Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction
Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting li...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 37; pp. e2201351 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction.
The use of organic conjugated porous polymers in photoelectrochemical cells is limited by the large particles that typically result from their synthesis. In this work, a synthetic strategy for the nanostructuring of a conjugated porous polymer (IEP‐1) and its successful application as a photoelectrode in both a single system and a tandem PEC is presented, resulting in the hydrogen evolution reaction. |
---|---|
AbstractList | Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction. Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm−2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one‐hour reaction. The use of organic conjugated porous polymers in photoelectrochemical cells is limited by the large particles that typically result from their synthesis. In this work, a synthetic strategy for the nanostructuring of a conjugated porous polymer (IEP‐1) and its successful application as a photoelectrode in both a single system and a tandem PEC is presented, resulting in the hydrogen evolution reaction. Abstract Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light‐harvesting properties. Besides, their extended π‐conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three‐dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm −2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H 2 in a one‐hour reaction. |
Author | Barawi, Mariam García‐Sánchez, Alba García, Alberto López‐Calixto, Carmen G. Liras, Marta Alfonso‐González, Elena Villar‐García, Ignacio J. de la Peña O'Shea, Victor A. |
Author_xml | – sequence: 1 givenname: Mariam orcidid: 0000-0001-5719-9872 surname: Barawi fullname: Barawi, Mariam email: mariam.barawi@imdea.org organization: Imdea Energy Institute – sequence: 2 givenname: Elena surname: Alfonso‐González fullname: Alfonso‐González, Elena organization: Imdea Energy Institute – sequence: 3 givenname: Carmen G. surname: López‐Calixto fullname: López‐Calixto, Carmen G. organization: Imdea Energy Institute – sequence: 4 givenname: Alberto surname: García fullname: García, Alberto organization: Imdea Energy Institute – sequence: 5 givenname: Alba surname: García‐Sánchez fullname: García‐Sánchez, Alba organization: Imdea Energy Institute – sequence: 6 givenname: Ignacio J. orcidid: 0000-0002-5657-5212 surname: Villar‐García fullname: Villar‐García, Ignacio J. organization: ALBA Synchrotron – sequence: 7 givenname: Marta orcidid: 0000-0002-1724-1586 surname: Liras fullname: Liras, Marta email: marta.liras@imdea.org organization: Imdea Energy Institute – sequence: 8 givenname: Victor A. orcidid: 0000-0001-5762-4787 surname: de la Peña O'Shea fullname: de la Peña O'Shea, Victor A. email: victor.delapenya@imdea.org organization: Imdea Energy Institute |
BookMark | eNqFkUFrGzEQhUVJobaba8-CXHqxo5FW3t2jMW4ScFLTOudFlWbjNVppK-26-B_0Z0eOQwK99KQn-N7wZt6YXDjvkJAvwGbAGL-OrbUzzjhnICR8ICOYg5jOC15evGlgn8g4xj1jAniWj8jfhTkop9HQB-V87MOg-yGk79K7_fCk-iTvGx1854MfIt14e2wx0EXX2UarvvGONo4qulXOYEs3O997tKj74PUO28RYukRrae0DvT2a4J_Q0dXB2-HF_AOVPonP5GOtbMTL13dCHr-ttsvb6fr7zd1ysZ5qIRlMEXSJeQ0CM8FBAZQiK2ompeT1XHDDueQCfwlZIDMyz4oSDCvmupS6MNxkYkK-nud2wf8eMPZV20SdAiqHacGK54yXuRTpiBNy9Q-690NwKV2iIOMpj5SJmp2pdKQYA9ZVF5pWhWMFrDoVU52Kqd6KSYbybPjTWDz-h65-3q_X795ndByVEw |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2023_171189 crossref_primary_10_1002_smtd_202300418 crossref_primary_10_1002_adfm_202403778 crossref_primary_10_1021_acscatal_3c04464 crossref_primary_10_1002_solr_202301069 crossref_primary_10_1039_D3TA06314C crossref_primary_10_1016_j_jhazmat_2023_131724 crossref_primary_10_1016_j_jcis_2024_03_031 crossref_primary_10_1002_adom_202301746 crossref_primary_10_1021_acsami_3c10396 |
Cites_doi | 10.1002/anie.201506570 10.1002/pola.23628 10.1021/acscatal.0c01346 10.1039/c3nr05402k 10.1002/admi.202002191 10.1021/acsomega.7b00558 10.1002/anie.201205521 10.1038/ncomms5475 10.1016/j.apcatb.2019.117933 10.1002/9780470381588 10.1002/slct.201700505 10.1021/acs.chemrev.9b00399 10.1021/acs.jpcc.6b01975 10.1021/acsenergylett.0c01577 10.1002/aenm.201802877 10.1007/BF01428065 10.1002/cctc.201901725 10.1039/C9CS00377K 10.1039/C9MH01071H 10.1039/C8TA11383A 10.1039/C5TA03820K 10.1039/C4EE01775G 10.1016/j.susmat.2018.e00089 10.1039/C6EE01655C 10.1002/9783527820115 10.1002/anie.201407387 10.1039/C7CS00840F 10.1002/aenm.202101530 10.1002/aelm.201500126 10.1002/adma.202006274 10.1021/acs.langmuir.5b00177 10.1021/ed070p25 10.1039/C5PY00235D 10.1038/srep41013 10.1002/adfm.201908074 10.1002/adma.201300839 10.1021/cr5001892 10.1016/j.progpolymsci.2014.10.003 10.1088/0022-3727/11/4/003 10.1021/mz5005508 10.1016/j.solmat.2010.03.012 10.1021/jp020482w |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202201351 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202201351 SMLL202201351 |
Genre | article |
GrantInformation_xml | – fundername: FotoArt‐CM – fundername: NovaCO2 funderid: PID2020‐118593RB‐C22 – fundername: Nhympha funderid: PID2019‐106315RB‐I00 – fundername: Juan de la Cierva Incorporación funderid: IJC2019 – 042430 –I |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK AAYXX ACBWZ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3501-e1c9e7f13e4321a119348f05552f632d22523eb358e0d574891d086c95c8d2d43 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 07:36:08 EDT 2024 Thu Oct 10 20:42:32 EDT 2024 Fri Aug 23 03:48:50 EDT 2024 Sat Aug 24 00:53:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3501-e1c9e7f13e4321a119348f05552f632d22523eb358e0d574891d086c95c8d2d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5719-9872 0000-0002-1724-1586 0000-0001-5762-4787 0000-0002-5657-5212 |
PQID | 2714250155 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2702975301 proquest_journals_2714250155 crossref_primary_10_1002_smll_202201351 wiley_primary_10_1002_smll_202201351_SMLL202201351 |
PublicationCentury | 2000 |
PublicationDate | 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 20220901 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2015; 1 2021; 8 2009; 47 2017; 7 2019; 9 2015; 6 2017; 2 2013; 25 2015; 3 1978; 11 2020; 120 2015; 31 2015; 54 2008 2019; 19 2020; 12 2020; 10 1931; 55 2016; 120 2014; 114 2018; 47 2012; 51 2020; 7 2020; 5 2014; 5 2014; 3 2021; 33 2020; 30 2021 1993; 70 2021; 18 2019; 48 2015; 43 2019; 258 2002; 106 2019 2014; 7 2014; 6 2016; 9 2010; 94 2014; 53 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_38_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – volume: 48 start-page: 5454 year: 2019 publication-title: Chem. Soc. Rev. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 4522 year: 2017 publication-title: ChemistrySelect – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 120 start-page: 8048 year: 2016 publication-title: J. Phys. Chem. C – volume: 6 start-page: 2375 year: 2014 publication-title: Nanoscale – year: 2021 – volume: 19 year: 2019 publication-title: Sustainable Mater. Technol. – volume: 5 start-page: 2945 year: 2020 publication-title: ACS Energy Lett. – volume: 12 start-page: 689 year: 2020 publication-title: ChemCatChem – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 96 year: 2015 publication-title: Prog. Polym. Sci. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 1 year: 2015 publication-title: Adv. Electron. Mater. – volume: 3 start-page: 1139 year: 2014 publication-title: ACS Macro Lett. – volume: 25 start-page: 3443 year: 2013 publication-title: Adv. Mater. – volume: 7 start-page: 2490 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 5 start-page: 4475 year: 2014 publication-title: Nat. Commun. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 94 start-page: 1572 year: 2010 publication-title: Sol. Energy Mater. Sol. Cells – volume: 258 year: 2019 publication-title: Appl. Catal., B – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 3775 year: 2015 publication-title: Polym. Chem. – volume: 7 start-page: 15 year: 2020 publication-title: Mater. Horiz. – volume: 106 start-page: 7139 year: 2002 publication-title: J. Phys. Chem. B – year: 2008 – volume: 55 start-page: 129 year: 1931 publication-title: Kolloid‐Z. – volume: 11 start-page: L63 year: 1978 publication-title: J. Phys. D: Appl. Phys. – volume: 10 start-page: 9804 year: 2020 publication-title: ACS Catal. – volume: 120 start-page: 2171 year: 2020 publication-title: Chem. Rev. – volume: 47 start-page: 2298 year: 2018 publication-title: Chem. Soc. Rev. – volume: 31 start-page: 3546 year: 2015 publication-title: Langmuir – volume: 114 start-page: 9919 year: 2014 publication-title: Chem. Rev. – volume: 7 start-page: 3666 year: 2014 publication-title: Energy Environ. Sci. – volume: 47 start-page: 6044 year: 2009 publication-title: J. Polym. Sci. Part A – volume: 2 start-page: 3424 year: 2017 publication-title: ACS Omega – volume: 9 start-page: 3710 year: 2016 publication-title: Energy Environ. Sci. – volume: 18 year: 2021 publication-title: Adv. Energy Mater. – year: 2019 – volume: 70 start-page: A25 year: 1993 publication-title: J. Chem. Educ. – ident: e_1_2_12_21_1 doi: 10.1002/anie.201506570 – ident: e_1_2_12_12_1 doi: 10.1002/pola.23628 – ident: e_1_2_12_15_1 doi: 10.1021/acscatal.0c01346 – ident: e_1_2_12_26_1 doi: 10.1039/c3nr05402k – ident: e_1_2_12_43_1 doi: 10.1002/admi.202002191 – ident: e_1_2_12_41_1 doi: 10.1021/acsomega.7b00558 – ident: e_1_2_12_19_1 doi: 10.1002/anie.201205521 – ident: e_1_2_12_22_1 doi: 10.1038/ncomms5475 – ident: e_1_2_12_14_1 doi: 10.1016/j.apcatb.2019.117933 – ident: e_1_2_12_37_1 doi: 10.1002/9780470381588 – ident: e_1_2_12_2_1 doi: 10.1002/slct.201700505 – ident: e_1_2_12_17_1 doi: 10.1021/acs.chemrev.9b00399 – ident: e_1_2_12_40_1 doi: 10.1021/acs.jpcc.6b01975 – ident: e_1_2_12_28_1 doi: 10.1021/acsenergylett.0c01577 – ident: e_1_2_12_3_1 doi: 10.1002/aenm.201802877 – ident: e_1_2_12_36_1 doi: 10.1007/BF01428065 – ident: e_1_2_12_13_1 doi: 10.1002/cctc.201901725 – ident: e_1_2_12_4_1 doi: 10.1039/C9CS00377K – ident: e_1_2_12_16_1 doi: 10.1039/C9MH01071H – ident: e_1_2_12_24_1 doi: 10.1039/C8TA11383A – ident: e_1_2_12_23_1 doi: 10.1039/C5TA03820K – ident: e_1_2_12_8_1 doi: 10.1039/C4EE01775G – ident: e_1_2_12_10_1 doi: 10.1016/j.susmat.2018.e00089 – ident: e_1_2_12_9_1 doi: 10.1039/C6EE01655C – ident: e_1_2_12_5_1 doi: 10.1002/9783527820115 – ident: e_1_2_12_20_1 doi: 10.1002/anie.201407387 – ident: e_1_2_12_6_1 doi: 10.1039/C7CS00840F – ident: e_1_2_12_18_1 doi: 10.1002/aenm.202101530 – ident: e_1_2_12_39_1 doi: 10.1002/aelm.201500126 – ident: e_1_2_12_1_1 doi: 10.1002/adma.202006274 – ident: e_1_2_12_32_1 doi: 10.1021/acs.langmuir.5b00177 – ident: e_1_2_12_34_1 doi: 10.1021/ed070p25 – ident: e_1_2_12_27_1 doi: 10.1039/C5PY00235D – ident: e_1_2_12_33_1 doi: 10.1038/srep41013 – ident: e_1_2_12_29_1 doi: 10.1002/adfm.201908074 – ident: e_1_2_12_30_1 – ident: e_1_2_12_35_1 doi: 10.1002/adma.201300839 – ident: e_1_2_12_42_1 doi: 10.1021/cr5001892 – ident: e_1_2_12_7_1 doi: 10.1016/j.progpolymsci.2014.10.003 – ident: e_1_2_12_38_1 doi: 10.1088/0022-3727/11/4/003 – ident: e_1_2_12_25_1 doi: 10.1021/mz5005508 – ident: e_1_2_12_11_1 doi: 10.1016/j.solmat.2010.03.012 – ident: e_1_2_12_31_1 doi: 10.1021/jp020482w |
SSID | ssj0031247 |
Score | 2.4969244 |
Snippet | Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic... Abstract Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2201351 |
SubjectTerms | Chemical synthesis conjugated porous polymers Conjugation Gas chromatography hybrid photoelectrodes hydrogen evolution reaction Hydrogen evolution reactions Nanotechnology Optoelectronic devices Organic semiconductors Photocathodes Photoelectric effect Photoelectrochemical devices photoelectrochemistry Polymers Solar energy conversion tandem photoelectrochemical (PEC) cells Thin films |
Title | Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202201351 https://www.proquest.com/docview/2714250155 https://search.proquest.com/docview/2702975301 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i9UqKwieos1ukm6OpSpFrIgP8BY2uxN8tIn0IdRf4M92JknT6kXQQyAhbB47Ozvf7sx8w9hRkKBcPQgcEAYcz1rrhNokju_GibChDnQe7d69DjoP3uWj_ziXxV_wQ1QbbqQZ-XxNCq7j4emMNHTY75HrQKAFk3kOtSubFNN1dlvxR0k0Xnl1FbRZDhFvTVkbG-L0e_PvVmkGNecBa25xLlaZnn5rEWjyejIexSfm4weN439-Zo2tlHCUt4rxs84WIN1gy3MkhZvss1WGCXCcibOCb3Y8wMt2lr6MaRfO8i6F9SGSz8ZDfpP1Jn0Y8NbMNc6fU675Pe1X9_nNUzbKyuo7pqQr4G3o9TjiZ96Z2EGGg5qfv5dKwW-hSL7YYg8X5_ftjlPWb3AMuSsdcE0IzcSV4EnhahexoqcSYhgTSSCFxalESFzM-woa1icaHNfiCsuEvlFWWE9us8U0S2GHcRtKZSFQWnmGiqIr7Ss8TEPFEAY-1NjxVH7RW0HTERWEzCKivo2qvq2x-lS8Uamuw0g0XZy7CD7W2GF1GxWNvCc6Bey9iBL3KAu5gY8QuSx_eVN01726qq52_9Jojy3ReRHTVmeLKGLYRxA0ig_ygf4F1bgBIA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFB4hONAeCnQRKdsgVeJkiGdsZ3yMAihAghAEqbeRPfMslsSuslSCX8DP5j1vSXqp1B58GFve5s1b5i3fY-xHkCBdPQgcEAYcz1rrhJFJHN-NE2HDKIjybPf-ddC99y5_-lU2IdXCFPgQtcONOCOX18Tg5JA-maOGTkZDih0IVGGSiqjXkOcldW84va0RpCSqr7y_Cmoth6C3KtzGpjhZvn9ZL82NzUWTNdc55xssrr62SDV5Pp5N42Pz-geQ43_9zib7VFqkvF0soS22Auln9nEBp_ALe2uXmQIchXFWQM7OxjjsZOnTjBxxlvcpsw-N-Ww24TfZ8GUEY96eR8f5Y8ojPiCX9YjfPGTTrGzAY0rEAt6B4ZCjCc27L3ac4brmZ79LvuC3UNRffGX352eDTtcpWzg4hiKWDrgmhFbiSvCkcCMXzUVPJQQyJpJACovSREjcz_sKmtYnJBzX4ibLhL5RVlhPfmOraZbCNuM2lMpCoCLlGeqLriJf4WGaKoYw8KHBjioC6l8FUocuMJmFprnV9dw22G5FX11y7ESLloviiyzIBjusLyOvUQAlSgFnT1PtHhUiN_ERIifmX96k7_q9Xj36_i83HbD17qDf072L66sd9oHOFyluu2wVyQ17aBNN4_181b8D2c4FOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VIFVw4FVQQ3ksUqWeDPH6kfUxSolCm6CIEim31WZ3LNomdpRHpfAL-NmdsR0ncEGCgw9ry6-dnZ1vd2a-YexrGKNcfQgdEAYc31rrRNrETuAOYmEjHeos2r1zG7Z6_o9-0F_L4s_5IcoNN9KMbL4mBR_b-GpFGjodDcl1INCCeZRDvemHCH8JFt2VBFIeWq-svAoaLYeYt5a0jVVx9fz-52ZphTXXEWtmcpq7TC8_No80-Xs5nw0uzeMLHsf3_M0e2ynwKK_nA2iffYDkgG2vsRR-Yk_1Ik6A41Sc5oSz8wk2G2nyZ07bcJZ3KK4PoXw6n_JuOlyMYMLrK984_51wze9pw3rEuw_pLC3K75iCr4A3YDjkCKB5a2EnKY5qfv2v0Ap-B3n2xSHrNa_vGy2nKODgGPJXOuCaCGqx64HvCVe7CBZ9GRPFmIhDT1icS4SHq_lAQtUGxIPjWlximSgw0grre0dsI0kT-My4jTxpIZRa-oaqoksdSDxMVQ4gCgOosG9L-alxztOhckZmoahvVdm3FXayFK8q9HWqRM3FyYvwY4VdlJdR08h9ohPA3lOUuUdpyFV8hMhk-cqb1K9Ou122jt9y0zn72P3eVO2b259f2BadzuPbTtgGShtOERDNBmfZmP8PxmgD5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Nanostructured+Conjugated+Microporous+Polymer+Application+in+a+Tandem+Photoelectrochemical+Cell+for+Hydrogen+Evolution+Reaction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Barawi%2C+Mariam&rft.au=Alfonso%E2%80%90Gonz%C3%A1lez%2C+Elena&rft.au=L%C3%B3pez%E2%80%90Calixto%2C+Carmen+G.&rft.au=Garc%C3%ADa%2C+Alberto&rft.date=2022-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=37&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202201351&rft.externalDBID=10.1002%252Fsmll.202201351&rft.externalDocID=SMLL202201351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |