Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction

Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting li...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 37; pp. e2201351 - n/a
Main Authors Barawi, Mariam, Alfonso‐González, Elena, López‐Calixto, Carmen G., García, Alberto, García‐Sánchez, Alba, Villar‐García, Ignacio J., Liras, Marta, de la Peña O'Shea, Victor A.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction. The use of organic conjugated porous polymers in photoelectrochemical cells is limited by the large particles that typically result from their synthesis. In this work, a synthetic strategy for the nanostructuring of a conjugated porous polymer (IEP‐1) and its successful application as a photoelectrode in both a single system and a tandem PEC is presented, resulting in the hydrogen evolution reaction.
AbstractList Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction.
Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction. The use of organic conjugated porous polymers in photoelectrochemical cells is limited by the large particles that typically result from their synthesis. In this work, a synthetic strategy for the nanostructuring of a conjugated porous polymer (IEP‐1) and its successful application as a photoelectrode in both a single system and a tandem PEC is presented, resulting in the hydrogen evolution reaction.
Abstract Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm −2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H 2 in a one‐hour reaction.
Author Barawi, Mariam
García‐Sánchez, Alba
García, Alberto
López‐Calixto, Carmen G.
Liras, Marta
Alfonso‐González, Elena
Villar‐García, Ignacio J.
de la Peña O'Shea, Victor A.
Author_xml – sequence: 1
  givenname: Mariam
  orcidid: 0000-0001-5719-9872
  surname: Barawi
  fullname: Barawi, Mariam
  email: mariam.barawi@imdea.org
  organization: Imdea Energy Institute
– sequence: 2
  givenname: Elena
  surname: Alfonso‐González
  fullname: Alfonso‐González, Elena
  organization: Imdea Energy Institute
– sequence: 3
  givenname: Carmen G.
  surname: López‐Calixto
  fullname: López‐Calixto, Carmen G.
  organization: Imdea Energy Institute
– sequence: 4
  givenname: Alberto
  surname: García
  fullname: García, Alberto
  organization: Imdea Energy Institute
– sequence: 5
  givenname: Alba
  surname: García‐Sánchez
  fullname: García‐Sánchez, Alba
  organization: Imdea Energy Institute
– sequence: 6
  givenname: Ignacio J.
  orcidid: 0000-0002-5657-5212
  surname: Villar‐García
  fullname: Villar‐García, Ignacio J.
  organization: ALBA Synchrotron
– sequence: 7
  givenname: Marta
  orcidid: 0000-0002-1724-1586
  surname: Liras
  fullname: Liras, Marta
  email: marta.liras@imdea.org
  organization: Imdea Energy Institute
– sequence: 8
  givenname: Victor A.
  orcidid: 0000-0001-5762-4787
  surname: de la Peña O'Shea
  fullname: de la Peña O'Shea, Victor A.
  email: victor.delapenya@imdea.org
  organization: Imdea Energy Institute
BookMark eNqFkUFrGzEQhUVJobaba8-CXHqxo5FW3t2jMW4ScFLTOudFlWbjNVppK-26-B_0Z0eOQwK99KQn-N7wZt6YXDjvkJAvwGbAGL-OrbUzzjhnICR8ICOYg5jOC15evGlgn8g4xj1jAniWj8jfhTkop9HQB-V87MOg-yGk79K7_fCk-iTvGx1854MfIt14e2wx0EXX2UarvvGONo4qulXOYEs3O997tKj74PUO28RYukRrae0DvT2a4J_Q0dXB2-HF_AOVPonP5GOtbMTL13dCHr-ttsvb6fr7zd1ysZ5qIRlMEXSJeQ0CM8FBAZQiK2ompeT1XHDDueQCfwlZIDMyz4oSDCvmupS6MNxkYkK-nud2wf8eMPZV20SdAiqHacGK54yXuRTpiBNy9Q-690NwKV2iIOMpj5SJmp2pdKQYA9ZVF5pWhWMFrDoVU52Kqd6KSYbybPjTWDz-h65-3q_X795ndByVEw
CitedBy_id crossref_primary_10_1016_j_jallcom_2023_171189
crossref_primary_10_1002_smtd_202300418
crossref_primary_10_1002_adfm_202403778
crossref_primary_10_1021_acscatal_3c04464
crossref_primary_10_1002_solr_202301069
crossref_primary_10_1039_D3TA06314C
crossref_primary_10_1016_j_jhazmat_2023_131724
crossref_primary_10_1016_j_jcis_2024_03_031
crossref_primary_10_1002_adom_202301746
crossref_primary_10_1021_acsami_3c10396
Cites_doi 10.1002/anie.201506570
10.1002/pola.23628
10.1021/acscatal.0c01346
10.1039/c3nr05402k
10.1002/admi.202002191
10.1021/acsomega.7b00558
10.1002/anie.201205521
10.1038/ncomms5475
10.1016/j.apcatb.2019.117933
10.1002/9780470381588
10.1002/slct.201700505
10.1021/acs.chemrev.9b00399
10.1021/acs.jpcc.6b01975
10.1021/acsenergylett.0c01577
10.1002/aenm.201802877
10.1007/BF01428065
10.1002/cctc.201901725
10.1039/C9CS00377K
10.1039/C9MH01071H
10.1039/C8TA11383A
10.1039/C5TA03820K
10.1039/C4EE01775G
10.1016/j.susmat.2018.e00089
10.1039/C6EE01655C
10.1002/9783527820115
10.1002/anie.201407387
10.1039/C7CS00840F
10.1002/aenm.202101530
10.1002/aelm.201500126
10.1002/adma.202006274
10.1021/acs.langmuir.5b00177
10.1021/ed070p25
10.1039/C5PY00235D
10.1038/srep41013
10.1002/adfm.201908074
10.1002/adma.201300839
10.1021/cr5001892
10.1016/j.progpolymsci.2014.10.003
10.1088/0022-3727/11/4/003
10.1021/mz5005508
10.1016/j.solmat.2010.03.012
10.1021/jp020482w
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202201351
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202201351
SMLL202201351
Genre article
GrantInformation_xml – fundername: FotoArt‐CM
– fundername: NovaCO2
  funderid: PID2020‐118593RB‐C22
– fundername: Nhympha
  funderid: PID2019‐106315RB‐I00
– fundername: Juan de la Cierva Incorporación
  funderid: IJC2019 – 042430 –I
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3501-e1c9e7f13e4321a119348f05552f632d22523eb358e0d574891d086c95c8d2d43
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Aug 16 07:36:08 EDT 2024
Thu Oct 10 20:42:32 EDT 2024
Fri Aug 23 03:48:50 EDT 2024
Sat Aug 24 00:53:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-e1c9e7f13e4321a119348f05552f632d22523eb358e0d574891d086c95c8d2d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5719-9872
0000-0002-1724-1586
0000-0001-5762-4787
0000-0002-5657-5212
PQID 2714250155
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2702975301
proquest_journals_2714250155
crossref_primary_10_1002_smll_202201351
wiley_primary_10_1002_smll_202201351_SMLL202201351
PublicationCentury 2000
PublicationDate 20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 20220901
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2015; 1
2021; 8
2009; 47
2017; 7
2019; 9
2015; 6
2017; 2
2013; 25
2015; 3
1978; 11
2020; 120
2015; 31
2015; 54
2008
2019; 19
2020; 12
2020; 10
1931; 55
2016; 120
2014; 114
2018; 47
2012; 51
2020; 7
2020; 5
2014; 5
2014; 3
2021; 33
2020; 30
2021
1993; 70
2021; 18
2019; 48
2015; 43
2019; 258
2002; 106
2019
2014; 7
2014; 6
2016; 9
2010; 94
2014; 53
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_38_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 48
  start-page: 5454
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 4522
  year: 2017
  publication-title: ChemistrySelect
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 120
  start-page: 8048
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 2375
  year: 2014
  publication-title: Nanoscale
– year: 2021
– volume: 19
  year: 2019
  publication-title: Sustainable Mater. Technol.
– volume: 5
  start-page: 2945
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 689
  year: 2020
  publication-title: ChemCatChem
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 96
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 1
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 3
  start-page: 1139
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 25
  start-page: 3443
  year: 2013
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2490
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 4475
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 94
  start-page: 1572
  year: 2010
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 258
  year: 2019
  publication-title: Appl. Catal., B
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 3775
  year: 2015
  publication-title: Polym. Chem.
– volume: 7
  start-page: 15
  year: 2020
  publication-title: Mater. Horiz.
– volume: 106
  start-page: 7139
  year: 2002
  publication-title: J. Phys. Chem. B
– year: 2008
– volume: 55
  start-page: 129
  year: 1931
  publication-title: Kolloid‐Z.
– volume: 11
  start-page: L63
  year: 1978
  publication-title: J. Phys. D: Appl. Phys.
– volume: 10
  start-page: 9804
  year: 2020
  publication-title: ACS Catal.
– volume: 120
  start-page: 2171
  year: 2020
  publication-title: Chem. Rev.
– volume: 47
  start-page: 2298
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 31
  start-page: 3546
  year: 2015
  publication-title: Langmuir
– volume: 114
  start-page: 9919
  year: 2014
  publication-title: Chem. Rev.
– volume: 7
  start-page: 3666
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 47
  start-page: 6044
  year: 2009
  publication-title: J. Polym. Sci. Part A
– volume: 2
  start-page: 3424
  year: 2017
  publication-title: ACS Omega
– volume: 9
  start-page: 3710
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 18
  year: 2021
  publication-title: Adv. Energy Mater.
– year: 2019
– volume: 70
  start-page: A25
  year: 1993
  publication-title: J. Chem. Educ.
– ident: e_1_2_12_21_1
  doi: 10.1002/anie.201506570
– ident: e_1_2_12_12_1
  doi: 10.1002/pola.23628
– ident: e_1_2_12_15_1
  doi: 10.1021/acscatal.0c01346
– ident: e_1_2_12_26_1
  doi: 10.1039/c3nr05402k
– ident: e_1_2_12_43_1
  doi: 10.1002/admi.202002191
– ident: e_1_2_12_41_1
  doi: 10.1021/acsomega.7b00558
– ident: e_1_2_12_19_1
  doi: 10.1002/anie.201205521
– ident: e_1_2_12_22_1
  doi: 10.1038/ncomms5475
– ident: e_1_2_12_14_1
  doi: 10.1016/j.apcatb.2019.117933
– ident: e_1_2_12_37_1
  doi: 10.1002/9780470381588
– ident: e_1_2_12_2_1
  doi: 10.1002/slct.201700505
– ident: e_1_2_12_17_1
  doi: 10.1021/acs.chemrev.9b00399
– ident: e_1_2_12_40_1
  doi: 10.1021/acs.jpcc.6b01975
– ident: e_1_2_12_28_1
  doi: 10.1021/acsenergylett.0c01577
– ident: e_1_2_12_3_1
  doi: 10.1002/aenm.201802877
– ident: e_1_2_12_36_1
  doi: 10.1007/BF01428065
– ident: e_1_2_12_13_1
  doi: 10.1002/cctc.201901725
– ident: e_1_2_12_4_1
  doi: 10.1039/C9CS00377K
– ident: e_1_2_12_16_1
  doi: 10.1039/C9MH01071H
– ident: e_1_2_12_24_1
  doi: 10.1039/C8TA11383A
– ident: e_1_2_12_23_1
  doi: 10.1039/C5TA03820K
– ident: e_1_2_12_8_1
  doi: 10.1039/C4EE01775G
– ident: e_1_2_12_10_1
  doi: 10.1016/j.susmat.2018.e00089
– ident: e_1_2_12_9_1
  doi: 10.1039/C6EE01655C
– ident: e_1_2_12_5_1
  doi: 10.1002/9783527820115
– ident: e_1_2_12_20_1
  doi: 10.1002/anie.201407387
– ident: e_1_2_12_6_1
  doi: 10.1039/C7CS00840F
– ident: e_1_2_12_18_1
  doi: 10.1002/aenm.202101530
– ident: e_1_2_12_39_1
  doi: 10.1002/aelm.201500126
– ident: e_1_2_12_1_1
  doi: 10.1002/adma.202006274
– ident: e_1_2_12_32_1
  doi: 10.1021/acs.langmuir.5b00177
– ident: e_1_2_12_34_1
  doi: 10.1021/ed070p25
– ident: e_1_2_12_27_1
  doi: 10.1039/C5PY00235D
– ident: e_1_2_12_33_1
  doi: 10.1038/srep41013
– ident: e_1_2_12_29_1
  doi: 10.1002/adfm.201908074
– ident: e_1_2_12_30_1
– ident: e_1_2_12_35_1
  doi: 10.1002/adma.201300839
– ident: e_1_2_12_42_1
  doi: 10.1021/cr5001892
– ident: e_1_2_12_7_1
  doi: 10.1016/j.progpolymsci.2014.10.003
– ident: e_1_2_12_38_1
  doi: 10.1088/0022-3727/11/4/003
– ident: e_1_2_12_25_1
  doi: 10.1021/mz5005508
– ident: e_1_2_12_11_1
  doi: 10.1016/j.solmat.2010.03.012
– ident: e_1_2_12_31_1
  doi: 10.1021/jp020482w
SSID ssj0031247
Score 2.4969244
Snippet Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic...
Abstract Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage e2201351
SubjectTerms Chemical synthesis
conjugated porous polymers
Conjugation
Gas chromatography
hybrid photoelectrodes
hydrogen evolution reaction
Hydrogen evolution reactions
Nanotechnology
Optoelectronic devices
Organic semiconductors
Photocathodes
Photoelectric effect
Photoelectrochemical devices
photoelectrochemistry
Polymers
Solar energy conversion
tandem photoelectrochemical (PEC) cells
Thin films
Title Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202201351
https://www.proquest.com/docview/2714250155
https://search.proquest.com/docview/2702975301
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i9UqKwieos1ukm6OpSpFrIgP8BY2uxN8tIn0IdRf4M92JknT6kXQQyAhbB47Ozvf7sx8w9hRkKBcPQgcEAYcz1rrhNokju_GibChDnQe7d69DjoP3uWj_ziXxV_wQ1QbbqQZ-XxNCq7j4emMNHTY75HrQKAFk3kOtSubFNN1dlvxR0k0Xnl1FbRZDhFvTVkbG-L0e_PvVmkGNecBa25xLlaZnn5rEWjyejIexSfm4weN439-Zo2tlHCUt4rxs84WIN1gy3MkhZvss1WGCXCcibOCb3Y8wMt2lr6MaRfO8i6F9SGSz8ZDfpP1Jn0Y8NbMNc6fU675Pe1X9_nNUzbKyuo7pqQr4G3o9TjiZ96Z2EGGg5qfv5dKwW-hSL7YYg8X5_ftjlPWb3AMuSsdcE0IzcSV4EnhahexoqcSYhgTSSCFxalESFzM-woa1icaHNfiCsuEvlFWWE9us8U0S2GHcRtKZSFQWnmGiqIr7Ss8TEPFEAY-1NjxVH7RW0HTERWEzCKivo2qvq2x-lS8Uamuw0g0XZy7CD7W2GF1GxWNvCc6Bey9iBL3KAu5gY8QuSx_eVN01726qq52_9Jojy3ReRHTVmeLKGLYRxA0ig_ygf4F1bgBIA
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFB4hONAeCnQRKdsgVeJkiGdsZ3yMAihAghAEqbeRPfMslsSuslSCX8DP5j1vSXqp1B58GFve5s1b5i3fY-xHkCBdPQgcEAYcz1rrhJFJHN-NE2HDKIjybPf-ddC99y5_-lU2IdXCFPgQtcONOCOX18Tg5JA-maOGTkZDih0IVGGSiqjXkOcldW84va0RpCSqr7y_Cmoth6C3KtzGpjhZvn9ZL82NzUWTNdc55xssrr62SDV5Pp5N42Pz-geQ43_9zib7VFqkvF0soS22Auln9nEBp_ALe2uXmQIchXFWQM7OxjjsZOnTjBxxlvcpsw-N-Ww24TfZ8GUEY96eR8f5Y8ojPiCX9YjfPGTTrGzAY0rEAt6B4ZCjCc27L3ac4brmZ79LvuC3UNRffGX352eDTtcpWzg4hiKWDrgmhFbiSvCkcCMXzUVPJQQyJpJACovSREjcz_sKmtYnJBzX4ibLhL5RVlhPfmOraZbCNuM2lMpCoCLlGeqLriJf4WGaKoYw8KHBjioC6l8FUocuMJmFprnV9dw22G5FX11y7ESLloviiyzIBjusLyOvUQAlSgFnT1PtHhUiN_ERIifmX96k7_q9Xj36_i83HbD17qDf072L66sd9oHOFyluu2wVyQ17aBNN4_181b8D2c4FOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VIFVw4FVQQ3ksUqWeDPH6kfUxSolCm6CIEim31WZ3LNomdpRHpfAL-NmdsR0ncEGCgw9ry6-dnZ1vd2a-YexrGKNcfQgdEAYc31rrRNrETuAOYmEjHeos2r1zG7Z6_o9-0F_L4s_5IcoNN9KMbL4mBR_b-GpFGjodDcl1INCCeZRDvemHCH8JFt2VBFIeWq-svAoaLYeYt5a0jVVx9fz-52ZphTXXEWtmcpq7TC8_No80-Xs5nw0uzeMLHsf3_M0e2ynwKK_nA2iffYDkgG2vsRR-Yk_1Ik6A41Sc5oSz8wk2G2nyZ07bcJZ3KK4PoXw6n_JuOlyMYMLrK984_51wze9pw3rEuw_pLC3K75iCr4A3YDjkCKB5a2EnKY5qfv2v0Ap-B3n2xSHrNa_vGy2nKODgGPJXOuCaCGqx64HvCVe7CBZ9GRPFmIhDT1icS4SHq_lAQtUGxIPjWlximSgw0grre0dsI0kT-My4jTxpIZRa-oaqoksdSDxMVQ4gCgOosG9L-alxztOhckZmoahvVdm3FXayFK8q9HWqRM3FyYvwY4VdlJdR08h9ohPA3lOUuUdpyFV8hMhk-cqb1K9Ou122jt9y0zn72P3eVO2b259f2BadzuPbTtgGShtOERDNBmfZmP8PxmgD5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Nanostructured+Conjugated+Microporous+Polymer+Application+in+a+Tandem+Photoelectrochemical+Cell+for+Hydrogen+Evolution+Reaction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Barawi%2C+Mariam&rft.au=Alfonso%E2%80%90Gonz%C3%A1lez%2C+Elena&rft.au=L%C3%B3pez%E2%80%90Calixto%2C+Carmen+G.&rft.au=Garc%C3%ADa%2C+Alberto&rft.date=2022-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=37&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202201351&rft.externalDBID=10.1002%252Fsmll.202201351&rft.externalDocID=SMLL202201351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon