Planar Hexacoordinate Beryllium: Covalent Bonding Between s–block Metals

Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coo...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 67; pp. e202302672 - n/a
Main Authors Jin, Bo, Guan, Xiao‐Ling, Yan, Miao, Wang, Ying‐Jin, Wu, Yan‐Bo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star‐like phBe cluster (Be©Be6Cl6). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal‐ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis‐natural orbitals for chemical valence (EDA‐NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability. Clusters with covalent bonds: To investigate the potential for planar hypercoordination in s‐block metals, we report a planar hexacoordinate beryllium center in the neutral binary Be©Be6Cl6 cluster. This global minimum is dynamic stabilized and displays the 6σ/2π double aromaticity. Interestingly, chemical bonding analysis further highlights a substantial covalent interaction between the ligand beryllium atoms and the central metal beryllium atoms.
AbstractList Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star‐like phBe cluster (Be©Be6Cl6). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal‐ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis‐natural orbitals for chemical valence (EDA‐NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability. Clusters with covalent bonds: To investigate the potential for planar hypercoordination in s‐block metals, we report a planar hexacoordinate beryllium center in the neutral binary Be©Be6Cl6 cluster. This global minimum is dynamic stabilized and displays the 6σ/2π double aromaticity. Interestingly, chemical bonding analysis further highlights a substantial covalent interaction between the ligand beryllium atoms and the central metal beryllium atoms.
Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star-like phBe cluster (Be©Be6 Cl6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal-ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star-like phBe cluster (Be©Be6 Cl6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal-ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.
Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star‐like phBe cluster (Be©Be 6 Cl 6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal‐ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis‐natural orbitals for chemical valence (EDA‐NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.
Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star‐like phBe cluster (Be©Be6Cl6). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal‐ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis‐natural orbitals for chemical valence (EDA‐NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.
Author Wang, Ying‐Jin
Yan, Miao
Guan, Xiao‐Ling
Jin, Bo
Wu, Yan‐Bo
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-6401-9961
  surname: Jin
  fullname: Jin, Bo
  email: jinbo@sxu.edu.cn
  organization: Shanxi University
– sequence: 2
  givenname: Xiao‐Ling
  surname: Guan
  fullname: Guan, Xiao‐Ling
  organization: Shanxi University
– sequence: 3
  givenname: Miao
  surname: Yan
  fullname: Yan, Miao
  organization: Xinzhou Normal University
– sequence: 4
  givenname: Ying‐Jin
  surname: Wang
  fullname: Wang, Ying‐Jin
  organization: Xinzhou Normal University
– sequence: 5
  givenname: Yan‐Bo
  surname: Wu
  fullname: Wu, Yan‐Bo
  email: wyb@sxu.edu.cn
  organization: Shanxi University
BookMark eNqFkD1PwzAQhi1UJMrHyhyJhSXlYsdOzAZVoSAqGGCOHPcKKa5d7BToxn_gH_JLMCoCqRJiuuGe53Tvu0061lkkZD-DXgZAj_QDznoUKAMqCrpBuhmnWcoKwTukCzIvUsGZ3CLbIUwBQArGuuTyxiirfDLEV6Wd8-PGqhaTU_RLY5rF7Djpu2dl0LbJqbNxex937QuiTcLH23ttnH5MRtgqE3bJ5iQO3PueO-TubHDbH6ZX1-cX_ZOrVDMONM00Y_UEoCwZlUoVqCnXrJzUstZcaCYBhcgReJFr4AJEzsaalwCFrMsYg-2Qw9XduXdPCwxtNWuCRhODoFuEipYihi64pBE9WEOnbuFt_C5SkgsqaJ5FKl9R2rsQPE4q3bSqbZxtvWpMlUH1VXD1VXD1U3DUemva3Dcz5Zd_C3IlvDQGl__QVX84GP26n16mjzI
CitedBy_id crossref_primary_10_1021_jacs_4c03977
crossref_primary_10_1002_chem_202304134
crossref_primary_10_1063_5_0188035
crossref_primary_10_1021_acs_inorgchem_4c01224
crossref_primary_10_3390_molecules29163831
crossref_primary_10_1021_acs_inorgchem_4c03460
crossref_primary_10_1039_D5DT00170F
crossref_primary_10_1021_acs_jpca_4c02684
crossref_primary_10_1002_chem_202403790
crossref_primary_10_1002_anie_202416057
crossref_primary_10_1063_5_0232031
crossref_primary_10_1039_D4CP04874A
crossref_primary_10_1002_ange_202416057
Cites_doi 10.1021/jacs.9b10628
10.1007/s11426-010-4037-5
10.1021/jp5065819
10.1039/D2CP03532D
10.1021/ct200866d
10.1002/anie.202100940
10.1039/D0CC02973D
10.1039/D1SC05089C
10.1002/anie.201410407
10.1038/s41598-019-50905-7
10.1021/jacs.0c11628
10.1007/978-94-011-5572-4_13
10.1021/ct800503d
10.1021/cr00088a005
10.1021/ja960582d
10.1021/jacs.3c00722
10.1002/jcc.21759
10.1021/jp057107z
10.1016/j.chempr.2021.05.002
10.1063/1.3382344
10.1126/science.aay5021
10.1038/s41570-018-0114
10.1021/ja803365x
10.1039/c0cc03479g
10.1016/0040-4020(68)88057-3
10.1126/science.290.5498.1937
10.1039/c2cp41822c
10.1039/C9CS00233B
10.1021/ja993081b
10.1039/b804083d
10.1039/C7CP06955C
10.1126/science.1060000
10.1021/jp075460u
10.1021/ja00719a044
10.1002/jcc.22885
10.1063/5.0007045
10.1063/5.0157339
10.1021/acs.inorgchem.1c02293
10.1002/anie.202208152
10.1063/1.2148954
10.1002/1521-3773(20001016)39:20<3630::AID-ANIE3630>3.0.CO;2-R
10.1002/jcc.1056
10.1039/D2CP01496C
10.1063/1.449486
10.1021/ja9906204
10.1039/D2SC03614B
10.1002/anie.201201166
10.1021/ja00466a021
10.1039/D2SC01761J
10.1021/acs.jpca.0c10048
10.1039/D2SC05939H
10.1021/acs.jpca.5b10178
10.1039/D2NJ04951A
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202302672
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 10_1002_chem_202302672
CHEM202302672
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: Nos. 22073058
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
.GJ
.Y3
186
31~
6TJ
9M8
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
BZBRT
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
PALCI
RIWAO
RJQFR
SAMSI
UQL
VH1
Y6R
ZGI
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3502-1c33bf0088329aa7ec25c38fb9bc56c390e664e0574c0560643dc580079b80943
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 18:04:14 EDT 2025
Fri Jul 25 10:31:51 EDT 2025
Tue Jul 01 00:43:55 EDT 2025
Thu Apr 24 22:57:42 EDT 2025
Wed Jan 22 16:20:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 67
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-1c33bf0088329aa7ec25c38fb9bc56c390e664e0574c0560643dc580079b80943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6401-9961
PQID 2895626241
PQPubID 986340
PageCount 5
ParticipantIDs proquest_miscellaneous_2863767592
proquest_journals_2895626241
crossref_citationtrail_10_1002_chem_202302672
crossref_primary_10_1002_chem_202302672
wiley_primary_10_1002_chem_202302672_CHEM202302672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 1, 2023
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 53
1968; 24
2021; 125
2023; 145
1999; 121
2022; 24
2020; 56
2012; 14
2019; 365
2000; 290
2012; 51
2018; 2
2001; 292
1988; 88
2000; 122
2008; 112
2006; 124
2021; 7
2019; 9
2023; 14
2015; 54
1997
2006; 110
2011; 32
2008; 10
2021; 143
1985; 83
2001; 22
2019; 141
2018; 20
2012; 33
2023; 47
2021; 12
2000; 39
2010; 46
1970; 92
2020; 152
2022; 61
2019; 48
2010; 132
2022; 13
2023; 159
1977; 99
2015; 119
2009; 5
2021; 60
2008; 130
1996; 118
2012; 8
e_1_2_3_50_1
e_1_2_3_71_1
e_1_2_3_2_1
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_35_1
e_1_2_3_56_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_33_2
e_1_2_3_58_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_52_2
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_54_1
e_1_2_3_60_2
e_1_2_3_62_1
e_1_2_3_49_1
e_1_2_3_28_2
e_1_2_3_45_2
e_1_2_3_68_2
e_1_2_3_24_1
e_1_2_3_66_2
e_1_2_3_26_1
e_1_2_3_47_1
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_43_2
e_1_2_3_22_1
e_1_2_3_64_1
e_1_2_3_70_2
e_1_2_3_1_1
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_17_2
e_1_2_3_3_1
e_1_2_3_19_1
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_9_1
e_1_2_3_13_1
e_1_2_3_55_2
e_1_2_3_59_1
e_1_2_3_7_2
e_1_2_3_36_2
e_1_2_3_57_2
e_1_2_3_30_1
e_1_2_3_51_2
e_1_2_3_32_2
e_1_2_3_53_2
e_1_2_3_61_2
e_1_2_3_40_1
e_1_2_3_27_1
e_1_2_3_29_2
e_1_2_3_23_1
e_1_2_3_46_1
e_1_2_3_44_2
e_1_2_3_69_2
e_1_2_3_25_1
e_1_2_3_48_1
e_1_2_3_67_1
e_1_2_3_42_1
e_1_2_3_65_2
e_1_2_3_21_1
e_1_2_3_63_1
References_xml – volume: 112
  start-page: 1933
  year: 2008
  end-page: 1939
  publication-title: J. Phys. Chem. A
– volume: 2
  start-page: 114
  year: 2018
  publication-title: Nat. Rev.Chem.
– volume: 51
  start-page: 4275
  year: 2012
  end-page: 4276
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 14760
  year: 2012
  end-page: 14763
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  start-page: 8045
  year: 2022
  end-page: 8051
  publication-title: Chem. Sci.
– volume: 13
  start-page: 11099
  year: 2022
  end-page: 11109
  publication-title: Chem. Sci.
– volume: 20
  start-page: 7217
  year: 2018
  end-page: 7222
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 527
  year: 2012
  end-page: 541
  publication-title: J. Chem. Theory Comput.
– volume: 143
  start-page: 420
  year: 2021
  end-page: 432
  publication-title: J. Am. Chem. Soc.
– volume: 159
  year: 2023
  publication-title: J. Chem. Phys.
– volume: 92
  start-page: 4992
  year: 1970
  end-page: 4993
  publication-title: J. Am. Chem. Soc.
– volume: 88
  start-page: 899
  year: 1988
  end-page: 926
  publication-title: Chem. Rev.
– volume: 121
  start-page: 6033
  year: 1999
  end-page: 6038
  publication-title: J. Am. Chem. Soc.
– volume: 292
  start-page: 2465
  year: 2001
  end-page: 2469
  publication-title: Science
– volume: 119
  start-page: 13101
  year: 2015
  end-page: 13106
  publication-title: J. Phys. Chem. A
– volume: 60
  start-page: 8700
  year: 2021
  end-page: 8704
  publication-title: Angew. Chem. Int. Ed.
– volume: 124
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 99
  start-page: 7886
  year: 1977
  end-page: 7891
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 14367
  year: 2019
  publication-title: Sci. Rep.
– volume: 12
  start-page: 15067
  year: 2021
  end-page: 15076
  publication-title: Chem. Sci.
– volume: 130
  start-page: 10394
  year: 2008
  end-page: 10400
  publication-title: J. Am. Chem. Soc.
– volume: 83
  start-page: 735
  year: 1985
  end-page: 746
  publication-title: J. Chem. Phys.
– volume: 290
  start-page: 1937
  year: 2000
  end-page: 1940
  publication-title: Science
– year: 1997
– volume: 10
  start-page: 5207
  year: 2008
  end-page: 5217
  publication-title: Phys. Chem. Chem. Phys.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 141
  start-page: 18009
  year: 2019
  end-page: 18012
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 16053
  year: 2021
  end-page: 16058
  publication-title: Inorg. Chem.
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  publication-title: J. Comput. Chem.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 962
  year: 2009
  end-page: 975
  publication-title: J. Chem. Theory Comput.
– volume: 365
  start-page: 5021
  year: 2019
  publication-title: Science
– volume: 22
  start-page: 931
  year: 2001
  end-page: 967
  publication-title: J. Comput. Chem.
– volume: 24
  start-page: 17956
  year: 2022
  end-page: 17960
  publication-title: Phys. Chem. Chem. Phys.
– volume: 54
  start-page: 9468
  year: 2015
  end-page: 9501
  publication-title: Angew. Chem. Int. Ed.
– volume: 119
  start-page: 2326
  year: 2015
  publication-title: J. Phys. Chem. A
– volume: 122
  start-page: 7681
  year: 2000
  end-page: 7687
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2151
  year: 2021
  end-page: 2159
  publication-title: Chem
– volume: 53
  start-page: 1737
  year: 2010
  end-page: 1745
  publication-title: Sci. China Chem.
– volume: 118
  start-page: 6317
  year: 1996
  end-page: 6318
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 1083
  year: 1968
  end-page: 1096
  publication-title: Tetrahedron
– volume: 110
  start-page: 4287
  year: 2006
  end-page: 4290
  publication-title: J. Phys. Chem. A
– volume: 48
  start-page: 3550
  year: 2019
  end-page: 3591
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 22634
  year: 2022
  end-page: 22644
  publication-title: Phys. Chem. Chem. Phys.
– volume: 47
  start-page: 2736
  year: 2023
  end-page: 2746
  publication-title: New J. Chem.
– volume: 46
  start-page: 8776
  year: 2010
  end-page: 8778
  publication-title: Chem. Commun.
– volume: 39
  start-page: 3630
  year: 2000
  end-page: 3632
  publication-title: Angew. Chem. Int. Ed.
– volume: 145
  start-page: 7084
  year: 2023
  end-page: 7089
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 8785
  year: 2023
  end-page: 8791
  publication-title: Chem. Sci.
– volume: 56
  start-page: 8305
  year: 2020
  end-page: 8308
  publication-title: Chem. Commun.
– volume: 125
  start-page: 302
  year: 2021
  end-page: 307
  publication-title: J. Phys. Chem. A
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 1456
  year: 2011
  publication-title: J. Comput. Chem.
– ident: e_1_2_3_17_2
  doi: 10.1021/jacs.9b10628
– ident: e_1_2_3_36_2
  doi: 10.1007/s11426-010-4037-5
– ident: e_1_2_3_47_1
  doi: 10.1021/jp5065819
– ident: e_1_2_3_24_1
  doi: 10.1039/D2CP03532D
– ident: e_1_2_3_49_1
  doi: 10.1021/ct200866d
– ident: e_1_2_3_20_1
  doi: 10.1002/anie.202100940
– ident: e_1_2_3_35_1
– ident: e_1_2_3_32_2
  doi: 10.1039/D0CC02973D
– ident: e_1_2_3_26_1
  doi: 10.1039/D1SC05089C
– ident: e_1_2_3_1_1
  doi: 10.1002/anie.201410407
– ident: e_1_2_3_39_2
  doi: 10.1038/s41598-019-50905-7
– ident: e_1_2_3_55_2
– ident: e_1_2_3_42_1
– ident: e_1_2_3_50_1
– ident: e_1_2_3_16_2
  doi: 10.1021/jacs.0c11628
– ident: e_1_2_3_62_1
  doi: 10.1007/978-94-011-5572-4_13
– ident: e_1_2_3_64_1
– ident: e_1_2_3_69_2
  doi: 10.1021/ct800503d
– ident: e_1_2_3_57_2
  doi: 10.1021/cr00088a005
– ident: e_1_2_3_67_1
– ident: e_1_2_3_65_2
  doi: 10.1021/ja960582d
– ident: e_1_2_3_59_1
– ident: e_1_2_3_15_2
  doi: 10.1021/jacs.3c00722
– ident: e_1_2_3_45_2
  doi: 10.1002/jcc.21759
– ident: e_1_2_3_56_2
  doi: 10.1021/jp057107z
– ident: e_1_2_3_13_1
– ident: e_1_2_3_18_2
  doi: 10.1016/j.chempr.2021.05.002
– ident: e_1_2_3_44_2
  doi: 10.1063/1.3382344
– ident: e_1_2_3_71_1
  doi: 10.1126/science.aay5021
– ident: e_1_2_3_7_2
  doi: 10.1038/s41570-018-0114
– ident: e_1_2_3_4_2
  doi: 10.1021/ja803365x
– ident: e_1_2_3_34_2
  doi: 10.1039/c0cc03479g
– ident: e_1_2_3_27_1
– ident: e_1_2_3_53_2
– ident: e_1_2_3_52_2
  doi: 10.1016/0040-4020(68)88057-3
– ident: e_1_2_3_6_2
  doi: 10.1126/science.290.5498.1937
– ident: e_1_2_3_19_1
  doi: 10.1039/c2cp41822c
– ident: e_1_2_3_22_1
  doi: 10.1039/C9CS00233B
– ident: e_1_2_3_12_2
  doi: 10.1021/ja993081b
– ident: e_1_2_3_46_1
– ident: e_1_2_3_63_1
  doi: 10.1039/b804083d
– ident: e_1_2_3_54_1
– ident: e_1_2_3_23_1
  doi: 10.1039/C7CP06955C
– ident: e_1_2_3_5_2
  doi: 10.1126/science.1060000
– ident: e_1_2_3_60_2
– ident: e_1_2_3_68_2
  doi: 10.1021/jp075460u
– ident: e_1_2_3_2_1
  doi: 10.1021/ja00719a044
– ident: e_1_2_3_58_2
– ident: e_1_2_3_66_2
  doi: 10.1002/jcc.22885
– ident: e_1_2_3_61_2
  doi: 10.1063/5.0007045
– ident: e_1_2_3_51_2
– ident: e_1_2_3_41_1
  doi: 10.1063/5.0157339
– ident: e_1_2_3_40_1
  doi: 10.1021/acs.inorgchem.1c02293
– ident: e_1_2_3_3_1
– ident: e_1_2_3_30_1
– ident: e_1_2_3_37_2
  doi: 10.1002/anie.202208152
– ident: e_1_2_3_43_2
  doi: 10.1063/1.2148954
– ident: e_1_2_3_11_2
  doi: 10.1002/1521-3773(20001016)39:20<3630::AID-ANIE3630>3.0.CO;2-R
– ident: e_1_2_3_70_2
  doi: 10.1002/jcc.1056
– ident: e_1_2_3_31_2
  doi: 10.1039/D2CP01496C
– ident: e_1_2_3_9_1
– ident: e_1_2_3_48_1
  doi: 10.1063/1.449486
– ident: e_1_2_3_10_2
  doi: 10.1021/ja9906204
– ident: e_1_2_3_29_2
  doi: 10.1039/D2SC03614B
– ident: e_1_2_3_8_2
  doi: 10.1002/anie.201201166
– ident: e_1_2_3_14_2
  doi: 10.1021/ja00466a021
– ident: e_1_2_3_21_1
  doi: 10.1039/D2SC01761J
– ident: e_1_2_3_25_1
  doi: 10.1021/acs.jpca.0c10048
– ident: e_1_2_3_28_2
  doi: 10.1039/D2SC05939H
– ident: e_1_2_3_33_2
  doi: 10.1021/acs.jpca.5b10178
– ident: e_1_2_3_38_2
  doi: 10.1039/D2NJ04951A
SSID ssj0009633
Score 2.5197854
Snippet Achieving a planar hypercoordinate arrangement of s‐block metals through covalent bonding with ligands is challenging due to the strong ionicity involved....
Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202302672
SubjectTerms Aromaticity
Atomic properties
Beryllium
Bonding strength
Chemistry
Chlorine
Clusters
Covalence
covalent
double aromaticity
Dynamic stability
Electronegativity
global minimum
Ligands
Metals
planar hexacoordinate beryllium
s-block metals
Star formation
Title Planar Hexacoordinate Beryllium: Covalent Bonding Between s–block Metals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202302672
https://www.proquest.com/docview/2895626241
https://www.proquest.com/docview/2863767592
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYH6UY33sVqlREEV2nTZJJM3GmxlEJdiIXuwsxkAqU1laYBdeU7-IY-iefk1lYQQXcJmUky1_NNcuY_hFy2I2V7jooMwZQ2GDcdQ4ZtadgcaBz1bpiLm5MH925vyPojZ7Syiz_Xh6g-uOHIyOZrHOBCJq2laCiUCXeSA0JbroeTMDpsIRU9LPWjoHflseSZZ6AGa6naaFqt9ezrVmmJmqvAmlmc7g4R5bvmjiaTZrqQTfX2TcbxP4XZJdsFjtKbvP_skQ0d75PNThkF7oD0MaqRmNOefoG5E1aq4xjolN7q-et0Ok6frmlnBp0VTBfFCMVgCOFa5vpFk8_3Dwm2ckIHGhA_OSTD7t1jp2cU8RcMZTsY80TZtowAEmDU-0J4WlmOsnkkfakcV9m-qV2XaSA-poCjEG5CBQ1ser7k6LF4RGrxLNbHhEZRqH3OBRcyYp7kEjCZhyyU7dBsC67qxCjrP1CFODnGyJgGuayyFWANBVUN1clVlf45l-X4MWWjbM6gGJ5JAKtM4D4X6KVOLqrLULP4t0TEepZiGjdTuvHhFlbWdr88KUARi-rs5C-ZTskWHufuMg1SW8xTfQbQs5DnWcf-AhwZ-Ho
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5RekgvQGkRgdAuElVPBsde22skDjQpCpDkUIHEzXjXawkRHJQfAT31HXgSXoVH4EmY8V8ACVVCyoGj7fV6f2Z2vlnPfgOwUY-V7TkqNkKutMGF6RgyqkvDFojGie-Gu3Q4udN1W8f84MQ5mYG74ixMxg9RbriRZqTrNSk4bUhvTVhDsVN0lBwxtOV6Vh5XeahvrtBrG-7sN3GKf1jW3u-jRsvIEwsYynYomYeybRmj9UNx9sPQ08pylC1i6UvluMr2Te26XCOU4QoBAlntSGHLTc-XgkLxsN4P8JHSiBNdf_PPhLEK5TnLXs89g1hfC55I09p63t7ndnACbp9C5NTG7c3DfTE6WWjL-eZ4JDfV3xfEke9q-BZgLkfcbDdTkc8wo5NFqDSKRHdf4IASN4UD1tLXaB6wXWcJAnD2Sw9uer2z8cU2a_RRH9E6M0rCjLYen6XRbWz48O9WIhw4Zx2NXszwKxxPpStLMJv0E70MLI4j7QsRilDG3JNCoicgIh7JemTWQ6GqYBQTHqicf53SgPSCjDnaCmhGgnJGqvCzLH-ZMY-8WrJWyE-Qr0DDAB1phLYuArQqrJePcWTph1CY6P6YyrgpmY-PVVipsPznSwHxdJRXK2956TtUWkeddtDe7x6uwie6n0UH1WB2NBjrNcR4I_kt1SoGp9OWw0d3pFLn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB7xIxUutLQgFmgxUquewmYTx3EqcaC7rBYoqKpA4hZix5EQSxbtj1o48Q68CK_CK_AkzORvoVJVCYkDx8SO458ZzzfJ-BuAz41Eu76nEyvi2lhc2p6l4oayXIlonPhuuKDDyfsHonPEd4-94wm4Lc_C5PwQ1Qc30oxsvyYFv4iT-pg0FMdEJ8kRQjvCd4qwyj1z-RudtsHmTgtX-IvjtLcPmx2ryCtgadejXB7adVWCxg-lOYgi32jH065MVKC0J7Qb2EYIbhDJcI34gIx2rLHjth8oSZF42O4kTHNhB5QsovVrTFiF4pwnr-e-RaSvJU2k7dSf9vepGRxj28cIOTNx7bdwV05OHtlytjEaqg199Rdv5GuavXcwV-BttpUryDxMmPQ9zDTLNHcfYJfSNkV91jF_0Dhgv05ThN_su-lfdruno_NvrNlDbUTbzCgFM1p6LMti29jg_vpGIRg4Y_sGfZjBAhy9yFAWYSrtpWYJWJLEJpAykpFKuK-kQj9AxjxWjdhuRFLXwCrXO9QF-zolAemGOW-0E9KKhNWK1OBrVf8i5x35Z83VUnzCYv8ZhOhGI7AVCM9qsF4V48zS76AoNb0R1REZlU-ATTiZrPznTSGxdFRXy895aA3e_Gy1wx87B3srMEu389CgVZga9kfmIwK8ofqU6RSDk5cWwwf90VGW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planar+Hexacoordinate+Beryllium%3A+Covalent+Bonding+Between+s%E2%80%93block+Metals&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Jin%2C+Bo&rft.au=Xiao%E2%80%90Ling+Guan&rft.au=Miao%2C+Yan&rft.au=Ying%E2%80%90Jin+Wang&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=67&rft_id=info:doi/10.1002%2Fchem.202302672&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon