Planar Hexacoordinate Beryllium: Covalent Bonding Between s–block Metals
Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coo...
Saved in:
Published in | Chemistry : a European journal Vol. 29; no. 67; pp. e202302672 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star‐like phBe cluster (Be©Be6Cl6). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal‐ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis‐natural orbitals for chemical valence (EDA‐NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.
Clusters with covalent bonds: To investigate the potential for planar hypercoordination in s‐block metals, we report a planar hexacoordinate beryllium center in the neutral binary Be©Be6Cl6 cluster. This global minimum is dynamic stabilized and displays the 6σ/2π double aromaticity. Interestingly, chemical bonding analysis further highlights a substantial covalent interaction between the ligand beryllium atoms and the central metal beryllium atoms. |
---|---|
AbstractList | Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star‐like phBe cluster (Be©Be6Cl6). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal‐ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis‐natural orbitals for chemical valence (EDA‐NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.
Clusters with covalent bonds: To investigate the potential for planar hypercoordination in s‐block metals, we report a planar hexacoordinate beryllium center in the neutral binary Be©Be6Cl6 cluster. This global minimum is dynamic stabilized and displays the 6σ/2π double aromaticity. Interestingly, chemical bonding analysis further highlights a substantial covalent interaction between the ligand beryllium atoms and the central metal beryllium atoms. Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star-like phBe cluster (Be©Be6 Cl6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal-ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star-like phBe cluster (Be©Be6 Cl6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal-ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability. Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star‐like phBe cluster (Be©Be 6 Cl 6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal‐ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis‐natural orbitals for chemical valence (EDA‐NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability. Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star‐like phBe cluster (Be©Be6Cl6). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal‐ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis‐natural orbitals for chemical valence (EDA‐NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability. |
Author | Wang, Ying‐Jin Yan, Miao Guan, Xiao‐Ling Jin, Bo Wu, Yan‐Bo |
Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-6401-9961 surname: Jin fullname: Jin, Bo email: jinbo@sxu.edu.cn organization: Shanxi University – sequence: 2 givenname: Xiao‐Ling surname: Guan fullname: Guan, Xiao‐Ling organization: Shanxi University – sequence: 3 givenname: Miao surname: Yan fullname: Yan, Miao organization: Xinzhou Normal University – sequence: 4 givenname: Ying‐Jin surname: Wang fullname: Wang, Ying‐Jin organization: Xinzhou Normal University – sequence: 5 givenname: Yan‐Bo surname: Wu fullname: Wu, Yan‐Bo email: wyb@sxu.edu.cn organization: Shanxi University |
BookMark | eNqFkD1PwzAQhi1UJMrHyhyJhSXlYsdOzAZVoSAqGGCOHPcKKa5d7BToxn_gH_JLMCoCqRJiuuGe53Tvu0061lkkZD-DXgZAj_QDznoUKAMqCrpBuhmnWcoKwTukCzIvUsGZ3CLbIUwBQArGuuTyxiirfDLEV6Wd8-PGqhaTU_RLY5rF7Djpu2dl0LbJqbNxex937QuiTcLH23ttnH5MRtgqE3bJ5iQO3PueO-TubHDbH6ZX1-cX_ZOrVDMONM00Y_UEoCwZlUoVqCnXrJzUstZcaCYBhcgReJFr4AJEzsaalwCFrMsYg-2Qw9XduXdPCwxtNWuCRhODoFuEipYihi64pBE9WEOnbuFt_C5SkgsqaJ5FKl9R2rsQPE4q3bSqbZxtvWpMlUH1VXD1VXD1U3DUemva3Dcz5Zd_C3IlvDQGl__QVX84GP26n16mjzI |
CitedBy_id | crossref_primary_10_1021_jacs_4c03977 crossref_primary_10_1002_chem_202304134 crossref_primary_10_1063_5_0188035 crossref_primary_10_1021_acs_inorgchem_4c01224 crossref_primary_10_3390_molecules29163831 crossref_primary_10_1021_acs_inorgchem_4c03460 crossref_primary_10_1039_D5DT00170F crossref_primary_10_1021_acs_jpca_4c02684 crossref_primary_10_1002_chem_202403790 crossref_primary_10_1002_anie_202416057 crossref_primary_10_1063_5_0232031 crossref_primary_10_1039_D4CP04874A crossref_primary_10_1002_ange_202416057 |
Cites_doi | 10.1021/jacs.9b10628 10.1007/s11426-010-4037-5 10.1021/jp5065819 10.1039/D2CP03532D 10.1021/ct200866d 10.1002/anie.202100940 10.1039/D0CC02973D 10.1039/D1SC05089C 10.1002/anie.201410407 10.1038/s41598-019-50905-7 10.1021/jacs.0c11628 10.1007/978-94-011-5572-4_13 10.1021/ct800503d 10.1021/cr00088a005 10.1021/ja960582d 10.1021/jacs.3c00722 10.1002/jcc.21759 10.1021/jp057107z 10.1016/j.chempr.2021.05.002 10.1063/1.3382344 10.1126/science.aay5021 10.1038/s41570-018-0114 10.1021/ja803365x 10.1039/c0cc03479g 10.1016/0040-4020(68)88057-3 10.1126/science.290.5498.1937 10.1039/c2cp41822c 10.1039/C9CS00233B 10.1021/ja993081b 10.1039/b804083d 10.1039/C7CP06955C 10.1126/science.1060000 10.1021/jp075460u 10.1021/ja00719a044 10.1002/jcc.22885 10.1063/5.0007045 10.1063/5.0157339 10.1021/acs.inorgchem.1c02293 10.1002/anie.202208152 10.1063/1.2148954 10.1002/1521-3773(20001016)39:20<3630::AID-ANIE3630>3.0.CO;2-R 10.1002/jcc.1056 10.1039/D2CP01496C 10.1063/1.449486 10.1021/ja9906204 10.1039/D2SC03614B 10.1002/anie.201201166 10.1021/ja00466a021 10.1039/D2SC01761J 10.1021/acs.jpca.0c10048 10.1039/D2SC05939H 10.1021/acs.jpca.5b10178 10.1039/D2NJ04951A |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202302672 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 10_1002_chem_202302672 CHEM202302672 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: Nos. 22073058 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT .GJ .Y3 186 31~ 6TJ 9M8 AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN BZBRT CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM PALCI RIWAO RJQFR SAMSI UQL VH1 Y6R ZGI 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3502-1c33bf0088329aa7ec25c38fb9bc56c390e664e0574c0560643dc580079b80943 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 18:04:14 EDT 2025 Fri Jul 25 10:31:51 EDT 2025 Tue Jul 01 00:43:55 EDT 2025 Thu Apr 24 22:57:42 EDT 2025 Wed Jan 22 16:20:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 67 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-1c33bf0088329aa7ec25c38fb9bc56c390e664e0574c0560643dc580079b80943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6401-9961 |
PQID | 2895626241 |
PQPubID | 986340 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2863767592 proquest_journals_2895626241 crossref_citationtrail_10_1002_chem_202302672 crossref_primary_10_1002_chem_202302672 wiley_primary_10_1002_chem_202302672_CHEM202302672 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 1, 2023 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 53 1968; 24 2021; 125 2023; 145 1999; 121 2022; 24 2020; 56 2012; 14 2019; 365 2000; 290 2012; 51 2018; 2 2001; 292 1988; 88 2000; 122 2008; 112 2006; 124 2021; 7 2019; 9 2023; 14 2015; 54 1997 2006; 110 2011; 32 2008; 10 2021; 143 1985; 83 2001; 22 2019; 141 2018; 20 2012; 33 2023; 47 2021; 12 2000; 39 2010; 46 1970; 92 2020; 152 2022; 61 2019; 48 2010; 132 2022; 13 2023; 159 1977; 99 2015; 119 2009; 5 2021; 60 2008; 130 1996; 118 2012; 8 e_1_2_3_50_1 e_1_2_3_71_1 e_1_2_3_2_1 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_35_1 e_1_2_3_56_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_33_2 e_1_2_3_58_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_52_2 e_1_2_3_10_2 e_1_2_3_31_2 e_1_2_3_54_1 e_1_2_3_60_2 e_1_2_3_62_1 e_1_2_3_49_1 e_1_2_3_28_2 e_1_2_3_45_2 e_1_2_3_68_2 e_1_2_3_24_1 e_1_2_3_66_2 e_1_2_3_26_1 e_1_2_3_47_1 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_43_2 e_1_2_3_22_1 e_1_2_3_64_1 e_1_2_3_70_2 e_1_2_3_1_1 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_17_2 e_1_2_3_3_1 e_1_2_3_19_1 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_9_1 e_1_2_3_13_1 e_1_2_3_55_2 e_1_2_3_59_1 e_1_2_3_7_2 e_1_2_3_36_2 e_1_2_3_57_2 e_1_2_3_30_1 e_1_2_3_51_2 e_1_2_3_32_2 e_1_2_3_53_2 e_1_2_3_61_2 e_1_2_3_40_1 e_1_2_3_27_1 e_1_2_3_29_2 e_1_2_3_23_1 e_1_2_3_46_1 e_1_2_3_44_2 e_1_2_3_69_2 e_1_2_3_25_1 e_1_2_3_48_1 e_1_2_3_67_1 e_1_2_3_42_1 e_1_2_3_65_2 e_1_2_3_21_1 e_1_2_3_63_1 |
References_xml | – volume: 112 start-page: 1933 year: 2008 end-page: 1939 publication-title: J. Phys. Chem. A – volume: 2 start-page: 114 year: 2018 publication-title: Nat. Rev.Chem. – volume: 51 start-page: 4275 year: 2012 end-page: 4276 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 14760 year: 2012 end-page: 14763 publication-title: Phys. Chem. Chem. Phys. – volume: 13 start-page: 8045 year: 2022 end-page: 8051 publication-title: Chem. Sci. – volume: 13 start-page: 11099 year: 2022 end-page: 11109 publication-title: Chem. Sci. – volume: 20 start-page: 7217 year: 2018 end-page: 7222 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 527 year: 2012 end-page: 541 publication-title: J. Chem. Theory Comput. – volume: 143 start-page: 420 year: 2021 end-page: 432 publication-title: J. Am. Chem. Soc. – volume: 159 year: 2023 publication-title: J. Chem. Phys. – volume: 92 start-page: 4992 year: 1970 end-page: 4993 publication-title: J. Am. Chem. Soc. – volume: 88 start-page: 899 year: 1988 end-page: 926 publication-title: Chem. Rev. – volume: 121 start-page: 6033 year: 1999 end-page: 6038 publication-title: J. Am. Chem. Soc. – volume: 292 start-page: 2465 year: 2001 end-page: 2469 publication-title: Science – volume: 119 start-page: 13101 year: 2015 end-page: 13106 publication-title: J. Phys. Chem. A – volume: 60 start-page: 8700 year: 2021 end-page: 8704 publication-title: Angew. Chem. Int. Ed. – volume: 124 year: 2006 publication-title: J. Chem. Phys. – volume: 99 start-page: 7886 year: 1977 end-page: 7891 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 14367 year: 2019 publication-title: Sci. Rep. – volume: 12 start-page: 15067 year: 2021 end-page: 15076 publication-title: Chem. Sci. – volume: 130 start-page: 10394 year: 2008 end-page: 10400 publication-title: J. Am. Chem. Soc. – volume: 83 start-page: 735 year: 1985 end-page: 746 publication-title: J. Chem. Phys. – volume: 290 start-page: 1937 year: 2000 end-page: 1940 publication-title: Science – year: 1997 – volume: 10 start-page: 5207 year: 2008 end-page: 5217 publication-title: Phys. Chem. Chem. Phys. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 141 start-page: 18009 year: 2019 end-page: 18012 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 16053 year: 2021 end-page: 16058 publication-title: Inorg. Chem. – volume: 33 start-page: 580 year: 2012 end-page: 592 publication-title: J. Comput. Chem. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 962 year: 2009 end-page: 975 publication-title: J. Chem. Theory Comput. – volume: 365 start-page: 5021 year: 2019 publication-title: Science – volume: 22 start-page: 931 year: 2001 end-page: 967 publication-title: J. Comput. Chem. – volume: 24 start-page: 17956 year: 2022 end-page: 17960 publication-title: Phys. Chem. Chem. Phys. – volume: 54 start-page: 9468 year: 2015 end-page: 9501 publication-title: Angew. Chem. Int. Ed. – volume: 119 start-page: 2326 year: 2015 publication-title: J. Phys. Chem. A – volume: 122 start-page: 7681 year: 2000 end-page: 7687 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2151 year: 2021 end-page: 2159 publication-title: Chem – volume: 53 start-page: 1737 year: 2010 end-page: 1745 publication-title: Sci. China Chem. – volume: 118 start-page: 6317 year: 1996 end-page: 6318 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 1083 year: 1968 end-page: 1096 publication-title: Tetrahedron – volume: 110 start-page: 4287 year: 2006 end-page: 4290 publication-title: J. Phys. Chem. A – volume: 48 start-page: 3550 year: 2019 end-page: 3591 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 22634 year: 2022 end-page: 22644 publication-title: Phys. Chem. Chem. Phys. – volume: 47 start-page: 2736 year: 2023 end-page: 2746 publication-title: New J. Chem. – volume: 46 start-page: 8776 year: 2010 end-page: 8778 publication-title: Chem. Commun. – volume: 39 start-page: 3630 year: 2000 end-page: 3632 publication-title: Angew. Chem. Int. Ed. – volume: 145 start-page: 7084 year: 2023 end-page: 7089 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 8785 year: 2023 end-page: 8791 publication-title: Chem. Sci. – volume: 56 start-page: 8305 year: 2020 end-page: 8308 publication-title: Chem. Commun. – volume: 125 start-page: 302 year: 2021 end-page: 307 publication-title: J. Phys. Chem. A – volume: 132 year: 2010 publication-title: J. Chem. Phys. – volume: 32 start-page: 1456 year: 2011 publication-title: J. Comput. Chem. – ident: e_1_2_3_17_2 doi: 10.1021/jacs.9b10628 – ident: e_1_2_3_36_2 doi: 10.1007/s11426-010-4037-5 – ident: e_1_2_3_47_1 doi: 10.1021/jp5065819 – ident: e_1_2_3_24_1 doi: 10.1039/D2CP03532D – ident: e_1_2_3_49_1 doi: 10.1021/ct200866d – ident: e_1_2_3_20_1 doi: 10.1002/anie.202100940 – ident: e_1_2_3_35_1 – ident: e_1_2_3_32_2 doi: 10.1039/D0CC02973D – ident: e_1_2_3_26_1 doi: 10.1039/D1SC05089C – ident: e_1_2_3_1_1 doi: 10.1002/anie.201410407 – ident: e_1_2_3_39_2 doi: 10.1038/s41598-019-50905-7 – ident: e_1_2_3_55_2 – ident: e_1_2_3_42_1 – ident: e_1_2_3_50_1 – ident: e_1_2_3_16_2 doi: 10.1021/jacs.0c11628 – ident: e_1_2_3_62_1 doi: 10.1007/978-94-011-5572-4_13 – ident: e_1_2_3_64_1 – ident: e_1_2_3_69_2 doi: 10.1021/ct800503d – ident: e_1_2_3_57_2 doi: 10.1021/cr00088a005 – ident: e_1_2_3_67_1 – ident: e_1_2_3_65_2 doi: 10.1021/ja960582d – ident: e_1_2_3_59_1 – ident: e_1_2_3_15_2 doi: 10.1021/jacs.3c00722 – ident: e_1_2_3_45_2 doi: 10.1002/jcc.21759 – ident: e_1_2_3_56_2 doi: 10.1021/jp057107z – ident: e_1_2_3_13_1 – ident: e_1_2_3_18_2 doi: 10.1016/j.chempr.2021.05.002 – ident: e_1_2_3_44_2 doi: 10.1063/1.3382344 – ident: e_1_2_3_71_1 doi: 10.1126/science.aay5021 – ident: e_1_2_3_7_2 doi: 10.1038/s41570-018-0114 – ident: e_1_2_3_4_2 doi: 10.1021/ja803365x – ident: e_1_2_3_34_2 doi: 10.1039/c0cc03479g – ident: e_1_2_3_27_1 – ident: e_1_2_3_53_2 – ident: e_1_2_3_52_2 doi: 10.1016/0040-4020(68)88057-3 – ident: e_1_2_3_6_2 doi: 10.1126/science.290.5498.1937 – ident: e_1_2_3_19_1 doi: 10.1039/c2cp41822c – ident: e_1_2_3_22_1 doi: 10.1039/C9CS00233B – ident: e_1_2_3_12_2 doi: 10.1021/ja993081b – ident: e_1_2_3_46_1 – ident: e_1_2_3_63_1 doi: 10.1039/b804083d – ident: e_1_2_3_54_1 – ident: e_1_2_3_23_1 doi: 10.1039/C7CP06955C – ident: e_1_2_3_5_2 doi: 10.1126/science.1060000 – ident: e_1_2_3_60_2 – ident: e_1_2_3_68_2 doi: 10.1021/jp075460u – ident: e_1_2_3_2_1 doi: 10.1021/ja00719a044 – ident: e_1_2_3_58_2 – ident: e_1_2_3_66_2 doi: 10.1002/jcc.22885 – ident: e_1_2_3_61_2 doi: 10.1063/5.0007045 – ident: e_1_2_3_51_2 – ident: e_1_2_3_41_1 doi: 10.1063/5.0157339 – ident: e_1_2_3_40_1 doi: 10.1021/acs.inorgchem.1c02293 – ident: e_1_2_3_3_1 – ident: e_1_2_3_30_1 – ident: e_1_2_3_37_2 doi: 10.1002/anie.202208152 – ident: e_1_2_3_43_2 doi: 10.1063/1.2148954 – ident: e_1_2_3_11_2 doi: 10.1002/1521-3773(20001016)39:20<3630::AID-ANIE3630>3.0.CO;2-R – ident: e_1_2_3_70_2 doi: 10.1002/jcc.1056 – ident: e_1_2_3_31_2 doi: 10.1039/D2CP01496C – ident: e_1_2_3_9_1 – ident: e_1_2_3_48_1 doi: 10.1063/1.449486 – ident: e_1_2_3_10_2 doi: 10.1021/ja9906204 – ident: e_1_2_3_29_2 doi: 10.1039/D2SC03614B – ident: e_1_2_3_8_2 doi: 10.1002/anie.201201166 – ident: e_1_2_3_14_2 doi: 10.1021/ja00466a021 – ident: e_1_2_3_21_1 doi: 10.1039/D2SC01761J – ident: e_1_2_3_25_1 doi: 10.1021/acs.jpca.0c10048 – ident: e_1_2_3_28_2 doi: 10.1039/D2SC05939H – ident: e_1_2_3_33_2 doi: 10.1021/acs.jpca.5b10178 – ident: e_1_2_3_38_2 doi: 10.1039/D2NJ04951A |
SSID | ssj0009633 |
Score | 2.5197854 |
Snippet | Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved.... Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202302672 |
SubjectTerms | Aromaticity Atomic properties Beryllium Bonding strength Chemistry Chlorine Clusters Covalence covalent double aromaticity Dynamic stability Electronegativity global minimum Ligands Metals planar hexacoordinate beryllium s-block metals Star formation |
Title | Planar Hexacoordinate Beryllium: Covalent Bonding Between s–block Metals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202302672 https://www.proquest.com/docview/2895626241 https://www.proquest.com/docview/2863767592 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYH6UY33sVqlREEV2nTZJJM3GmxlEJdiIXuwsxkAqU1laYBdeU7-IY-iefk1lYQQXcJmUky1_NNcuY_hFy2I2V7jooMwZQ2GDcdQ4ZtadgcaBz1bpiLm5MH925vyPojZ7Syiz_Xh6g-uOHIyOZrHOBCJq2laCiUCXeSA0JbroeTMDpsIRU9LPWjoHflseSZZ6AGa6naaFqt9ezrVmmJmqvAmlmc7g4R5bvmjiaTZrqQTfX2TcbxP4XZJdsFjtKbvP_skQ0d75PNThkF7oD0MaqRmNOefoG5E1aq4xjolN7q-et0Ok6frmlnBp0VTBfFCMVgCOFa5vpFk8_3Dwm2ckIHGhA_OSTD7t1jp2cU8RcMZTsY80TZtowAEmDU-0J4WlmOsnkkfakcV9m-qV2XaSA-poCjEG5CBQ1ser7k6LF4RGrxLNbHhEZRqH3OBRcyYp7kEjCZhyyU7dBsC67qxCjrP1CFODnGyJgGuayyFWANBVUN1clVlf45l-X4MWWjbM6gGJ5JAKtM4D4X6KVOLqrLULP4t0TEepZiGjdTuvHhFlbWdr88KUARi-rs5C-ZTskWHufuMg1SW8xTfQbQs5DnWcf-AhwZ-Ho |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5RekgvQGkRgdAuElVPBsde22skDjQpCpDkUIHEzXjXawkRHJQfAT31HXgSXoVH4EmY8V8ACVVCyoGj7fV6f2Z2vlnPfgOwUY-V7TkqNkKutMGF6RgyqkvDFojGie-Gu3Q4udN1W8f84MQ5mYG74ixMxg9RbriRZqTrNSk4bUhvTVhDsVN0lBwxtOV6Vh5XeahvrtBrG-7sN3GKf1jW3u-jRsvIEwsYynYomYeybRmj9UNx9sPQ08pylC1i6UvluMr2Te26XCOU4QoBAlntSGHLTc-XgkLxsN4P8JHSiBNdf_PPhLEK5TnLXs89g1hfC55I09p63t7ndnACbp9C5NTG7c3DfTE6WWjL-eZ4JDfV3xfEke9q-BZgLkfcbDdTkc8wo5NFqDSKRHdf4IASN4UD1tLXaB6wXWcJAnD2Sw9uer2z8cU2a_RRH9E6M0rCjLYen6XRbWz48O9WIhw4Zx2NXszwKxxPpStLMJv0E70MLI4j7QsRilDG3JNCoicgIh7JemTWQ6GqYBQTHqicf53SgPSCjDnaCmhGgnJGqvCzLH-ZMY-8WrJWyE-Qr0DDAB1phLYuArQqrJePcWTph1CY6P6YyrgpmY-PVVipsPznSwHxdJRXK2956TtUWkeddtDe7x6uwie6n0UH1WB2NBjrNcR4I_kt1SoGp9OWw0d3pFLn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB7xIxUutLQgFmgxUquewmYTx3EqcaC7rBYoqKpA4hZix5EQSxbtj1o48Q68CK_CK_AkzORvoVJVCYkDx8SO458ZzzfJ-BuAz41Eu76nEyvi2lhc2p6l4oayXIlonPhuuKDDyfsHonPEd4-94wm4Lc_C5PwQ1Qc30oxsvyYFv4iT-pg0FMdEJ8kRQjvCd4qwyj1z-RudtsHmTgtX-IvjtLcPmx2ryCtgadejXB7adVWCxg-lOYgi32jH065MVKC0J7Qb2EYIbhDJcI34gIx2rLHjth8oSZF42O4kTHNhB5QsovVrTFiF4pwnr-e-RaSvJU2k7dSf9vepGRxj28cIOTNx7bdwV05OHtlytjEaqg199Rdv5GuavXcwV-BttpUryDxMmPQ9zDTLNHcfYJfSNkV91jF_0Dhgv05ThN_su-lfdruno_NvrNlDbUTbzCgFM1p6LMti29jg_vpGIRg4Y_sGfZjBAhy9yFAWYSrtpWYJWJLEJpAykpFKuK-kQj9AxjxWjdhuRFLXwCrXO9QF-zolAemGOW-0E9KKhNWK1OBrVf8i5x35Z83VUnzCYv8ZhOhGI7AVCM9qsF4V48zS76AoNb0R1REZlU-ATTiZrPznTSGxdFRXy895aA3e_Gy1wx87B3srMEu389CgVZga9kfmIwK8ofqU6RSDk5cWwwf90VGW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planar+Hexacoordinate+Beryllium%3A+Covalent+Bonding+Between+s%E2%80%93block+Metals&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Jin%2C+Bo&rft.au=Xiao%E2%80%90Ling+Guan&rft.au=Miao%2C+Yan&rft.au=Ying%E2%80%90Jin+Wang&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=67&rft_id=info:doi/10.1002%2Fchem.202302672&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |