Cr‐Doped CoP Nanorod Arrays as High‐Performance Hydrogen Evolution Reaction Catalysts at High Current Density

Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP na...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 28; pp. e2100832 - n/a
Main Authors Zhang, Lipeng, Zhang, Juntao, Fang, Jinjie, Wang, Xin‐Yu, Yin, Likun, Zhu, Wei, Zhuang, Zhongbin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP nanorod arrays on carbon cloth (Cr‐CoP‐NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm−2, respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm−2. The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr‐CoP‐NR/CC catalyst shows the potential to replace the costly Pt‐based HER catalysts in the water electrolyzer. Transition metal phosphides are promising catalysts for hydrogen evolution reaction (HER) but still have the gaps to the commercial noble metal catalysts. This study reports a Cr‐doping method to fabricate high‐active and high‐stability Cr‐doped CoP nanorod arrays for HER at high current density, demonstrating that charge transfer and surface Cr species contribute to the performance enhancement.
AbstractList Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP nanorod arrays on carbon cloth (Cr‐CoP‐NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm−2, respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm−2. The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr‐CoP‐NR/CC catalyst shows the potential to replace the costly Pt‐based HER catalysts in the water electrolyzer.
Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP nanorod arrays on carbon cloth (Cr‐CoP‐NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm −2 , respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm −2 . The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr‐CoP‐NR/CC catalyst shows the potential to replace the costly Pt‐based HER catalysts in the water electrolyzer.
Developing highly efficient, low-cost electrocatalysts with long-time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large-scale commercialization of hydrogen production from water electrolysis. Herein, the Cr-doped CoP nanorod arrays on carbon cloth (Cr-CoP-NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm-2 , respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm-2 . The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr-CoP-NR/CC catalyst shows the potential to replace the costly Pt-based HER catalysts in the water electrolyzer.Developing highly efficient, low-cost electrocatalysts with long-time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large-scale commercialization of hydrogen production from water electrolysis. Herein, the Cr-doped CoP nanorod arrays on carbon cloth (Cr-CoP-NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm-2 , respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm-2 . The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr-CoP-NR/CC catalyst shows the potential to replace the costly Pt-based HER catalysts in the water electrolyzer.
Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP nanorod arrays on carbon cloth (Cr‐CoP‐NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm−2, respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm−2. The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr‐CoP‐NR/CC catalyst shows the potential to replace the costly Pt‐based HER catalysts in the water electrolyzer. Transition metal phosphides are promising catalysts for hydrogen evolution reaction (HER) but still have the gaps to the commercial noble metal catalysts. This study reports a Cr‐doping method to fabricate high‐active and high‐stability Cr‐doped CoP nanorod arrays for HER at high current density, demonstrating that charge transfer and surface Cr species contribute to the performance enhancement.
Author Fang, Jinjie
Wang, Xin‐Yu
Zhu, Wei
Zhang, Lipeng
Zhuang, Zhongbin
Yin, Likun
Zhang, Juntao
Author_xml – sequence: 1
  givenname: Lipeng
  surname: Zhang
  fullname: Zhang, Lipeng
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Juntao
  surname: Zhang
  fullname: Zhang, Juntao
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Jinjie
  surname: Fang
  fullname: Fang, Jinjie
  organization: Beijing University of Chemical Technology
– sequence: 4
  givenname: Xin‐Yu
  surname: Wang
  fullname: Wang, Xin‐Yu
  organization: China Three Gorges Corporation
– sequence: 5
  givenname: Likun
  surname: Yin
  fullname: Yin, Likun
  organization: China Three Gorges Corporation
– sequence: 6
  givenname: Wei
  surname: Zhu
  fullname: Zhu, Wei
  email: zhuwei@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
– sequence: 7
  givenname: Zhongbin
  surname: Zhuang
  fullname: Zhuang, Zhongbin
  email: zhuangzb@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
BookMark eNqFkU1LAzEQhoMoqNWr54AXL61JNtlNj7J-VKgfqPclzc7qSprUJKvszZ_gb_SXmFpREMRTJvA8w8y822jdOgsI7VEyooSwwzA3ZsQISx-ZsTW0RXOaDXPJxuvfNSWbaDuER0IyynixhZ5K__76duwWUOPSXeNLZZ13NT7yXvUBq4An7f1DQq7BN87PldWAJ33t3T1YfPLsTBdbZ_ENKP1ZlCoq04eY3Pjp4rLzHmzEx2BDG_sdtNEoE2D36x2gu9OTu3IynF6dnZdH06HOBGFDXmupm4JwXWQiFzzTWs8ISCpzJeUsF1STJq8bmDHCi5oIMZN8TIAJBYWuswE6WLVdePfUQYjVvA0ajFEWXBcqJjgRlGWp8wDt_0IfXedtGi5RgnKZbicSxVeU9i4ED02l26iWO0evWlNRUi1jqJYxVN8xJG30S1v4dq58_7cwXgkvrYH-H7q6vZhOf9wPJlyfQQ
CitedBy_id crossref_primary_10_1002_smll_202307294
crossref_primary_10_1002_smll_202308068
crossref_primary_10_1039_D3DT03636G
crossref_primary_10_1149_1945_7111_ad477f
crossref_primary_10_1016_j_jallcom_2023_170847
crossref_primary_10_1007_s12274_023_5992_4
crossref_primary_10_1002_smll_202106554
crossref_primary_10_1007_s12274_022_4771_y
crossref_primary_10_1002_advs_202200307
crossref_primary_10_1021_acssuschemeng_4c00479
crossref_primary_10_1016_j_colcom_2021_100520
crossref_primary_10_1016_j_apcatb_2023_123195
crossref_primary_10_1007_s42864_024_00263_3
crossref_primary_10_1021_acs_inorgchem_1c03842
crossref_primary_10_1016_j_ijhydene_2024_01_224
crossref_primary_10_1016_j_scib_2022_10_001
crossref_primary_10_1016_j_fuel_2024_132782
crossref_primary_10_1039_D4SE01214C
crossref_primary_10_1002_tcr_202300088
crossref_primary_10_1021_acsami_1c15245
crossref_primary_10_3390_catal13060941
crossref_primary_10_1002_asia_202300534
crossref_primary_10_1016_j_cis_2022_102811
crossref_primary_10_1016_j_cej_2022_138628
crossref_primary_10_1002_cey2_485
crossref_primary_10_1039_D3QI02573J
crossref_primary_10_1016_j_physb_2025_417148
crossref_primary_10_1021_acsmaterialslett_4c00906
crossref_primary_10_1016_j_jcis_2022_07_142
crossref_primary_10_1021_acsaem_2c01489
crossref_primary_10_1016_j_jcis_2023_05_184
crossref_primary_10_1016_j_jece_2025_115544
crossref_primary_10_1021_acs_est_2c09606
crossref_primary_10_1002_adma_202108133
crossref_primary_10_1016_j_ijhydene_2023_03_085
crossref_primary_10_1039_D2QM00931E
crossref_primary_10_1016_j_cej_2022_135884
crossref_primary_10_3866_PKU_WHXB202308024
crossref_primary_10_1002_adfm_202409365
crossref_primary_10_1002_celc_202300426
crossref_primary_10_1021_acscatal_4c02062
crossref_primary_10_1016_j_mattod_2023_08_024
crossref_primary_10_1016_j_cej_2023_143140
crossref_primary_10_1002_eem2_12834
crossref_primary_10_1039_D3GC02398B
crossref_primary_10_1002_chem_202301252
crossref_primary_10_1039_D2QI00753C
crossref_primary_10_1016_j_jallcom_2022_167229
crossref_primary_10_1002_cplu_202300514
crossref_primary_10_1039_D3DT03447J
crossref_primary_10_1016_j_cej_2022_139175
crossref_primary_10_1016_j_ijhydene_2023_11_036
crossref_primary_10_1039_D3QM00516J
crossref_primary_10_1002_advs_202306678
crossref_primary_10_1021_acsami_2c18799
crossref_primary_10_1002_jctb_7655
crossref_primary_10_1016_j_ijhydene_2021_10_117
crossref_primary_10_1016_j_cej_2022_141056
crossref_primary_10_1002_cssc_202200827
Cites_doi 10.1002/anie.201402646
10.1021/ja0540019
10.1002/adma.201800140
10.1039/C7SC04849A
10.1002/aenm.201703189
10.1002/smll.201800340
10.1126/science.1258307
10.1039/c3cc44076a
10.1038/nmat1752
10.1021/ja511572q
10.1021/la500234r
10.1002/adfm.201501390
10.1007/s12274-016-1112-z
10.1021/jacs.7b01530
10.1007/s12274-016-1360-y
10.1021/acs.accounts.8b00070
10.1002/aenm.201700020
10.1007/s12678-020-00634-7
10.1002/adma.201304759
10.1021/ja503372r
10.1021/ic051004d
10.1039/C5EE02179K
10.1002/aenm.201902449
10.1021/cm501273s
10.1126/science.176.4041.1323
10.1016/j.ijhydene.2019.07.009
10.1039/c1ee01488a
10.1038/nmat4481
10.1039/C6TA00575F
10.1002/smll.201902613
10.1021/acs.nanolett.5b03446
10.1021/jacs.7b06337
10.1021/ja404523s
10.1016/j.ijhydene.2020.04.242
10.1073/pnas.0810041106
10.1007/s40843-018-9360-1
10.1002/anie.201408222
10.1039/C7NR00740J
10.1002/smll.201602873
10.1039/C4CS00448E
10.1002/adma.201900178
10.1039/C8CY01105B
10.1016/S0013-4686(02)00329-8
10.1021/nl404108a
10.1002/smll.201904681
10.1002/anie.201606586
10.1007/s12274-020-2881-y
10.1021/acs.inorgchem.8b02359
10.1038/nchem.412
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202100832
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202100832
SMLL202100832
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21971008
– fundername: Fundamental Research Funds for the Central Universities
  funderid: buctrc201823
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3502-4dc8cf704c7356543cccb0e8186a88b651c0f6dfeb2047d055b8490e25ae7cd3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 06:44:11 EDT 2025
Sun Jul 20 06:41:51 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
Tue Jul 01 02:11:04 EDT 2025
Wed Jan 22 16:57:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-4dc8cf704c7356543cccb0e8186a88b651c0f6dfeb2047d055b8490e25ae7cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2551486135
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2540512354
proquest_journals_2551486135
crossref_citationtrail_10_1002_smll_202100832
crossref_primary_10_1002_smll_202100832
wiley_primary_10_1002_smll_202100832_SMLL202100832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2017; 7
2019; 9
2013; 49
2019; 31
2019; 15
2014; 26
2006; 5
2020; 13
2008; 105
2011; 4
2015; 8
1972; 176
2016; 15
2017; 9
2014; 136
2005; 44
2017; 139
2016; 55
2016; 4
2018; 9
2002; 47
2015; 25
2018; 8
2019; 62
2021; 12
2015; 137
2019; 44
2017; 10
2015; 44
2005; 127
2017; 13
2014; 14
2013; 135
2018; 30
2018; 51
2020; 45
2014; 30
2009; 1
2014; 345
2016; 9
2018; 14
2018; 57
2014; 53
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 1010
  year: 2017
  publication-title: Nano Res.
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 44
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3573
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 2469
  year: 2020
  publication-title: Nano Res.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 8
  start-page: 3022
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 2683
  year: 2014
  publication-title: Adv. Mater.
– volume: 47
  start-page: 3571
  year: 2002
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 3899
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 8988
  year: 2005
  publication-title: Inorg. Chem.
– volume: 8
  start-page: 4407
  year: 2018
  publication-title: Catal. Sci. Technol.
– volume: 26
  start-page: 4326
  year: 2014
  publication-title: Chem. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 139
  start-page: 6669
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1228
  year: 2014
  publication-title: Nano Lett.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 197
  year: 2016
  publication-title: Nat. Mater.
– volume: 176
  start-page: 1323
  year: 1972
  publication-title: Science
– volume: 345
  start-page: 1593
  year: 2014
  publication-title: Science
– volume: 51
  start-page: 1590
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 62
  start-page: 690
  year: 2019
  publication-title: Sci. China Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1970
  year: 2018
  publication-title: Chem. Sci.
– volume: 1
  start-page: 711
  year: 2009
  publication-title: Nat. Chem.
– volume: 57
  year: 2018
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 4745
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 5427
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 137
  start-page: 1587
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 7616
  year: 2015
  publication-title: Nano Lett.
– volume: 9
  start-page: 2251
  year: 2016
  publication-title: Nano Res.
– volume: 105
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 4793
  year: 2017
  publication-title: Nanoscale
– volume: 49
  start-page: 8896
  year: 2013
  publication-title: Chem. Commun.
– volume: 30
  year: 2014
  publication-title: Langmuir
– volume: 45
  year: 2020
  publication-title: Int. J. Hydrogen Energy
– volume: 136
  start-page: 7587
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 12
  start-page: 104
  year: 2021
  publication-title: Electrocatalysis
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.201402646
– ident: e_1_2_8_44_1
  doi: 10.1021/ja0540019
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201800140
– ident: e_1_2_8_31_1
  doi: 10.1039/C7SC04849A
– ident: e_1_2_8_46_1
  doi: 10.1002/aenm.201703189
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.201800340
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1258307
– ident: e_1_2_8_8_1
  doi: 10.1039/c3cc44076a
– ident: e_1_2_8_21_1
  doi: 10.1038/nmat1752
– ident: e_1_2_8_23_1
  doi: 10.1021/ja511572q
– ident: e_1_2_8_33_1
  doi: 10.1021/la500234r
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201501390
– ident: e_1_2_8_20_1
  doi: 10.1007/s12274-016-1112-z
– ident: e_1_2_8_3_1
  doi: 10.1021/jacs.7b01530
– ident: e_1_2_8_14_1
  doi: 10.1007/s12274-016-1360-y
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.accounts.8b00070
– ident: e_1_2_8_27_1
  doi: 10.1002/aenm.201700020
– ident: e_1_2_8_37_1
  doi: 10.1007/s12678-020-00634-7
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201304759
– ident: e_1_2_8_38_1
  doi: 10.1021/ja503372r
– ident: e_1_2_8_43_1
  doi: 10.1021/ic051004d
– ident: e_1_2_8_22_1
  doi: 10.1039/C5EE02179K
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.201902449
– ident: e_1_2_8_39_1
  doi: 10.1021/cm501273s
– ident: e_1_2_8_1_1
  doi: 10.1126/science.176.4041.1323
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ijhydene.2019.07.009
– ident: e_1_2_8_4_1
  doi: 10.1039/c1ee01488a
– ident: e_1_2_8_6_1
  doi: 10.1038/nmat4481
– ident: e_1_2_8_40_1
  doi: 10.1039/C6TA00575F
– ident: e_1_2_8_26_1
  doi: 10.1002/smll.201902613
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.nanolett.5b03446
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.7b06337
– ident: e_1_2_8_7_1
  doi: 10.1021/ja404523s
– ident: e_1_2_8_35_1
  doi: 10.1016/j.ijhydene.2020.04.242
– ident: e_1_2_8_48_1
  doi: 10.1073/pnas.0810041106
– ident: e_1_2_8_12_1
  doi: 10.1007/s40843-018-9360-1
– ident: e_1_2_8_24_1
  doi: 10.1002/anie.201408222
– ident: e_1_2_8_30_1
  doi: 10.1039/C7NR00740J
– ident: e_1_2_8_45_1
  doi: 10.1002/smll.201602873
– ident: e_1_2_8_9_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201900178
– ident: e_1_2_8_29_1
  doi: 10.1039/C8CY01105B
– ident: e_1_2_8_41_1
  doi: 10.1016/S0013-4686(02)00329-8
– ident: e_1_2_8_25_1
  doi: 10.1021/nl404108a
– ident: e_1_2_8_32_1
  doi: 10.1002/smll.201904681
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201606586
– ident: e_1_2_8_18_1
  doi: 10.1007/s12274-020-2881-y
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.inorgchem.8b02359
– ident: e_1_2_8_5_1
  doi: 10.1038/nchem.412
SSID ssj0031247
Score 2.6093583
Snippet Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction...
Developing highly efficient, low-cost electrocatalysts with long-time stability at high current density working conditions for hydrogen evolution reaction...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2100832
SubjectTerms antioxidation
Arrays
Catalysts
Cloth
Commercialization
Cr doping
Current density
Electrocatalysts
Electrolysis
High current
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen production
Hydrogen-based energy
Nanorods
Nanotechnology
on‐site synthesis
Oxidation
phosphide nanorod arrays
Title Cr‐Doped CoP Nanorod Arrays as High‐Performance Hydrogen Evolution Reaction Catalysts at High Current Density
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202100832
https://www.proquest.com/docview/2551486135
https://www.proquest.com/docview/2540512354
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtVVhA8xW6T3SY5Sh8UqVJqBW9hX7lYk9qkQj35E_yN_hJ3kjStggh6S8gMeew8vuzOfIvQuas1ZxD9GppTi2pu4iBnodUIiZJK-IIzaE6-uW327un1A3tY6eLP-SHKCTfwjCxeg4NzkdSXpKHJ0xiWDmxgp3EgCEPBFqCiYckf5Zjkle2uYnKWBcRbC9ZGYte_qn_NSkuouQpYs4zT3UJ88ax5ocnj5SwVl_L1G43jf15mG20WcBRf5fazg9Z0tIs2VkgK99Bza_rx9t6OJ1rhVjzAJh7HJuoanSmfJ5gnGGpFjMhg2YOAe3M1jY1t4s5LYdt4qPMeCtyCGaN5khrdNNPFBUkUbkM1fTrfR6NuZ9TqWcVGDZZ0mImoVElPhi6h0nUYNKtKKQXRQJbHPU80WUOSsKlC8xdPqKsIY8KjPtE249qVyjlAlSiO9CHCvjBwSttCEMapFJz7DpM-V1SL0GW2W0XWYpwCWZCYw14a4yCnX7YD-JJB-SWr6KKUn-T0HT9K1hbDHhRunAQ24EnPWA-rorPysnFAWFXhkY5nIGMwL3Qc0yqyszH-5U7B3U2_X54d_UXpGK3DcV42XEOVdDrTJwYcpeI0c4BPSKQKQw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hemh7aCm0IpDCIlXiZFjsXWwfqyQo0AQhmkq9WfvyBYhp7CCFEz-B39hf0hm_ApWqSu3R9oz8mKd3Z74B-BQ6pyR5vyOnhCecQj-oZOodpdwaq2OtJDUnj8-Ph9_E2XfZVBNSL0yFD9EuuJFllP6aDJwWpA-XqKH5zTXtHfgETxOgF35BY70JPr9_2SJIBRi-yvkqGLU8gt5qcBu5f_ic_3lcWiabT1PWMuacvAXdPG1VanJ1MC_0gbn_Dcjxv15nDd7UGSn7XKnQO1hx03V4_QSncAN-9GY_Hx772a2zrJddMHTJGTpe5JmpRc5UzqhcBEkulm0IbLiwswzVkw3uavVml65qo2A9WjRa5AXyFiUvq3GiWJ8K6ovFe5icDCa9oVfPavBMINGpCmsik4ZcmDCQ1K9qjNHcEV6eiiKNkjE8PbYp_shzEVoupY5EzJ0vlQuNDT7A6jSbuk1gscaMyvlac6mE0UrFgTSxssLpNJR-2AGvEVRiahxzGqdxnVQIzH5CXzJpv2QH9lv62wrB44-U3UbuSW3JeeJTShmh-sgO7LWX0QZpY0VNXTYnGkx7qelYdMAvhfyXOyVfx6NRe7T1L0y78HI4GY-S0en5l214ReerKuIurBazufuIuVKhd0pr-AXjdA5f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VVKrg0AcPEUrbRULqybCxd2P7WCVEaQkooiBxs_blCzQOsVMpPfUn9Df2l3TGdpyAhJDo0faMbO_Oa3dnvgE4DJ1Tkqxf2ynhCafQDiqZeu2UW2N1rJWk4uSz887gSny7ltcrVfwVPkSz4UaaUdprUvCJTY-XoKH5j1s6OvAJnSZAI_xSdHhMzRt6Fw2AVIDeq2yvgk7LI-StBWwj94_v8993S8tYczViLV1O_w2oxcdWmSY3R7NCH5lfD3Ac_-dv3sLrOh5lXyoBegcv3HgTNlZQCrfgrjv9-_tPL5s4y7rZiKFBztDsIs9UzXOmckbJIkgyWhYhsMHcTjMUTnbysxZuduGqIgrWpS2jeV4gb1HysholivUonb6Yb8Nl_-SyO_DqTg2eCSSaVGFNZNKQCxMGkqpVjTGaO0LLU1GkO7JteNqxKS7juQgtl1JHIubOl8qFxgY7sDbOxm4XWKwxnnK-1lwqYbRScSBNrKxwOg2lH7bAW8xTYmoUc2qmcZtU-Mt-QiOZNCPZgs8N_aTC73iUcn8x7Umtx3niU0AZofTIFhw0j1ED6VhFjV02IxoMeqnkWLTAL-f4iTcl38-Gw-Zq7zlMn-DVqNdPhl_PT9_DOt2uUoj3Ya2YztwHDJQK_bHUhX-vuw0O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cr-Doped+CoP+Nanorod+Arrays+as+High-Performance+Hydrogen+Evolution+Reaction+Catalysts+at+High+Current+Density&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Lipeng&rft.au=Zhang%2C+Juntao&rft.au=Fang%2C+Jinjie&rft.au=Wang%2C+Xin-Yu&rft.date=2021-07-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=17&rft.issue=28&rft.spage=e2100832&rft_id=info:doi/10.1002%2Fsmll.202100832&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon