8A_8Cr_Al3DtPIYiISSkLlhGcRzHvo9j595zAV6QXZRBOw-9gPyHx5lWnkhY7oXkzXkYqog7suf3-1HvkL89Co_W4FudC1PyQzQHblYznL22Cn6qzNaKNJTAk-XzZA71sCqssq-XZ7Rpm73e69AKv2Ssuzva6XlVXQEvD0IyAEKrjAYe-UkeKJNpX5skUZwZE6jEGMIEfp4bP8ykijIpEybC2I-EMEJHvk7igPq9Ald55AtbLKIzWBFWER5pHEEUxrws2GdtCgGNmjPSZ1sXB3_RJ66A7q9w2fm77i34Xs9UGebyaXMxzzbz899IJP-nqbwNNyvwjdulttyBNV3ches7dc27e_B1dDb58fkLIfBjjbvF-dIR2mJvqaYTx92ChPGxS97MhtxnY43DxbGczvCgJM4lIUebsIMdeUJdKHS-Dt_YOhxIvdIHoz35xqGLYCfrOsYqVQM_kPE-qbJiURYKB7pMOsE-TbBl074Ph5cyOw9gvZgU-iEgKY6Ryog27Xh5WykZc52ZIBO5S1VkLfBqEUrzit3dFhkZpyUvNUvtIqfNIrfgVdP-tOQ1-WPLjVoi08q-zVLGY8L5NmyqBc-b27RY9neTLPRkQW1EQvCYEGDSAubE7y9vSoej7UFz9ehfHnoG1w463fTd3n7_MdxgNv7IHZdtwPp8utBPCEDOs6dOZxE-XrZk_wTycnvS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90Stage+Enzymatic+Hydrolysis+for+Fermentable+Sugars+Production+from+Damaged+Wheat+Grain+Starch+with+Sequential+Process+Optimization+and+Reaction+Kinetics&rft.jtitle=Starch+-+St%C3%A4rke&rft.au=Sirohi%2C+Ranjna&rft.au=Pandey%2C+Jai+Prakash&rft.au=Goel%2C+Reeta&rft.au=Singh%2C+Anupama&rft.date=2021-01-01&rft.issn=0038-9056&rft.eissn=1521-379X&rft.volume=73&rft.issue=1-2&rft_id=info:doi/10.1002%2Fstar.202000082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_star_202000082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-9056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-9056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-9056&client=summon