Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by In Situ Crosslinking Polymerization‐Induced Self‐Assembly

Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm‐like micell...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 43; pp. e202211792 - n/a
Main Authors Zhang, Wen‐Jian, Chang, Zi‐Xuan, Bai, Wei, Hong, Chun‐Yan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 24.10.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm‐like micelles is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA). The reproducibility of worm‐like micelles is greatly improved due to the significantly enlarged experimental windows of worm‐like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm‐like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm‐like micelles is undoubtedly cost‐effective especially in scale‐up production, which paves the way for further application of worm‐like micelles with various compositions and functionalities. Greatly enhanced accessibility of worm‐like micelles (W) is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA), leading to significantly improved reproducibility of worm‐like micelles. The reliability of the methodology has been demonstrated in various in situ crosslinking PISA systems with different formulations of monomers, macro RAFT agents, crosslinkers, solvents, and polymerization temperatures.
AbstractList Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm‐like micelles is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA). The reproducibility of worm‐like micelles is greatly improved due to the significantly enlarged experimental windows of worm‐like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm‐like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm‐like micelles is undoubtedly cost‐effective especially in scale‐up production, which paves the way for further application of worm‐like micelles with various compositions and functionalities.
Worm-like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm-like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm-like micelles is realized by in situ crosslinking polymerization-induced self-assembly (PISA). The reproducibility of worm-like micelles is greatly improved due to the significantly enlarged experimental windows of worm-like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm-like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm-like micelles is undoubtedly cost-effective especially in scale-up production, which paves the way for further application of worm-like micelles with various compositions and functionalities.Worm-like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm-like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm-like micelles is realized by in situ crosslinking polymerization-induced self-assembly (PISA). The reproducibility of worm-like micelles is greatly improved due to the significantly enlarged experimental windows of worm-like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm-like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm-like micelles is undoubtedly cost-effective especially in scale-up production, which paves the way for further application of worm-like micelles with various compositions and functionalities.
Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm‐like micelles is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA). The reproducibility of worm‐like micelles is greatly improved due to the significantly enlarged experimental windows of worm‐like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm‐like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm‐like micelles is undoubtedly cost‐effective especially in scale‐up production, which paves the way for further application of worm‐like micelles with various compositions and functionalities. Greatly enhanced accessibility of worm‐like micelles (W) is realized by in situ crosslinking polymerization‐induced self‐assembly (PISA), leading to significantly improved reproducibility of worm‐like micelles. The reliability of the methodology has been demonstrated in various in situ crosslinking PISA systems with different formulations of monomers, macro RAFT agents, crosslinkers, solvents, and polymerization temperatures.
Author Zhang, Wen‐Jian
Chang, Zi‐Xuan
Bai, Wei
Hong, Chun‐Yan
Author_xml – sequence: 1
  givenname: Wen‐Jian
  orcidid: 0000-0001-9039-3618
  surname: Zhang
  fullname: Zhang, Wen‐Jian
  organization: Anhui University
– sequence: 2
  givenname: Zi‐Xuan
  surname: Chang
  fullname: Chang, Zi‐Xuan
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Wei
  surname: Bai
  fullname: Bai, Wei
  email: Baiwei@ahu.edu.cn
  organization: Anhui University
– sequence: 4
  givenname: Chun‐Yan
  orcidid: 0000-0002-5295-4741
  surname: Hong
  fullname: Hong, Chun‐Yan
  email: hongcy@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNqFkUtv1DAURi1UJNrClrUlNmwy9SN2nOVoNJSRykMUxDJynGtw69jFToTCin03_EZ-CR6Gh1QJsfJD59zrz_cEHYUYAKHHlKwoIexMBwcrRhijtGnZPXRMBaMVbxp-VPY151WjBH2ATnK-KrxSRB6j2_MEevIL3oaPOhgY8NoYyNn1zrtpwToM-A3cpDjM5vddtPh9TOP3r9-8uwb8whnwHjLuF7wL-NJNM96kmLN34dqFD_h19MsIyX3Rk4uhaLtQqpVWl-BtOa5zhrH3y0N032qf4dGv9RS9e7Z9u3leXbw6323WF5XhgrBKWmkGakES2feGa2FhkDWhSknLW2J60XIBcpB8aIBKUhNllG7b1tZ1zcjAT9HTQ90S69MMeepGl_cZdIA45441lCkhZNsU9Mkd9CrOKZTXFYoVhCsqCrU6UGYfO4HtbpIbdVo6Srr9bLr9bLo_sylCfUcwbvr5O1PSzv9baw_aZ-dh-U-Tbv1yt_3r_gC-tarK
CitedBy_id crossref_primary_10_1021_acs_macromol_3c02287
crossref_primary_10_1002_anie_202424666
crossref_primary_10_1021_acs_biomac_4c00552
crossref_primary_10_1002_agt2_418
crossref_primary_10_1039_D4PY00263F
crossref_primary_10_1002_marc_202400681
crossref_primary_10_1021_jacs_4c08206
crossref_primary_10_1016_j_jcis_2024_08_001
crossref_primary_10_1002_ange_202424666
crossref_primary_10_1002_pol_20230579
crossref_primary_10_1002_marc_202400372
Cites_doi 10.1002/anie.201709129
10.1002/anie.201809614
10.1021/acs.macromol.9b01757
10.1002/ange.201710811
10.1002/ange.201511159
10.1002/ange.201806719
10.1021/acs.macromol.6b02651
10.1002/marc.201900547
10.1002/ange.201916177
10.1021/acscentsci.8b00168
10.1002/ange.201904991
10.1021/acs.macromol.9b00571
10.1039/C6SC03732A
10.1021/acs.macromol.9b01689
10.1021/ma200582q
10.1002/advs.201700137
10.1002/ange.201301896
10.1002/ange.201709129
10.1002/anie.201813434
10.1002/marc.201800438
10.1021/acscentsci.1c00681
10.1002/anie.201806719
10.1002/ange.201912028
10.1021/acsnano.1c05089
10.1021/acsmacrolett.5b00225
10.1038/s41467-019-09324-5
10.1039/C7PY00912G
10.1021/acsmacrolett.7b00731
10.1002/anie.202202033
10.1007/s10118-017-1907-8
10.1002/ange.202202033
10.1021/acs.macromol.9b00144
10.1039/D1PY00046B
10.1002/ange.201813434
10.1002/marc.201600528
10.1002/anie.201911758
10.1021/jacs.1c01963
10.1002/anie.201809370
10.1039/C4SC03334E
10.1002/marc.201800279
10.1002/anie.202109084
10.1007/s10118-021-2647-3
10.1002/anie.201916177
10.1002/anie.201912028
10.1021/jacs.8b06013
10.1002/cjoc.202100665
10.1002/ange.202006385
10.1021/acsmacrolett.6b00066
10.1002/anie.201511454
10.1021/ja205887v
10.1016/j.porgcoat.2015.06.025
10.1039/f29767201525
10.1021/acs.macromol.6b02643
10.1021/acscentsci.8b00148
10.1002/ange.201609365
10.1021/acsnano.0c09166
10.1002/anie.201301896
10.1039/C6PY01797E
10.1021/jacs.8b08648
10.1002/anie.201904991
10.1021/acs.biomac.6b00819
10.1021/acsami.1c08812
10.1002/anie.201710811
10.1002/ange.201809614
10.1021/acs.macromol.8b02081
10.31635/ccschem.020.202000407
10.1002/ange.201809370
10.1002/ange.202109084
10.1039/D1PY00995H
10.1021/acs.macromol.7b01629
10.1021/jacs.9b10152
10.1002/anie.202006385
10.1021/acsmacrolett.9b00146
10.1021/acs.chemmater.9b01635
10.1002/ange.201511454
10.1002/anie.201511159
10.1038/nchem.2721
10.1002/ange.201911758
10.1021/acs.macromol.0c02882
10.1002/agt2.109
10.1021/acscentsci.5b00370
10.1002/anie.201609365
10.1039/D0PY00368A
10.1021/acs.macromol.8b00887
10.1038/s41467-020-18460-2
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202211792
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202211792
ANIE202211792
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22171255; 22131010 and 52021002; 21871002
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3502-6f6cd1fe606bbc3a5fed6401886f390cb5935e6d63d7e160408c8a999f44420d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:55:02 EDT 2025
Sun Jul 13 05:36:30 EDT 2025
Tue Jul 01 01:18:29 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Wed Jan 22 16:22:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-6f6cd1fe606bbc3a5fed6401886f390cb5935e6d63d7e160408c8a999f44420d3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9039-3618
0000-0002-5295-4741
PQID 2725693815
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_2712855697
proquest_journals_2725693815
crossref_primary_10_1002_anie_202211792
crossref_citationtrail_10_1002_anie_202211792
wiley_primary_10_1002_anie_202211792_ANIE202211792
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 24, 2022
PublicationDateYYYYMMDD 2022-10-24
PublicationDate_xml – month: 10
  year: 2022
  text: October 24, 2022
  day: 24
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2017; 6
2021; 7
2017; 8
2015; 6
2018; 140
2015; 4
2017; 4
2021; 2
2019; 31
2019; 52
2019; 10
2020 2020; 59 132
2020; 11
2017 2017; 56 129
2021; 143
2019; 141
2016; 17
2017; 9
2019 2019; 58 131
2011; 133
2013 2013; 52 125
2017; 50
2016; 5
2021; 13
2016; 7
2021; 15
2022 2022; 61 134
2021; 54
2016 2016; 55 128
2016; 2
2020; 2
2019; 40
2021; 12
2018; 4
2020; 53
2016; 90
2022; 40
2017; 38
2018 2018; 57 130
1976; 72
2017; 35
2021 2021; 60 133
2011; 44
2018; 51
e_1_2_7_5_1
e_1_2_7_3_1
(e_1_2_7_22_2) 2019; 131
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
(e_1_2_7_8_2) 2022; 134
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_63_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_65_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_46_2
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 40
  start-page: 56
  year: 2022
  end-page: 66
  publication-title: Chin. J. Polym. Sci.
– volume: 133
  start-page: 15707
  year: 2011
  end-page: 15713
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 4725 4775
  year: 2019 2019
  end-page: 4731 4781
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 7449
  year: 2021
  end-page: 7461
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 2992
  year: 2016
  end-page: 2999
  publication-title: Biomacromolecules
– volume: 10
  start-page: 1397
  year: 2019
  publication-title: Nat. Commun.
– volume: 51
  start-page: 5165
  year: 2018
  end-page: 5172
  publication-title: Macromolecules
– volume: 8
  start-page: 5474
  year: 2017
  end-page: 5480
  publication-title: Polym. Chem.
– volume: 4
  start-page: 718
  year: 2018
  end-page: 723
  publication-title: ACS Cent. Sci.
– volume: 57 130
  start-page: 10672 10832
  year: 2018 2018
  end-page: 10676 10836
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 8212
  year: 2017
  end-page: 8220
  publication-title: Macromolecules
– volume: 35
  start-page: 455
  year: 2017
  end-page: 479
  publication-title: Chin. J. Polym. Sci.
– volume: 55 128
  start-page: 3739 3803
  year: 2016 2016
  end-page: 3743 3807
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 4690
  year: 2020
  publication-title: Nat. Commun.
– volume: 52
  start-page: 4703
  year: 2019
  end-page: 4712
  publication-title: Macromolecules
– volume: 12
  start-page: 6242
  year: 2021
  end-page: 6251
  publication-title: Polym. Chem.
– volume: 2
  year: 2021
  publication-title: Aggregate
– volume: 140
  start-page: 10435
  year: 2018
  end-page: 10438
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 11449 11571
  year: 2019 2019
  end-page: 11453 11575
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 2165
  year: 2017
  end-page: 2174
  publication-title: Macromolecules
– volume: 11
  start-page: 3654
  year: 2020
  end-page: 3672
  publication-title: Polym. Chem.
– volume: 52
  start-page: 1965
  year: 2019
  end-page: 1975
  publication-title: Macromolecules
– volume: 59 132
  start-page: 19136 19298
  year: 2020 2020
  end-page: 19142 19304
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 4801
  year: 2011
  end-page: 4813
  publication-title: Macromolecules
– volume: 59 132
  start-page: 622 632
  year: 2020 2020
  end-page: 626 636
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 2742
  year: 2019
  end-page: 2753
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 20234
  year: 2019
  end-page: 20248
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 465
  year: 2020
  end-page: 472
  publication-title: Macromolecules
– volume: 52
  start-page: 1140
  year: 2019
  end-page: 1149
  publication-title: Macromolecules
– volume: 56 129
  start-page: 16541 16768
  year: 2017 2017
  end-page: 16545 16772
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 543
  year: 2018
  end-page: 547
  publication-title: ACS Cent. Sci.
– volume: 59 132
  start-page: 8368 8444
  year: 2020 2020
  end-page: 8392 8470
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 316
  year: 2016
  end-page: 320
  publication-title: ACS Macro Lett.
– volume: 60 133
  start-page: 24430 24635
  year: 2021 2021
  end-page: 24436 24641
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 1746 1772
  year: 2017 2017
  end-page: 1750 1776
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 785
  year: 2017
  end-page: 792
  publication-title: Nat. Chem.
– volume: 8
  start-page: 460
  year: 2019
  end-page: 465
  publication-title: ACS Macro Lett.
– volume: 58 131
  start-page: 3173 3205
  year: 2019 2019
  end-page: 3177 3209
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 72
  start-page: 1525
  year: 1976
  end-page: 1568
  publication-title: J. Chem. Soc. Faraday Trans. 2
– volume: 7
  start-page: 1543
  year: 2021
  end-page: 1550
  publication-title: ACS Cent. Sci.
– volume: 57 130
  start-page: 15733 15959
  year: 2018 2018
  end-page: 15737 15963
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 453
  year: 2022
  end-page: 459
  publication-title: Chin. J. Chem.
– volume: 54
  start-page: 2729
  year: 2021
  end-page: 2739
  publication-title: Macromolecules
– volume: 52 125
  start-page: 5377 5485
  year: 2013 2013
  end-page: 5381 5489
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 1482
  year: 2017
  end-page: 1493
  publication-title: Macromolecules
– volume: 31
  start-page: 5691
  year: 2019
  end-page: 5698
  publication-title: Chem. Mater.
– volume: 90
  start-page: 359
  year: 2016
  end-page: 368
  publication-title: Prog. Org. Coat.
– volume: 7
  start-page: 6894
  year: 2016
  end-page: 6904
  publication-title: Chem. Sci.
– volume: 59 132
  start-page: 15474 15602
  year: 2020 2020
  end-page: 15479 15607
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 495
  year: 2015
  end-page: 499
  publication-title: ACS Macro Lett.
– volume: 57 130
  start-page: 1053 1065
  year: 2018 2018
  end-page: 1056 1068
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 1230
  year: 2015
  end-page: 1236
  publication-title: Chem. Sci.
– volume: 13
  start-page: 36307
  year: 2021
  end-page: 36319
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 4688
  year: 2021
  end-page: 4698
  publication-title: ACS Nano
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 2
  start-page: 2211
  year: 2020
  end-page: 2222
  publication-title: CCS Chem.
– volume: 2
  start-page: 65
  year: 2016
  end-page: 74
  publication-title: ACS Cent. Sci.
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid Commun.
– volume: 6
  start-page: 1237
  year: 2017
  end-page: 1244
  publication-title: ACS Macro Lett.
– volume: 15
  start-page: 13721
  year: 2021
  end-page: 13731
  publication-title: ACS Nano
– volume: 52
  start-page: 7468
  year: 2019
  end-page: 7476
  publication-title: Macromolecules
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 12
  start-page: 1768
  year: 2021
  end-page: 1775
  publication-title: Polym. Chem.
– volume: 7
  start-page: 7325
  year: 2016
  end-page: 7337
  publication-title: Polym. Chem.
– volume: 55 128
  start-page: 2801 2851
  year: 2016 2016
  end-page: 2804 2854
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_7_61_1
  doi: 10.1002/anie.201709129
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.201809614
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.macromol.9b01757
– ident: e_1_2_7_63_2
  doi: 10.1002/ange.201710811
– ident: e_1_2_7_31_2
  doi: 10.1002/ange.201511159
– ident: e_1_2_7_11_2
  doi: 10.1002/ange.201806719
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.macromol.6b02651
– ident: e_1_2_7_58_1
  doi: 10.1002/marc.201900547
– ident: e_1_2_7_12_2
  doi: 10.1002/ange.201916177
– ident: e_1_2_7_62_1
  doi: 10.1021/acscentsci.8b00168
– volume: 131
  start-page: 11571
  year: 2019
  ident: e_1_2_7_22_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201904991
– ident: e_1_2_7_64_1
  doi: 10.1021/acs.macromol.9b00571
– ident: e_1_2_7_5_1
  doi: 10.1039/C6SC03732A
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.macromol.9b01689
– ident: e_1_2_7_55_1
  doi: 10.1021/ma200582q
– ident: e_1_2_7_19_1
  doi: 10.1002/advs.201700137
– ident: e_1_2_7_54_2
  doi: 10.1002/ange.201301896
– ident: e_1_2_7_61_2
  doi: 10.1002/ange.201709129
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201813434
– ident: e_1_2_7_32_1
  doi: 10.1002/marc.201800438
– ident: e_1_2_7_68_1
  doi: 10.1021/acscentsci.1c00681
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.201806719
– ident: e_1_2_7_66_2
  doi: 10.1002/ange.201912028
– ident: e_1_2_7_60_1
  doi: 10.1021/acsnano.1c05089
– ident: e_1_2_7_43_1
  doi: 10.1021/acsmacrolett.5b00225
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-019-09324-5
– ident: e_1_2_7_6_1
  doi: 10.1039/C7PY00912G
– ident: e_1_2_7_20_1
  doi: 10.1021/acsmacrolett.7b00731
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.202202033
– ident: e_1_2_7_35_1
  doi: 10.1007/s10118-017-1907-8
– volume: 134
  start-page: e202202033
  year: 2022
  ident: e_1_2_7_8_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202202033
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.macromol.9b00144
– ident: e_1_2_7_51_1
  doi: 10.1039/D1PY00046B
– ident: e_1_2_7_16_2
  doi: 10.1002/ange.201813434
– ident: e_1_2_7_36_1
  doi: 10.1002/marc.201600528
– ident: e_1_2_7_65_1
  doi: 10.1002/anie.201911758
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.1c01963
– ident: e_1_2_7_46_1
  doi: 10.1002/anie.201809370
– ident: e_1_2_7_28_1
  doi: 10.1039/C4SC03334E
– ident: e_1_2_7_34_1
  doi: 10.1002/marc.201800279
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.202109084
– ident: e_1_2_7_17_1
  doi: 10.1007/s10118-021-2647-3
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.201916177
– ident: e_1_2_7_66_1
  doi: 10.1002/anie.201912028
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.8b06013
– ident: e_1_2_7_23_1
  doi: 10.1002/cjoc.202100665
– ident: e_1_2_7_29_2
  doi: 10.1002/ange.202006385
– ident: e_1_2_7_52_1
  doi: 10.1021/acsmacrolett.6b00066
– ident: e_1_2_7_1_1
  doi: 10.1002/anie.201511454
– ident: e_1_2_7_44_1
  doi: 10.1021/ja205887v
– ident: e_1_2_7_56_1
  doi: 10.1016/j.porgcoat.2015.06.025
– ident: e_1_2_7_41_1
  doi: 10.1039/f29767201525
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.macromol.6b02643
– ident: e_1_2_7_26_1
  doi: 10.1021/acscentsci.8b00148
– ident: e_1_2_7_4_2
  doi: 10.1002/ange.201609365
– ident: e_1_2_7_7_1
  doi: 10.1021/acsnano.0c09166
– ident: e_1_2_7_54_1
  doi: 10.1002/anie.201301896
– ident: e_1_2_7_57_1
  doi: 10.1039/C6PY01797E
– ident: e_1_2_7_39_1
  doi: 10.1021/jacs.8b08648
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201904991
– ident: e_1_2_7_50_1
  doi: 10.1021/acs.biomac.6b00819
– ident: e_1_2_7_59_1
  doi: 10.1021/acsami.1c08812
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.201710811
– ident: e_1_2_7_10_2
  doi: 10.1002/ange.201809614
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.macromol.8b02081
– ident: e_1_2_7_25_1
  doi: 10.31635/ccschem.020.202000407
– ident: e_1_2_7_46_2
  doi: 10.1002/ange.201809370
– ident: e_1_2_7_33_2
  doi: 10.1002/ange.202109084
– ident: e_1_2_7_47_1
  doi: 10.1039/D1PY00995H
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.macromol.7b01629
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.9b10152
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.202006385
– ident: e_1_2_7_3_1
  doi: 10.1021/acsmacrolett.9b00146
– ident: e_1_2_7_67_1
  doi: 10.1021/acs.chemmater.9b01635
– ident: e_1_2_7_1_2
  doi: 10.1002/ange.201511454
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201511159
– ident: e_1_2_7_45_1
  doi: 10.1038/nchem.2721
– ident: e_1_2_7_65_2
  doi: 10.1002/ange.201911758
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.macromol.0c02882
– ident: e_1_2_7_48_1
  doi: 10.1002/agt2.109
– ident: e_1_2_7_2_1
  doi: 10.1021/acscentsci.5b00370
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201609365
– ident: e_1_2_7_14_1
  doi: 10.1039/D0PY00368A
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.macromol.8b00887
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-020-18460-2
SSID ssj0028806
Score 2.4875207
Snippet Worm‐like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm‐like micelles are...
Worm-like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm-like micelles are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202211792
SubjectTerms Accessibility
Assembly
Crosslinking
In Situ Crosslinking
Micelles
Polymerization
Polymerization-Induced Self-Assembly
Reproducibility
Worm-Like Micelles
Title Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by In Situ Crosslinking Polymerization‐Induced Self‐Assembly
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202211792
https://www.proquest.com/docview/2725693815
https://www.proquest.com/docview/2712855697
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUQm3bTBy3qlIeMhNRVIONXkuVoNAiQQAiKYBfZjq2OCJmKmVmkq-676Tf2S7jXeQCVUCW6ixNbTq5f58a-5xCyaxg6_9JG2DkikaUyMkNIpl4lXqQ20UHr8ORUHV6K42t5_SiKv-GH6H-44cgI8zUOcG3m-w-koRiBDf4dY0hqhpMwHthCVHTe80cxqL8JL-I8QhX6jrUxZvtPiz9dlR6g5mPAGlacg7dEd-_aHDS52VsuzJ798ReN4_98zDvypoWjdNT0n_dkxVVr5NW4U4H7QH6FfwhlTSfVt3BYgI6CxGJzqLamuioogPjAG9vdm3l6BVD4z8_f5fTG0ZNp2B2YU1PTo4peTBdLOkYztLoN9GxW1rhx1ESEQjHUE8GqLlzpIYkb07emrD-Sy4PJ1_Fh1Ao4RJZLmGmVV7YYegdOkjGWa-ldocChS1PleRZbIzMunSoULxI3VDCfpDbVAFm9EILFBV8nq9Wscp8IlSZWsVVeGlGIWNtMa0AbmoP3JLTSYkCirgFz27Kbo8hGmTe8zCxHE-e9iQfkS5__e8Pr8WzOza4_5O34nucsAaiYAdqRA7LTP4amQYPqys2WmAfWfgnZkgFhofH_UVM-Oj2a9KnPLym0QV7jNS6uTGyS1cXd0m0BalqY7TAy7gFaOhKU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKWZQNb8SUAkYCsUqbcWxPsmAxmk41QzsjRFvRXbAdW4waMhUzIxRW7NnwK_wKn8CXcK_zKEVCSEhdsHTixMn1tX2uH-cQ8lQzDP6FCdA5Ap7EItBdSMZO9hyPTU95rcPJVI6O-csTcbJGvjVnYSp-iHbCDVuG76-xgeOE9M45aygewYYAjzFkNWP1vsp9W36EqG3xYrwLVfyMsb3h0WAU1MICgYkE9ADSSZN1nQXwrrWJlHA2kxBoxLF0URIaLZJIWJnJKOvZrgQ_j02sAEo5zjkLswjee4VcRRlxpOvffd0yVjH44-pAUxQFqHvf8ESGbOfi914cB8_B7a8Q2Y9xezfI98Y61daW0-3VUm-bT78RR_5X5rtJrteIm_arJnKLrNniNtkYNEJ3d8gXP02Sl3RYvPP7IWjfq0hW-4ZLqoqMQpziqXGba3NH3wDa__H5az47tXQy8wsgC6pLOi7o4Wy5ogO0ey1NQV_N8xLXxqpDr_AYSqZgUYc2d5DEtff3Oi_vkuNLscU9sl7MC3ufUKFDGRrphOYZD5VJlAJApSIIELmSindI0HhMamoCd9QRydOKepqlWKVpW6Ud8rzNf1ZRl_wx51bjgGndhS1S1gM0nACgEx3ypL0NVYMGVYWdrzAPwBsB2Xodwry3_aWktD8dD9vU5r889JhsjI4mB-nBeLr_gFzD64glGN8i68sPK_sQQOJSP_LNkpK3l-3IPwGEzG9o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_hELBYwE4pQ269hOcuCw2u6qS-mqolT0FmzHFquGbMXuCoUTdy48Cq_CK_AkjJ2fUiSEhNQDRzvjJB6P7W_88w3AE0Wd88914IwjYGnCA9XHZGJFbFmiY-ljHe5Nxc4he3HEj9bgW3sXpuaH6BbcXM_w47Xr4Ce53TolDXU3sNG_o9SRmtHmWOWuqT6i07Z4PtnGFn5K6Xj0ergTNHEFAh1xHACEFTrvW4PYXSkdSW5NLtDPSBJhozTUiqcRNyIXUR6bvkAzT3QiEUlZxhgN8wjfewEuMoHVdDDsVUdYRbHC9X2mKApc2PuWJjKkW2f_9-w0eIptf0XIfoobX4PvrXLqky3Hm6ul2tSffuON_J-0dx2uNnibDOoOcgPWTHkTLg_bMHe34ItfJCkqMirf-dMQZOBjSNanhisiy5ygl-KJcdu8uSVvEOv_-Py1mB0bsjfz2x8LoioyKcnBbLkiQ6f2JjAF2Z8XldsZq6-8YjEXMMV96sAUFpNu5_29KqrbcHguurgD6-W8NHeBcBWKUAvLFctZKHUqJcIpGaF7yKSQrAdBazCZbujbXRSRIquJp2nmmjTrmrQHzzr5k5q45I-SG639Zc0AtshojFg4RTjHe_C4e4xN4xQqSzNfORkENxzF4h5Qb2x_-VI2mE5GXerevxR6BJf2t8fZy8l09z5ccdkOSFC2AevLDyvzABHiUj30nZLA2_O245-xS24X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greatly+Enhanced+Accessibility+and+Reproducibility+of+Worm-like+Micelles+by+In+Situ+Crosslinking+Polymerization-Induced+Self-Assembly&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Wen-Jian&rft.au=Chang%2C+Zi-Xuan&rft.au=Bai%2C+Wei&rft.au=Hong%2C+Chun-Yan&rft.date=2022-10-24&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=43&rft.spage=e202211792&rft_id=info:doi/10.1002%2Fanie.202211792&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon