Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by In Situ Crosslinking Polymerization‐Induced Self‐Assembly
Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm‐like micell...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 43; pp. e202211792 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
24.10.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm‐like micelles is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA). The reproducibility of worm‐like micelles is greatly improved due to the significantly enlarged experimental windows of worm‐like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm‐like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm‐like micelles is undoubtedly cost‐effective especially in scale‐up production, which paves the way for further application of worm‐like micelles with various compositions and functionalities.
Greatly enhanced accessibility of worm‐like micelles (W) is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA), leading to significantly improved reproducibility of worm‐like micelles. The reliability of the methodology has been demonstrated in various in situ crosslinking PISA systems with different formulations of monomers, macro RAFT agents, crosslinkers, solvents, and polymerization temperatures. |
---|---|
AbstractList | Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm‐like micelles is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA). The reproducibility of worm‐like micelles is greatly improved due to the significantly enlarged experimental windows of worm‐like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm‐like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm‐like micelles is undoubtedly cost‐effective especially in scale‐up production, which paves the way for further application of worm‐like micelles with various compositions and functionalities. Worm-like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm-like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm-like micelles is realized by in situ crosslinking polymerization-induced self-assembly (PISA). The reproducibility of worm-like micelles is greatly improved due to the significantly enlarged experimental windows of worm-like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm-like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm-like micelles is undoubtedly cost-effective especially in scale-up production, which paves the way for further application of worm-like micelles with various compositions and functionalities.Worm-like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm-like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm-like micelles is realized by in situ crosslinking polymerization-induced self-assembly (PISA). The reproducibility of worm-like micelles is greatly improved due to the significantly enlarged experimental windows of worm-like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm-like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm-like micelles is undoubtedly cost-effective especially in scale-up production, which paves the way for further application of worm-like micelles with various compositions and functionalities. Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm‐like micelles is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA). The reproducibility of worm‐like micelles is greatly improved due to the significantly enlarged experimental windows of worm‐like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm‐like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm‐like micelles is undoubtedly cost‐effective especially in scale‐up production, which paves the way for further application of worm‐like micelles with various compositions and functionalities. Greatly enhanced accessibility of worm‐like micelles (W) is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA), leading to significantly improved reproducibility of worm‐like micelles. The reliability of the methodology has been demonstrated in various in situ crosslinking PISA systems with different formulations of monomers, macro RAFT agents, crosslinkers, solvents, and polymerization temperatures. |
Author | Zhang, Wen‐Jian Chang, Zi‐Xuan Bai, Wei Hong, Chun‐Yan |
Author_xml | – sequence: 1 givenname: Wen‐Jian orcidid: 0000-0001-9039-3618 surname: Zhang fullname: Zhang, Wen‐Jian organization: Anhui University – sequence: 2 givenname: Zi‐Xuan surname: Chang fullname: Chang, Zi‐Xuan organization: University of Science and Technology of China – sequence: 3 givenname: Wei surname: Bai fullname: Bai, Wei email: Baiwei@ahu.edu.cn organization: Anhui University – sequence: 4 givenname: Chun‐Yan orcidid: 0000-0002-5295-4741 surname: Hong fullname: Hong, Chun‐Yan email: hongcy@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNqFkUtv1DAURi1UJNrClrUlNmwy9SN2nOVoNJSRykMUxDJynGtw69jFToTCin03_EZ-CR6Gh1QJsfJD59zrz_cEHYUYAKHHlKwoIexMBwcrRhijtGnZPXRMBaMVbxp-VPY151WjBH2ATnK-KrxSRB6j2_MEevIL3oaPOhgY8NoYyNn1zrtpwToM-A3cpDjM5vddtPh9TOP3r9-8uwb8whnwHjLuF7wL-NJNM96kmLN34dqFD_h19MsIyX3Rk4uhaLtQqpVWl-BtOa5zhrH3y0N032qf4dGv9RS9e7Z9u3leXbw6323WF5XhgrBKWmkGakES2feGa2FhkDWhSknLW2J60XIBcpB8aIBKUhNllG7b1tZ1zcjAT9HTQ90S69MMeepGl_cZdIA45441lCkhZNsU9Mkd9CrOKZTXFYoVhCsqCrU6UGYfO4HtbpIbdVo6Srr9bLr9bLo_sylCfUcwbvr5O1PSzv9baw_aZ-dh-U-Tbv1yt_3r_gC-tarK |
CitedBy_id | crossref_primary_10_1021_acs_macromol_3c02287 crossref_primary_10_1002_anie_202424666 crossref_primary_10_1021_acs_biomac_4c00552 crossref_primary_10_1002_agt2_418 crossref_primary_10_1039_D4PY00263F crossref_primary_10_1002_marc_202400681 crossref_primary_10_1021_jacs_4c08206 crossref_primary_10_1016_j_jcis_2024_08_001 crossref_primary_10_1002_ange_202424666 crossref_primary_10_1002_pol_20230579 crossref_primary_10_1002_marc_202400372 |
Cites_doi | 10.1002/anie.201709129 10.1002/anie.201809614 10.1021/acs.macromol.9b01757 10.1002/ange.201710811 10.1002/ange.201511159 10.1002/ange.201806719 10.1021/acs.macromol.6b02651 10.1002/marc.201900547 10.1002/ange.201916177 10.1021/acscentsci.8b00168 10.1002/ange.201904991 10.1021/acs.macromol.9b00571 10.1039/C6SC03732A 10.1021/acs.macromol.9b01689 10.1021/ma200582q 10.1002/advs.201700137 10.1002/ange.201301896 10.1002/ange.201709129 10.1002/anie.201813434 10.1002/marc.201800438 10.1021/acscentsci.1c00681 10.1002/anie.201806719 10.1002/ange.201912028 10.1021/acsnano.1c05089 10.1021/acsmacrolett.5b00225 10.1038/s41467-019-09324-5 10.1039/C7PY00912G 10.1021/acsmacrolett.7b00731 10.1002/anie.202202033 10.1007/s10118-017-1907-8 10.1002/ange.202202033 10.1021/acs.macromol.9b00144 10.1039/D1PY00046B 10.1002/ange.201813434 10.1002/marc.201600528 10.1002/anie.201911758 10.1021/jacs.1c01963 10.1002/anie.201809370 10.1039/C4SC03334E 10.1002/marc.201800279 10.1002/anie.202109084 10.1007/s10118-021-2647-3 10.1002/anie.201916177 10.1002/anie.201912028 10.1021/jacs.8b06013 10.1002/cjoc.202100665 10.1002/ange.202006385 10.1021/acsmacrolett.6b00066 10.1002/anie.201511454 10.1021/ja205887v 10.1016/j.porgcoat.2015.06.025 10.1039/f29767201525 10.1021/acs.macromol.6b02643 10.1021/acscentsci.8b00148 10.1002/ange.201609365 10.1021/acsnano.0c09166 10.1002/anie.201301896 10.1039/C6PY01797E 10.1021/jacs.8b08648 10.1002/anie.201904991 10.1021/acs.biomac.6b00819 10.1021/acsami.1c08812 10.1002/anie.201710811 10.1002/ange.201809614 10.1021/acs.macromol.8b02081 10.31635/ccschem.020.202000407 10.1002/ange.201809370 10.1002/ange.202109084 10.1039/D1PY00995H 10.1021/acs.macromol.7b01629 10.1021/jacs.9b10152 10.1002/anie.202006385 10.1021/acsmacrolett.9b00146 10.1021/acs.chemmater.9b01635 10.1002/ange.201511454 10.1002/anie.201511159 10.1038/nchem.2721 10.1002/ange.201911758 10.1021/acs.macromol.0c02882 10.1002/agt2.109 10.1021/acscentsci.5b00370 10.1002/anie.201609365 10.1039/D0PY00368A 10.1021/acs.macromol.8b00887 10.1038/s41467-020-18460-2 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202211792 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202211792 ANIE202211792 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22171255; 22131010 and 52021002; 21871002 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3502-6f6cd1fe606bbc3a5fed6401886f390cb5935e6d63d7e160408c8a999f44420d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:55:02 EDT 2025 Sun Jul 13 05:36:30 EDT 2025 Tue Jul 01 01:18:29 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Wed Jan 22 16:22:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-6f6cd1fe606bbc3a5fed6401886f390cb5935e6d63d7e160408c8a999f44420d3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9039-3618 0000-0002-5295-4741 |
PQID | 2725693815 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2712855697 proquest_journals_2725693815 crossref_primary_10_1002_anie_202211792 crossref_citationtrail_10_1002_anie_202211792 wiley_primary_10_1002_anie_202211792_ANIE202211792 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 24, 2022 |
PublicationDateYYYYMMDD | 2022-10-24 |
PublicationDate_xml | – month: 10 year: 2022 text: October 24, 2022 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2017; 6 2021; 7 2017; 8 2015; 6 2018; 140 2015; 4 2017; 4 2021; 2 2019; 31 2019; 52 2019; 10 2020 2020; 59 132 2020; 11 2017 2017; 56 129 2021; 143 2019; 141 2016; 17 2017; 9 2019 2019; 58 131 2011; 133 2013 2013; 52 125 2017; 50 2016; 5 2021; 13 2016; 7 2021; 15 2022 2022; 61 134 2021; 54 2016 2016; 55 128 2016; 2 2020; 2 2019; 40 2021; 12 2018; 4 2020; 53 2016; 90 2022; 40 2017; 38 2018 2018; 57 130 1976; 72 2017; 35 2021 2021; 60 133 2011; 44 2018; 51 e_1_2_7_5_1 e_1_2_7_3_1 (e_1_2_7_22_2) 2019; 131 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 (e_1_2_7_8_2) 2022; 134 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_63_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_65_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_46_2 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 40 start-page: 56 year: 2022 end-page: 66 publication-title: Chin. J. Polym. Sci. – volume: 133 start-page: 15707 year: 2011 end-page: 15713 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 4725 4775 year: 2019 2019 end-page: 4731 4781 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 7449 year: 2021 end-page: 7461 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 2992 year: 2016 end-page: 2999 publication-title: Biomacromolecules – volume: 10 start-page: 1397 year: 2019 publication-title: Nat. Commun. – volume: 51 start-page: 5165 year: 2018 end-page: 5172 publication-title: Macromolecules – volume: 8 start-page: 5474 year: 2017 end-page: 5480 publication-title: Polym. Chem. – volume: 4 start-page: 718 year: 2018 end-page: 723 publication-title: ACS Cent. Sci. – volume: 57 130 start-page: 10672 10832 year: 2018 2018 end-page: 10676 10836 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 8212 year: 2017 end-page: 8220 publication-title: Macromolecules – volume: 35 start-page: 455 year: 2017 end-page: 479 publication-title: Chin. J. Polym. Sci. – volume: 55 128 start-page: 3739 3803 year: 2016 2016 end-page: 3743 3807 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 4690 year: 2020 publication-title: Nat. Commun. – volume: 52 start-page: 4703 year: 2019 end-page: 4712 publication-title: Macromolecules – volume: 12 start-page: 6242 year: 2021 end-page: 6251 publication-title: Polym. Chem. – volume: 2 year: 2021 publication-title: Aggregate – volume: 140 start-page: 10435 year: 2018 end-page: 10438 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 11449 11571 year: 2019 2019 end-page: 11453 11575 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 2165 year: 2017 end-page: 2174 publication-title: Macromolecules – volume: 11 start-page: 3654 year: 2020 end-page: 3672 publication-title: Polym. Chem. – volume: 52 start-page: 1965 year: 2019 end-page: 1975 publication-title: Macromolecules – volume: 59 132 start-page: 19136 19298 year: 2020 2020 end-page: 19142 19304 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 4801 year: 2011 end-page: 4813 publication-title: Macromolecules – volume: 59 132 start-page: 622 632 year: 2020 2020 end-page: 626 636 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 2742 year: 2019 end-page: 2753 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 20234 year: 2019 end-page: 20248 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 465 year: 2020 end-page: 472 publication-title: Macromolecules – volume: 52 start-page: 1140 year: 2019 end-page: 1149 publication-title: Macromolecules – volume: 56 129 start-page: 16541 16768 year: 2017 2017 end-page: 16545 16772 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 543 year: 2018 end-page: 547 publication-title: ACS Cent. Sci. – volume: 59 132 start-page: 8368 8444 year: 2020 2020 end-page: 8392 8470 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 316 year: 2016 end-page: 320 publication-title: ACS Macro Lett. – volume: 60 133 start-page: 24430 24635 year: 2021 2021 end-page: 24436 24641 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 1746 1772 year: 2017 2017 end-page: 1750 1776 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 785 year: 2017 end-page: 792 publication-title: Nat. Chem. – volume: 8 start-page: 460 year: 2019 end-page: 465 publication-title: ACS Macro Lett. – volume: 58 131 start-page: 3173 3205 year: 2019 2019 end-page: 3177 3209 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 72 start-page: 1525 year: 1976 end-page: 1568 publication-title: J. Chem. Soc. Faraday Trans. 2 – volume: 7 start-page: 1543 year: 2021 end-page: 1550 publication-title: ACS Cent. Sci. – volume: 57 130 start-page: 15733 15959 year: 2018 2018 end-page: 15737 15963 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 453 year: 2022 end-page: 459 publication-title: Chin. J. Chem. – volume: 54 start-page: 2729 year: 2021 end-page: 2739 publication-title: Macromolecules – volume: 52 125 start-page: 5377 5485 year: 2013 2013 end-page: 5381 5489 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 1482 year: 2017 end-page: 1493 publication-title: Macromolecules – volume: 31 start-page: 5691 year: 2019 end-page: 5698 publication-title: Chem. Mater. – volume: 90 start-page: 359 year: 2016 end-page: 368 publication-title: Prog. Org. Coat. – volume: 7 start-page: 6894 year: 2016 end-page: 6904 publication-title: Chem. Sci. – volume: 59 132 start-page: 15474 15602 year: 2020 2020 end-page: 15479 15607 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 495 year: 2015 end-page: 499 publication-title: ACS Macro Lett. – volume: 57 130 start-page: 1053 1065 year: 2018 2018 end-page: 1056 1068 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 1230 year: 2015 end-page: 1236 publication-title: Chem. Sci. – volume: 13 start-page: 36307 year: 2021 end-page: 36319 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 4688 year: 2021 end-page: 4698 publication-title: ACS Nano – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 2 start-page: 2211 year: 2020 end-page: 2222 publication-title: CCS Chem. – volume: 2 start-page: 65 year: 2016 end-page: 74 publication-title: ACS Cent. Sci. – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 6 start-page: 1237 year: 2017 end-page: 1244 publication-title: ACS Macro Lett. – volume: 15 start-page: 13721 year: 2021 end-page: 13731 publication-title: ACS Nano – volume: 52 start-page: 7468 year: 2019 end-page: 7476 publication-title: Macromolecules – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 12 start-page: 1768 year: 2021 end-page: 1775 publication-title: Polym. Chem. – volume: 7 start-page: 7325 year: 2016 end-page: 7337 publication-title: Polym. Chem. – volume: 55 128 start-page: 2801 2851 year: 2016 2016 end-page: 2804 2854 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_7_61_1 doi: 10.1002/anie.201709129 – ident: e_1_2_7_10_1 doi: 10.1002/anie.201809614 – ident: e_1_2_7_24_1 doi: 10.1021/acs.macromol.9b01757 – ident: e_1_2_7_63_2 doi: 10.1002/ange.201710811 – ident: e_1_2_7_31_2 doi: 10.1002/ange.201511159 – ident: e_1_2_7_11_2 doi: 10.1002/ange.201806719 – ident: e_1_2_7_53_1 doi: 10.1021/acs.macromol.6b02651 – ident: e_1_2_7_58_1 doi: 10.1002/marc.201900547 – ident: e_1_2_7_12_2 doi: 10.1002/ange.201916177 – ident: e_1_2_7_62_1 doi: 10.1021/acscentsci.8b00168 – volume: 131 start-page: 11571 year: 2019 ident: e_1_2_7_22_2 publication-title: Angew. Chem. doi: 10.1002/ange.201904991 – ident: e_1_2_7_64_1 doi: 10.1021/acs.macromol.9b00571 – ident: e_1_2_7_5_1 doi: 10.1039/C6SC03732A – ident: e_1_2_7_30_1 doi: 10.1021/acs.macromol.9b01689 – ident: e_1_2_7_55_1 doi: 10.1021/ma200582q – ident: e_1_2_7_19_1 doi: 10.1002/advs.201700137 – ident: e_1_2_7_54_2 doi: 10.1002/ange.201301896 – ident: e_1_2_7_61_2 doi: 10.1002/ange.201709129 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201813434 – ident: e_1_2_7_32_1 doi: 10.1002/marc.201800438 – ident: e_1_2_7_68_1 doi: 10.1021/acscentsci.1c00681 – ident: e_1_2_7_11_1 doi: 10.1002/anie.201806719 – ident: e_1_2_7_66_2 doi: 10.1002/ange.201912028 – ident: e_1_2_7_60_1 doi: 10.1021/acsnano.1c05089 – ident: e_1_2_7_43_1 doi: 10.1021/acsmacrolett.5b00225 – ident: e_1_2_7_13_1 doi: 10.1038/s41467-019-09324-5 – ident: e_1_2_7_6_1 doi: 10.1039/C7PY00912G – ident: e_1_2_7_20_1 doi: 10.1021/acsmacrolett.7b00731 – ident: e_1_2_7_8_1 doi: 10.1002/anie.202202033 – ident: e_1_2_7_35_1 doi: 10.1007/s10118-017-1907-8 – volume: 134 start-page: e202202033 year: 2022 ident: e_1_2_7_8_2 publication-title: Angew. Chem. doi: 10.1002/ange.202202033 – ident: e_1_2_7_27_1 doi: 10.1021/acs.macromol.9b00144 – ident: e_1_2_7_51_1 doi: 10.1039/D1PY00046B – ident: e_1_2_7_16_2 doi: 10.1002/ange.201813434 – ident: e_1_2_7_36_1 doi: 10.1002/marc.201600528 – ident: e_1_2_7_65_1 doi: 10.1002/anie.201911758 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.1c01963 – ident: e_1_2_7_46_1 doi: 10.1002/anie.201809370 – ident: e_1_2_7_28_1 doi: 10.1039/C4SC03334E – ident: e_1_2_7_34_1 doi: 10.1002/marc.201800279 – ident: e_1_2_7_33_1 doi: 10.1002/anie.202109084 – ident: e_1_2_7_17_1 doi: 10.1007/s10118-021-2647-3 – ident: e_1_2_7_12_1 doi: 10.1002/anie.201916177 – ident: e_1_2_7_66_1 doi: 10.1002/anie.201912028 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.8b06013 – ident: e_1_2_7_23_1 doi: 10.1002/cjoc.202100665 – ident: e_1_2_7_29_2 doi: 10.1002/ange.202006385 – ident: e_1_2_7_52_1 doi: 10.1021/acsmacrolett.6b00066 – ident: e_1_2_7_1_1 doi: 10.1002/anie.201511454 – ident: e_1_2_7_44_1 doi: 10.1021/ja205887v – ident: e_1_2_7_56_1 doi: 10.1016/j.porgcoat.2015.06.025 – ident: e_1_2_7_41_1 doi: 10.1039/f29767201525 – ident: e_1_2_7_42_1 doi: 10.1021/acs.macromol.6b02643 – ident: e_1_2_7_26_1 doi: 10.1021/acscentsci.8b00148 – ident: e_1_2_7_4_2 doi: 10.1002/ange.201609365 – ident: e_1_2_7_7_1 doi: 10.1021/acsnano.0c09166 – ident: e_1_2_7_54_1 doi: 10.1002/anie.201301896 – ident: e_1_2_7_57_1 doi: 10.1039/C6PY01797E – ident: e_1_2_7_39_1 doi: 10.1021/jacs.8b08648 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201904991 – ident: e_1_2_7_50_1 doi: 10.1021/acs.biomac.6b00819 – ident: e_1_2_7_59_1 doi: 10.1021/acsami.1c08812 – ident: e_1_2_7_63_1 doi: 10.1002/anie.201710811 – ident: e_1_2_7_10_2 doi: 10.1002/ange.201809614 – ident: e_1_2_7_49_1 doi: 10.1021/acs.macromol.8b02081 – ident: e_1_2_7_25_1 doi: 10.31635/ccschem.020.202000407 – ident: e_1_2_7_46_2 doi: 10.1002/ange.201809370 – ident: e_1_2_7_33_2 doi: 10.1002/ange.202109084 – ident: e_1_2_7_47_1 doi: 10.1039/D1PY00995H – ident: e_1_2_7_18_1 doi: 10.1021/acs.macromol.7b01629 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.9b10152 – ident: e_1_2_7_29_1 doi: 10.1002/anie.202006385 – ident: e_1_2_7_3_1 doi: 10.1021/acsmacrolett.9b00146 – ident: e_1_2_7_67_1 doi: 10.1021/acs.chemmater.9b01635 – ident: e_1_2_7_1_2 doi: 10.1002/ange.201511454 – ident: e_1_2_7_31_1 doi: 10.1002/anie.201511159 – ident: e_1_2_7_45_1 doi: 10.1038/nchem.2721 – ident: e_1_2_7_65_2 doi: 10.1002/ange.201911758 – ident: e_1_2_7_15_1 doi: 10.1021/acs.macromol.0c02882 – ident: e_1_2_7_48_1 doi: 10.1002/agt2.109 – ident: e_1_2_7_2_1 doi: 10.1021/acscentsci.5b00370 – ident: e_1_2_7_4_1 doi: 10.1002/anie.201609365 – ident: e_1_2_7_14_1 doi: 10.1039/D0PY00368A – ident: e_1_2_7_38_1 doi: 10.1021/acs.macromol.8b00887 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-020-18460-2 |
SSID | ssj0028806 |
Score | 2.4875207 |
Snippet | Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are... Worm-like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm-like micelles are... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202211792 |
SubjectTerms | Accessibility Assembly Crosslinking In Situ Crosslinking Micelles Polymerization Polymerization-Induced Self-Assembly Reproducibility Worm-Like Micelles |
Title | Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by In Situ Crosslinking Polymerization‐Induced Self‐Assembly |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202211792 https://www.proquest.com/docview/2725693815 https://www.proquest.com/docview/2712855697 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUQm3bTBy3qlIeMhNRVIONXkuVoNAiQQAiKYBfZjq2OCJmKmVmkq-676Tf2S7jXeQCVUCW6ixNbTq5f58a-5xCyaxg6_9JG2DkikaUyMkNIpl4lXqQ20UHr8ORUHV6K42t5_SiKv-GH6H-44cgI8zUOcG3m-w-koRiBDf4dY0hqhpMwHthCVHTe80cxqL8JL-I8QhX6jrUxZvtPiz9dlR6g5mPAGlacg7dEd-_aHDS52VsuzJ798ReN4_98zDvypoWjdNT0n_dkxVVr5NW4U4H7QH6FfwhlTSfVt3BYgI6CxGJzqLamuioogPjAG9vdm3l6BVD4z8_f5fTG0ZNp2B2YU1PTo4peTBdLOkYztLoN9GxW1rhx1ESEQjHUE8GqLlzpIYkb07emrD-Sy4PJ1_Fh1Ao4RJZLmGmVV7YYegdOkjGWa-ldocChS1PleRZbIzMunSoULxI3VDCfpDbVAFm9EILFBV8nq9Wscp8IlSZWsVVeGlGIWNtMa0AbmoP3JLTSYkCirgFz27Kbo8hGmTe8zCxHE-e9iQfkS5__e8Pr8WzOza4_5O34nucsAaiYAdqRA7LTP4amQYPqys2WmAfWfgnZkgFhofH_UVM-Oj2a9KnPLym0QV7jNS6uTGyS1cXd0m0BalqY7TAy7gFaOhKU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKWZQNb8SUAkYCsUqbcWxPsmAxmk41QzsjRFvRXbAdW4waMhUzIxRW7NnwK_wKn8CXcK_zKEVCSEhdsHTixMn1tX2uH-cQ8lQzDP6FCdA5Ap7EItBdSMZO9hyPTU95rcPJVI6O-csTcbJGvjVnYSp-iHbCDVuG76-xgeOE9M45aygewYYAjzFkNWP1vsp9W36EqG3xYrwLVfyMsb3h0WAU1MICgYkE9ADSSZN1nQXwrrWJlHA2kxBoxLF0URIaLZJIWJnJKOvZrgQ_j02sAEo5zjkLswjee4VcRRlxpOvffd0yVjH44-pAUxQFqHvf8ESGbOfi914cB8_B7a8Q2Y9xezfI98Y61daW0-3VUm-bT78RR_5X5rtJrteIm_arJnKLrNniNtkYNEJ3d8gXP02Sl3RYvPP7IWjfq0hW-4ZLqoqMQpziqXGba3NH3wDa__H5az47tXQy8wsgC6pLOi7o4Wy5ogO0ey1NQV_N8xLXxqpDr_AYSqZgUYc2d5DEtff3Oi_vkuNLscU9sl7MC3ufUKFDGRrphOYZD5VJlAJApSIIELmSindI0HhMamoCd9QRydOKepqlWKVpW6Ud8rzNf1ZRl_wx51bjgGndhS1S1gM0nACgEx3ypL0NVYMGVYWdrzAPwBsB2Xodwry3_aWktD8dD9vU5r889JhsjI4mB-nBeLr_gFzD64glGN8i68sPK_sQQOJSP_LNkpK3l-3IPwGEzG9o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_hELBYwE4pQ269hOcuCw2u6qS-mqolT0FmzHFquGbMXuCoUTdy48Cq_CK_AkjJ2fUiSEhNQDRzvjJB6P7W_88w3AE0Wd88914IwjYGnCA9XHZGJFbFmiY-ljHe5Nxc4he3HEj9bgW3sXpuaH6BbcXM_w47Xr4Ce53TolDXU3sNG_o9SRmtHmWOWuqT6i07Z4PtnGFn5K6Xj0ergTNHEFAh1xHACEFTrvW4PYXSkdSW5NLtDPSBJhozTUiqcRNyIXUR6bvkAzT3QiEUlZxhgN8wjfewEuMoHVdDDsVUdYRbHC9X2mKApc2PuWJjKkW2f_9-w0eIptf0XIfoobX4PvrXLqky3Hm6ul2tSffuON_J-0dx2uNnibDOoOcgPWTHkTLg_bMHe34ItfJCkqMirf-dMQZOBjSNanhisiy5ygl-KJcdu8uSVvEOv_-Py1mB0bsjfz2x8LoioyKcnBbLkiQ6f2JjAF2Z8XldsZq6-8YjEXMMV96sAUFpNu5_29KqrbcHguurgD6-W8NHeBcBWKUAvLFctZKHUqJcIpGaF7yKSQrAdBazCZbujbXRSRIquJp2nmmjTrmrQHzzr5k5q45I-SG639Zc0AtshojFg4RTjHe_C4e4xN4xQqSzNfORkENxzF4h5Qb2x_-VI2mE5GXerevxR6BJf2t8fZy8l09z5ccdkOSFC2AevLDyvzABHiUj30nZLA2_O245-xS24X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greatly+Enhanced+Accessibility+and+Reproducibility+of+Worm-like+Micelles+by+In+Situ+Crosslinking+Polymerization-Induced+Self-Assembly&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Wen-Jian&rft.au=Chang%2C+Zi-Xuan&rft.au=Bai%2C+Wei&rft.au=Hong%2C+Chun-Yan&rft.date=2022-10-24&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=43&rft.spage=e202211792&rft_id=info:doi/10.1002%2Fanie.202211792&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |