Cr‐Doped CoP Nanorod Arrays as High‐Performance Hydrogen Evolution Reaction Catalysts at High Current Density
Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP na...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 28; pp. e2100832 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP nanorod arrays on carbon cloth (Cr‐CoP‐NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm−2, respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm−2. The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr‐CoP‐NR/CC catalyst shows the potential to replace the costly Pt‐based HER catalysts in the water electrolyzer.
Transition metal phosphides are promising catalysts for hydrogen evolution reaction (HER) but still have the gaps to the commercial noble metal catalysts. This study reports a Cr‐doping method to fabricate high‐active and high‐stability Cr‐doped CoP nanorod arrays for HER at high current density, demonstrating that charge transfer and surface Cr species contribute to the performance enhancement. |
---|---|
AbstractList | Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP nanorod arrays on carbon cloth (Cr‐CoP‐NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm−2, respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm−2. The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr‐CoP‐NR/CC catalyst shows the potential to replace the costly Pt‐based HER catalysts in the water electrolyzer. Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP nanorod arrays on carbon cloth (Cr‐CoP‐NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm −2 , respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm −2 . The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr‐CoP‐NR/CC catalyst shows the potential to replace the costly Pt‐based HER catalysts in the water electrolyzer. Developing highly efficient, low-cost electrocatalysts with long-time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large-scale commercialization of hydrogen production from water electrolysis. Herein, the Cr-doped CoP nanorod arrays on carbon cloth (Cr-CoP-NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm-2 , respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm-2 . The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr-CoP-NR/CC catalyst shows the potential to replace the costly Pt-based HER catalysts in the water electrolyzer.Developing highly efficient, low-cost electrocatalysts with long-time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large-scale commercialization of hydrogen production from water electrolysis. Herein, the Cr-doped CoP nanorod arrays on carbon cloth (Cr-CoP-NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm-2 , respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm-2 . The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr-CoP-NR/CC catalyst shows the potential to replace the costly Pt-based HER catalysts in the water electrolyzer. Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large‐scale commercialization of hydrogen production from water electrolysis. Herein, the Cr‐doped CoP nanorod arrays on carbon cloth (Cr‐CoP‐NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm−2, respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm−2. The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr‐CoP‐NR/CC catalyst shows the potential to replace the costly Pt‐based HER catalysts in the water electrolyzer. Transition metal phosphides are promising catalysts for hydrogen evolution reaction (HER) but still have the gaps to the commercial noble metal catalysts. This study reports a Cr‐doping method to fabricate high‐active and high‐stability Cr‐doped CoP nanorod arrays for HER at high current density, demonstrating that charge transfer and surface Cr species contribute to the performance enhancement. |
Author | Fang, Jinjie Wang, Xin‐Yu Zhu, Wei Zhang, Lipeng Zhuang, Zhongbin Yin, Likun Zhang, Juntao |
Author_xml | – sequence: 1 givenname: Lipeng surname: Zhang fullname: Zhang, Lipeng organization: Beijing University of Chemical Technology – sequence: 2 givenname: Juntao surname: Zhang fullname: Zhang, Juntao organization: Beijing University of Chemical Technology – sequence: 3 givenname: Jinjie surname: Fang fullname: Fang, Jinjie organization: Beijing University of Chemical Technology – sequence: 4 givenname: Xin‐Yu surname: Wang fullname: Wang, Xin‐Yu organization: China Three Gorges Corporation – sequence: 5 givenname: Likun surname: Yin fullname: Yin, Likun organization: China Three Gorges Corporation – sequence: 6 givenname: Wei surname: Zhu fullname: Zhu, Wei email: zhuwei@mail.buct.edu.cn organization: Beijing University of Chemical Technology – sequence: 7 givenname: Zhongbin surname: Zhuang fullname: Zhuang, Zhongbin email: zhuangzb@mail.buct.edu.cn organization: Beijing University of Chemical Technology |
BookMark | eNqFkU1LAzEQhoMoqNWr54AXL61JNtlNj7J-VKgfqPclzc7qSprUJKvszZ_gb_SXmFpREMRTJvA8w8y822jdOgsI7VEyooSwwzA3ZsQISx-ZsTW0RXOaDXPJxuvfNSWbaDuER0IyynixhZ5K__76duwWUOPSXeNLZZ13NT7yXvUBq4An7f1DQq7BN87PldWAJ33t3T1YfPLsTBdbZ_ENKP1ZlCoq04eY3Pjp4rLzHmzEx2BDG_sdtNEoE2D36x2gu9OTu3IynF6dnZdH06HOBGFDXmupm4JwXWQiFzzTWs8ISCpzJeUsF1STJq8bmDHCi5oIMZN8TIAJBYWuswE6WLVdePfUQYjVvA0ajFEWXBcqJjgRlGWp8wDt_0IfXedtGi5RgnKZbicSxVeU9i4ED02l26iWO0evWlNRUi1jqJYxVN8xJG30S1v4dq58_7cwXgkvrYH-H7q6vZhOf9wPJlyfQQ |
CitedBy_id | crossref_primary_10_1002_smll_202307294 crossref_primary_10_1002_smll_202308068 crossref_primary_10_1039_D3DT03636G crossref_primary_10_1149_1945_7111_ad477f crossref_primary_10_1016_j_jallcom_2023_170847 crossref_primary_10_1007_s12274_023_5992_4 crossref_primary_10_1002_smll_202106554 crossref_primary_10_1007_s12274_022_4771_y crossref_primary_10_1002_advs_202200307 crossref_primary_10_1021_acssuschemeng_4c00479 crossref_primary_10_1016_j_colcom_2021_100520 crossref_primary_10_1016_j_apcatb_2023_123195 crossref_primary_10_1007_s42864_024_00263_3 crossref_primary_10_1021_acs_inorgchem_1c03842 crossref_primary_10_1016_j_ijhydene_2024_01_224 crossref_primary_10_1016_j_scib_2022_10_001 crossref_primary_10_1016_j_fuel_2024_132782 crossref_primary_10_1039_D4SE01214C crossref_primary_10_1002_tcr_202300088 crossref_primary_10_1021_acsami_1c15245 crossref_primary_10_3390_catal13060941 crossref_primary_10_1002_asia_202300534 crossref_primary_10_1016_j_cis_2022_102811 crossref_primary_10_1016_j_cej_2022_138628 crossref_primary_10_1002_cey2_485 crossref_primary_10_1039_D3QI02573J crossref_primary_10_1016_j_physb_2025_417148 crossref_primary_10_1021_acsmaterialslett_4c00906 crossref_primary_10_1016_j_jcis_2022_07_142 crossref_primary_10_1021_acsaem_2c01489 crossref_primary_10_1016_j_jcis_2023_05_184 crossref_primary_10_1016_j_jece_2025_115544 crossref_primary_10_1021_acs_est_2c09606 crossref_primary_10_1002_adma_202108133 crossref_primary_10_1016_j_ijhydene_2023_03_085 crossref_primary_10_1039_D2QM00931E crossref_primary_10_1016_j_cej_2022_135884 crossref_primary_10_3866_PKU_WHXB202308024 crossref_primary_10_1002_adfm_202409365 crossref_primary_10_1002_celc_202300426 crossref_primary_10_1021_acscatal_4c02062 crossref_primary_10_1016_j_mattod_2023_08_024 crossref_primary_10_1016_j_cej_2023_143140 crossref_primary_10_1002_eem2_12834 crossref_primary_10_1039_D3GC02398B crossref_primary_10_1002_chem_202301252 crossref_primary_10_1039_D2QI00753C crossref_primary_10_1016_j_jallcom_2022_167229 crossref_primary_10_1002_cplu_202300514 crossref_primary_10_1039_D3DT03447J crossref_primary_10_1016_j_cej_2022_139175 crossref_primary_10_1016_j_ijhydene_2023_11_036 crossref_primary_10_1039_D3QM00516J crossref_primary_10_1002_advs_202306678 crossref_primary_10_1021_acsami_2c18799 crossref_primary_10_1002_jctb_7655 crossref_primary_10_1016_j_ijhydene_2021_10_117 crossref_primary_10_1016_j_cej_2022_141056 crossref_primary_10_1002_cssc_202200827 |
Cites_doi | 10.1002/anie.201402646 10.1021/ja0540019 10.1002/adma.201800140 10.1039/C7SC04849A 10.1002/aenm.201703189 10.1002/smll.201800340 10.1126/science.1258307 10.1039/c3cc44076a 10.1038/nmat1752 10.1021/ja511572q 10.1021/la500234r 10.1002/adfm.201501390 10.1007/s12274-016-1112-z 10.1021/jacs.7b01530 10.1007/s12274-016-1360-y 10.1021/acs.accounts.8b00070 10.1002/aenm.201700020 10.1007/s12678-020-00634-7 10.1002/adma.201304759 10.1021/ja503372r 10.1021/ic051004d 10.1039/C5EE02179K 10.1002/aenm.201902449 10.1021/cm501273s 10.1126/science.176.4041.1323 10.1016/j.ijhydene.2019.07.009 10.1039/c1ee01488a 10.1038/nmat4481 10.1039/C6TA00575F 10.1002/smll.201902613 10.1021/acs.nanolett.5b03446 10.1021/jacs.7b06337 10.1021/ja404523s 10.1016/j.ijhydene.2020.04.242 10.1073/pnas.0810041106 10.1007/s40843-018-9360-1 10.1002/anie.201408222 10.1039/C7NR00740J 10.1002/smll.201602873 10.1039/C4CS00448E 10.1002/adma.201900178 10.1039/C8CY01105B 10.1016/S0013-4686(02)00329-8 10.1021/nl404108a 10.1002/smll.201904681 10.1002/anie.201606586 10.1007/s12274-020-2881-y 10.1021/acs.inorgchem.8b02359 10.1038/nchem.412 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202100832 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202100832 SMLL202100832 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21971008 – fundername: Fundamental Research Funds for the Central Universities funderid: buctrc201823 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3502-4dc8cf704c7356543cccb0e8186a88b651c0f6dfeb2047d055b8490e25ae7cd3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 06:44:11 EDT 2025 Sun Jul 20 06:41:51 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Tue Jul 01 02:11:04 EDT 2025 Wed Jan 22 16:57:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-4dc8cf704c7356543cccb0e8186a88b651c0f6dfeb2047d055b8490e25ae7cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2551486135 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2540512354 proquest_journals_2551486135 crossref_citationtrail_10_1002_smll_202100832 crossref_primary_10_1002_smll_202100832 wiley_primary_10_1002_smll_202100832_SMLL202100832 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2017; 7 2019; 9 2013; 49 2019; 31 2019; 15 2014; 26 2006; 5 2020; 13 2008; 105 2011; 4 2015; 8 1972; 176 2016; 15 2017; 9 2014; 136 2005; 44 2017; 139 2016; 55 2016; 4 2018; 9 2002; 47 2015; 25 2018; 8 2019; 62 2021; 12 2015; 137 2019; 44 2017; 10 2015; 44 2005; 127 2017; 13 2014; 14 2013; 135 2018; 30 2018; 51 2020; 45 2014; 30 2009; 1 2014; 345 2016; 9 2018; 14 2018; 57 2014; 53 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 1010 year: 2017 publication-title: Nano Res. – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 44 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3573 year: 2011 publication-title: Energy Environ. Sci. – volume: 13 start-page: 2469 year: 2020 publication-title: Nano Res. – volume: 14 year: 2018 publication-title: Small – volume: 8 start-page: 3022 year: 2015 publication-title: Energy Environ. Sci. – volume: 26 start-page: 2683 year: 2014 publication-title: Adv. Mater. – volume: 47 start-page: 3571 year: 2002 publication-title: Electrochim. Acta – volume: 25 start-page: 3899 year: 2015 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 8988 year: 2005 publication-title: Inorg. Chem. – volume: 8 start-page: 4407 year: 2018 publication-title: Catal. Sci. Technol. – volume: 26 start-page: 4326 year: 2014 publication-title: Chem. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 139 start-page: 6669 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 14 start-page: 1228 year: 2014 publication-title: Nano Lett. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 15 start-page: 197 year: 2016 publication-title: Nat. Mater. – volume: 176 start-page: 1323 year: 1972 publication-title: Science – volume: 345 start-page: 1593 year: 2014 publication-title: Science – volume: 51 start-page: 1590 year: 2018 publication-title: Acc. Chem. Res. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 62 start-page: 690 year: 2019 publication-title: Sci. China Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1970 year: 2018 publication-title: Chem. Sci. – volume: 1 start-page: 711 year: 2009 publication-title: Nat. Chem. – volume: 57 year: 2018 publication-title: Inorg. Chem. – volume: 4 start-page: 4745 year: 2016 publication-title: J. Mater. Chem. A – volume: 53 start-page: 5427 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 137 start-page: 1587 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 7616 year: 2015 publication-title: Nano Lett. – volume: 9 start-page: 2251 year: 2016 publication-title: Nano Res. – volume: 105 year: 2008 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 4793 year: 2017 publication-title: Nanoscale – volume: 49 start-page: 8896 year: 2013 publication-title: Chem. Commun. – volume: 30 year: 2014 publication-title: Langmuir – volume: 45 year: 2020 publication-title: Int. J. Hydrogen Energy – volume: 136 start-page: 7587 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2017 publication-title: Small – volume: 12 start-page: 104 year: 2021 publication-title: Electrocatalysis – ident: e_1_2_8_15_1 doi: 10.1002/anie.201402646 – ident: e_1_2_8_44_1 doi: 10.1021/ja0540019 – ident: e_1_2_8_49_1 doi: 10.1002/adma.201800140 – ident: e_1_2_8_31_1 doi: 10.1039/C7SC04849A – ident: e_1_2_8_46_1 doi: 10.1002/aenm.201703189 – ident: e_1_2_8_10_1 doi: 10.1002/smll.201800340 – ident: e_1_2_8_2_1 doi: 10.1126/science.1258307 – ident: e_1_2_8_8_1 doi: 10.1039/c3cc44076a – ident: e_1_2_8_21_1 doi: 10.1038/nmat1752 – ident: e_1_2_8_23_1 doi: 10.1021/ja511572q – ident: e_1_2_8_33_1 doi: 10.1021/la500234r – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201501390 – ident: e_1_2_8_20_1 doi: 10.1007/s12274-016-1112-z – ident: e_1_2_8_3_1 doi: 10.1021/jacs.7b01530 – ident: e_1_2_8_14_1 doi: 10.1007/s12274-016-1360-y – ident: e_1_2_8_34_1 doi: 10.1021/acs.accounts.8b00070 – ident: e_1_2_8_27_1 doi: 10.1002/aenm.201700020 – ident: e_1_2_8_37_1 doi: 10.1007/s12678-020-00634-7 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201304759 – ident: e_1_2_8_38_1 doi: 10.1021/ja503372r – ident: e_1_2_8_43_1 doi: 10.1021/ic051004d – ident: e_1_2_8_22_1 doi: 10.1039/C5EE02179K – ident: e_1_2_8_36_1 doi: 10.1002/aenm.201902449 – ident: e_1_2_8_39_1 doi: 10.1021/cm501273s – ident: e_1_2_8_1_1 doi: 10.1126/science.176.4041.1323 – ident: e_1_2_8_28_1 doi: 10.1016/j.ijhydene.2019.07.009 – ident: e_1_2_8_4_1 doi: 10.1039/c1ee01488a – ident: e_1_2_8_6_1 doi: 10.1038/nmat4481 – ident: e_1_2_8_40_1 doi: 10.1039/C6TA00575F – ident: e_1_2_8_26_1 doi: 10.1002/smll.201902613 – ident: e_1_2_8_17_1 doi: 10.1021/acs.nanolett.5b03446 – ident: e_1_2_8_42_1 doi: 10.1021/jacs.7b06337 – ident: e_1_2_8_7_1 doi: 10.1021/ja404523s – ident: e_1_2_8_35_1 doi: 10.1016/j.ijhydene.2020.04.242 – ident: e_1_2_8_48_1 doi: 10.1073/pnas.0810041106 – ident: e_1_2_8_12_1 doi: 10.1007/s40843-018-9360-1 – ident: e_1_2_8_24_1 doi: 10.1002/anie.201408222 – ident: e_1_2_8_30_1 doi: 10.1039/C7NR00740J – ident: e_1_2_8_45_1 doi: 10.1002/smll.201602873 – ident: e_1_2_8_9_1 doi: 10.1039/C4CS00448E – ident: e_1_2_8_47_1 doi: 10.1002/adma.201900178 – ident: e_1_2_8_29_1 doi: 10.1039/C8CY01105B – ident: e_1_2_8_41_1 doi: 10.1016/S0013-4686(02)00329-8 – ident: e_1_2_8_25_1 doi: 10.1021/nl404108a – ident: e_1_2_8_32_1 doi: 10.1002/smll.201904681 – ident: e_1_2_8_13_1 doi: 10.1002/anie.201606586 – ident: e_1_2_8_18_1 doi: 10.1007/s12274-020-2881-y – ident: e_1_2_8_11_1 doi: 10.1021/acs.inorgchem.8b02359 – ident: e_1_2_8_5_1 doi: 10.1038/nchem.412 |
SSID | ssj0031247 |
Score | 2.6093583 |
Snippet | Developing highly efficient, low‐cost electrocatalysts with long‐time stability at high current density working conditions for hydrogen evolution reaction... Developing highly efficient, low-cost electrocatalysts with long-time stability at high current density working conditions for hydrogen evolution reaction... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2100832 |
SubjectTerms | antioxidation Arrays Catalysts Cloth Commercialization Cr doping Current density Electrocatalysts Electrolysis High current Hydrogen hydrogen evolution reaction Hydrogen evolution reactions Hydrogen production Hydrogen-based energy Nanorods Nanotechnology on‐site synthesis Oxidation phosphide nanorod arrays |
Title | Cr‐Doped CoP Nanorod Arrays as High‐Performance Hydrogen Evolution Reaction Catalysts at High Current Density |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202100832 https://www.proquest.com/docview/2551486135 https://www.proquest.com/docview/2540512354 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtVVhA8xW6T3SY5Sh8UqVJqBW9hX7lYk9qkQj35E_yN_hJ3kjStggh6S8gMeew8vuzOfIvQuas1ZxD9GppTi2pu4iBnodUIiZJK-IIzaE6-uW327un1A3tY6eLP-SHKCTfwjCxeg4NzkdSXpKHJ0xiWDmxgp3EgCEPBFqCiYckf5Zjkle2uYnKWBcRbC9ZGYte_qn_NSkuouQpYs4zT3UJ88ax5ocnj5SwVl_L1G43jf15mG20WcBRf5fazg9Z0tIs2VkgK99Bza_rx9t6OJ1rhVjzAJh7HJuoanSmfJ5gnGGpFjMhg2YOAe3M1jY1t4s5LYdt4qPMeCtyCGaN5khrdNNPFBUkUbkM1fTrfR6NuZ9TqWcVGDZZ0mImoVElPhi6h0nUYNKtKKQXRQJbHPU80WUOSsKlC8xdPqKsIY8KjPtE249qVyjlAlSiO9CHCvjBwSttCEMapFJz7DpM-V1SL0GW2W0XWYpwCWZCYw14a4yCnX7YD-JJB-SWr6KKUn-T0HT9K1hbDHhRunAQ24EnPWA-rorPysnFAWFXhkY5nIGMwL3Qc0yqyszH-5U7B3U2_X54d_UXpGK3DcV42XEOVdDrTJwYcpeI0c4BPSKQKQw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hemh7aCm0IpDCIlXiZFjsXWwfqyQo0AQhmkq9WfvyBYhp7CCFEz-B39hf0hm_ApWqSu3R9oz8mKd3Z74B-BQ6pyR5vyOnhCecQj-oZOodpdwaq2OtJDUnj8-Ph9_E2XfZVBNSL0yFD9EuuJFllP6aDJwWpA-XqKH5zTXtHfgETxOgF35BY70JPr9_2SJIBRi-yvkqGLU8gt5qcBu5f_ic_3lcWiabT1PWMuacvAXdPG1VanJ1MC_0gbn_Dcjxv15nDd7UGSn7XKnQO1hx03V4_QSncAN-9GY_Hx772a2zrJddMHTJGTpe5JmpRc5UzqhcBEkulm0IbLiwswzVkw3uavVml65qo2A9WjRa5AXyFiUvq3GiWJ8K6ovFe5icDCa9oVfPavBMINGpCmsik4ZcmDCQ1K9qjNHcEV6eiiKNkjE8PbYp_shzEVoupY5EzJ0vlQuNDT7A6jSbuk1gscaMyvlac6mE0UrFgTSxssLpNJR-2AGvEVRiahxzGqdxnVQIzH5CXzJpv2QH9lv62wrB44-U3UbuSW3JeeJTShmh-sgO7LWX0QZpY0VNXTYnGkx7qelYdMAvhfyXOyVfx6NRe7T1L0y78HI4GY-S0en5l214ReerKuIurBazufuIuVKhd0pr-AXjdA5f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VVKrg0AcPEUrbRULqybCxd2P7WCVEaQkooiBxs_blCzQOsVMpPfUn9Df2l3TGdpyAhJDo0faMbO_Oa3dnvgE4DJ1Tkqxf2ynhCafQDiqZeu2UW2N1rJWk4uSz887gSny7ltcrVfwVPkSz4UaaUdprUvCJTY-XoKH5j1s6OvAJnSZAI_xSdHhMzRt6Fw2AVIDeq2yvgk7LI-StBWwj94_v8993S8tYczViLV1O_w2oxcdWmSY3R7NCH5lfD3Ac_-dv3sLrOh5lXyoBegcv3HgTNlZQCrfgrjv9-_tPL5s4y7rZiKFBztDsIs9UzXOmckbJIkgyWhYhsMHcTjMUTnbysxZuduGqIgrWpS2jeV4gb1HysholivUonb6Yb8Nl_-SyO_DqTg2eCSSaVGFNZNKQCxMGkqpVjTGaO0LLU1GkO7JteNqxKS7juQgtl1JHIubOl8qFxgY7sDbOxm4XWKwxnnK-1lwqYbRScSBNrKxwOg2lH7bAW8xTYmoUc2qmcZtU-Mt-QiOZNCPZgs8N_aTC73iUcn8x7Umtx3niU0AZofTIFhw0j1ED6VhFjV02IxoMeqnkWLTAL-f4iTcl38-Gw-Zq7zlMn-DVqNdPhl_PT9_DOt2uUoj3Ya2YztwHDJQK_bHUhX-vuw0O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cr-Doped+CoP+Nanorod+Arrays+as+High-Performance+Hydrogen+Evolution+Reaction+Catalysts+at+High+Current+Density&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Lipeng&rft.au=Zhang%2C+Juntao&rft.au=Fang%2C+Jinjie&rft.au=Wang%2C+Xin-Yu&rft.date=2021-07-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=17&rft.issue=28&rft.spage=e2100832&rft_id=info:doi/10.1002%2Fsmll.202100832&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |