Co‐Catalysis for Hydroamidocarbonylation of Alkynes with Amides over a Bifunctional Ligand‐Based Pd Catalyst

The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β‐unsaturated imides with the advantage of 100% atomic economy. Herein, the bifunctional ligand (L1) containing a sulfonic acid group (‐SO3H) and phosphino‐fragment enable the Pd catalyst to accomplish the hydroamidocar...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 16; no. 15; pp. 2113 - 2117
Main Authors Yang, Da, Zhou, Guang‐Zhao, Zhang, Long‐Li, Liu, Huan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 02.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β‐unsaturated imides with the advantage of 100% atomic economy. Herein, the bifunctional ligand (L1) containing a sulfonic acid group (‐SO3H) and phosphino‐fragment enable the Pd catalyst to accomplish the hydroamidocarbonylation of alkynes with amides. It was found that, due to an intramolecular synergetic effect, the L1‐based Pd‐catalyst exhibited much higher activity than the individual mechanical mixtures of Xantphos‐based Pd‐complex and MeSO3H. The formation and stability of Pd‐H species were promoted by the presence of L1, which was verified by in situ high‐pressure FT‐IR analysis. Under the optimized conditions, the target products of the branched imides were obtained with yields in the range of 46–87% over the L1‐based Pd‐catalyst. Advantageously, as an ionic ligand, the L1‐based Pd‐catalyst could be recycled for 4 runs in the ionic liquid of [Bmim]NTf2 without any obvious activity loss and detectable metal leaching. The hydroamidocarbonylation of alkynes with amides was accomplished over a bifunctional ligand based Pd catalyst.
AbstractList The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β‐unsaturated imides with the advantage of 100% atomic economy. Herein, the bifunctional ligand ( L1 ) containing a sulfonic acid group (‐SO 3 H) and phosphino‐fragment enable the Pd catalyst to accomplish the hydroamidocarbonylation of alkynes with amides. It was found that, due to an intramolecular synergetic effect, the L1 ‐based Pd‐catalyst exhibited much higher activity than the individual mechanical mixtures of Xantphos‐based Pd‐complex and MeSO 3 H. The formation and stability of Pd‐H species were promoted by the presence of L1 , which was verified by in situ high‐pressure FT‐IR analysis. Under the optimized conditions, the target products of the branched imides were obtained with yields in the range of 46–87% over the L1 ‐based Pd‐catalyst. Advantageously, as an ionic ligand, the L1 ‐based Pd‐catalyst could be recycled for 4 runs in the ionic liquid of [Bmim]NTf 2 without any obvious activity loss and detectable metal leaching.
The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β-unsaturated imides with the advantage of 100% atomic economy. Herein, the bifunctional ligand (L1) containing a sulfonic acid group (-SO3 H) and phosphino-fragment enable the Pd catalyst to accomplish the hydroamidocarbonylation of alkynes with amides. It was found that, due to an intramolecular synergetic effect, the L1-based Pd-catalyst exhibited much higher activity than the individual mechanical mixtures of Xantphos-based Pd-complex and MeSO3 H. The formation and stability of Pd-H species were promoted by the presence of L1, which was verified by in situ high-pressure FT-IR analysis. Under the optimized conditions, the target products of the branched imides were obtained with yields in the range of 46-87% over the L1-based Pd-catalyst. Advantageously, as an ionic ligand, the L1-based Pd-catalyst could be recycled for 4 runs in the ionic liquid of [Bmim]NTf2 without any obvious activity loss and detectable metal leaching.The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β-unsaturated imides with the advantage of 100% atomic economy. Herein, the bifunctional ligand (L1) containing a sulfonic acid group (-SO3 H) and phosphino-fragment enable the Pd catalyst to accomplish the hydroamidocarbonylation of alkynes with amides. It was found that, due to an intramolecular synergetic effect, the L1-based Pd-catalyst exhibited much higher activity than the individual mechanical mixtures of Xantphos-based Pd-complex and MeSO3 H. The formation and stability of Pd-H species were promoted by the presence of L1, which was verified by in situ high-pressure FT-IR analysis. Under the optimized conditions, the target products of the branched imides were obtained with yields in the range of 46-87% over the L1-based Pd-catalyst. Advantageously, as an ionic ligand, the L1-based Pd-catalyst could be recycled for 4 runs in the ionic liquid of [Bmim]NTf2 without any obvious activity loss and detectable metal leaching.
The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β‐unsaturated imides with the advantage of 100% atomic economy. Herein, the bifunctional ligand (L1) containing a sulfonic acid group (‐SO3H) and phosphino‐fragment enable the Pd catalyst to accomplish the hydroamidocarbonylation of alkynes with amides. It was found that, due to an intramolecular synergetic effect, the L1‐based Pd‐catalyst exhibited much higher activity than the individual mechanical mixtures of Xantphos‐based Pd‐complex and MeSO3H. The formation and stability of Pd‐H species were promoted by the presence of L1, which was verified by in situ high‐pressure FT‐IR analysis. Under the optimized conditions, the target products of the branched imides were obtained with yields in the range of 46–87% over the L1‐based Pd‐catalyst. Advantageously, as an ionic ligand, the L1‐based Pd‐catalyst could be recycled for 4 runs in the ionic liquid of [Bmim]NTf2 without any obvious activity loss and detectable metal leaching. The hydroamidocarbonylation of alkynes with amides was accomplished over a bifunctional ligand based Pd catalyst.
The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β‐unsaturated imides with the advantage of 100% atomic economy. Herein, the bifunctional ligand (L1) containing a sulfonic acid group (‐SO3H) and phosphino‐fragment enable the Pd catalyst to accomplish the hydroamidocarbonylation of alkynes with amides. It was found that, due to an intramolecular synergetic effect, the L1‐based Pd‐catalyst exhibited much higher activity than the individual mechanical mixtures of Xantphos‐based Pd‐complex and MeSO3H. The formation and stability of Pd‐H species were promoted by the presence of L1, which was verified by in situ high‐pressure FT‐IR analysis. Under the optimized conditions, the target products of the branched imides were obtained with yields in the range of 46–87% over the L1‐based Pd‐catalyst. Advantageously, as an ionic ligand, the L1‐based Pd‐catalyst could be recycled for 4 runs in the ionic liquid of [Bmim]NTf2 without any obvious activity loss and detectable metal leaching.
Author Yang, Da
Zhou, Guang‐Zhao
Liu, Huan
Zhang, Long‐Li
Author_xml – sequence: 1
  givenname: Da
  surname: Yang
  fullname: Yang, Da
  organization: China University of Petroleum
– sequence: 2
  givenname: Guang‐Zhao
  surname: Zhou
  fullname: Zhou, Guang‐Zhao
  organization: China University of Petroleum
– sequence: 3
  givenname: Long‐Li
  surname: Zhang
  fullname: Zhang, Long‐Li
  email: llzhang@upc.edu.cn
  organization: China University of Petroleum
– sequence: 4
  givenname: Huan
  orcidid: 0000-0003-0801-3861
  surname: Liu
  fullname: Liu, Huan
  email: hliu@upc.edu.cn
  organization: China University of Petroleum
BookMark eNqFkEtLAzEQx4Mo-Lx6Dnjx0prHPo_bxRcUFPTgbZlmE42mm5rsWvbmR_Az-knMWqlQEE8zA7_fDPPfR9uNbSRCx5SMKSHsDLyGMSMsDHFMt9AezRI6ilL6sL3uWbaL9r1_DggjebaHFqX9fP8ooQXTe-2xsg5f9bWzMNe1FeBmtukNtNo22CpcmJe-kR4vdfuEi4CE3r5JhwFPtOoaMYBg8FQ_QlOHzRPwssa3Nf450R6iHQXGy6OfeoDuL87vy6vR9ObyuiymI8FjQkeQSCVTBYJls5wCzYCAoOGBCJKcccWzmgBJE06EijmlnNYpSfI0oglhDPgBOl2tXTj72knfVnPthTQGGmk7X7E4IilLOckCerKBPtvOhS8GKs54mlDCAzVeUcJZ751U1cLpObi-oqQa8q-G_Kt1_kGINgSh2-8gWwfa_K3lK22pjez_OVIVd9fFr_sFSnOeDQ
CitedBy_id crossref_primary_10_1002_cjoc_202300490
crossref_primary_10_1021_acs_orglett_1c04142
crossref_primary_10_1016_j_seppur_2024_128492
crossref_primary_10_1002_anie_202111061
crossref_primary_10_1002_ange_202111061
Cites_doi 10.1039/C6CC03017C
10.1002/ange.201503954
10.1021/acs.chemrev.6b00237
10.1002/ange.200702889
10.1039/b404823g
10.1002/ange.200501853
10.1002/cjoc.201500190
10.1039/C8GC00754C
10.1039/p29900002187
10.1021/cs300471s
10.1002/aoc.548
10.1016/S1381-1169(02)00213-3
10.1039/b801456f
10.1002/anie.201709807
10.1021/jo962202c
10.1039/C8CY02337A
10.1002/anie.201308455
10.1021/acs.accounts.8b00125
10.1016/1381-1169(96)00033-7
10.1021/acscatal.7b00367
10.1002/anie.201503954
10.1002/anie.200501853
10.1002/aoc.317
10.1002/anie.200702889
10.1039/C6GC03096C
10.1021/acs.joc.8b01405
10.1002/ange.201308455
10.1039/C5GC02127H
10.1021/cr010439p
10.1002/aoc.1585
10.1002/ange.201709807
10.1002/chem.200902747
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
K9.
7X8
DOI 10.1002/asia.202100551
DatabaseName CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage 2117
ExternalDocumentID 10_1002_asia_202100551
ASIA202100551
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 20CX06032A; 20CX06033A
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M662460
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
K9.
7X8
ID FETCH-LOGICAL-c3501-a6efe7fac28b91a18a0ac14724a6923f38d0a07630cf531131d70697416022a3
ISSN 1861-4728
1861-471X
IngestDate Fri Jul 11 04:30:35 EDT 2025
Mon Jun 30 10:15:33 EDT 2025
Tue Jul 01 00:53:33 EDT 2025
Thu Apr 24 23:09:43 EDT 2025
Wed Jan 22 16:32:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3501-a6efe7fac28b91a18a0ac14724a6923f38d0a07630cf531131d70697416022a3
Notes Dedicated to Prof. Andy Hor for his 65th birthday.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0801-3861
PQID 2558376103
PQPubID 986338
PageCount 5
ParticipantIDs proquest_miscellaneous_2540727308
proquest_journals_2558376103
crossref_primary_10_1002_asia_202100551
crossref_citationtrail_10_1002_asia_202100551
wiley_primary_10_1002_asia_202100551_ASIA202100551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2, 2021
PublicationDateYYYYMMDD 2021-08-02
PublicationDate_xml – month: 08
  year: 2021
  text: August 2, 2021
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 16
2017; 7
2019; 9
1997; 62
2010; 16
2015; 33
2016; 52
2003; 17
2008; 10
2004
2018; 83
2008 2008; 47 120
2016; 18
2018; 20
2013 2013; 52 125
2012; 2
2010; 24
1990
2002; 187
2002; 102
2018 2018; 57 130
2015 2015; 54 127
2005 2005; 44 117
2017; 19
2018; 51
2016; 116
1996; 110
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 83
  start-page: 10134
  year: 2018
  end-page: 10141
  publication-title: J. Org. Chem.
– volume: 44 117
  start-page: 5992 6146
  year: 2005 2005
  end-page: 5997 6151
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 1152 1166
  year: 2018 2018
  end-page: 1160 1174
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47 120
  start-page: 560 570
  year: 2008 2008
  end-page: 563 573
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 369
  year: 2002
  end-page: 376
  publication-title: Appl. Organomet. Chem.
– volume: 102
  start-page: 3067
  year: 2002
  end-page: 3084
  publication-title: Chem. Rev.
– volume: 110
  start-page: 13
  year: 1996
  end-page: 23
  publication-title: J. Mol. Catal. A
– start-page: 1668
  year: 2004
  publication-title: Chem. Commun.
– volume: 52
  start-page: 7142
  year: 2016
  end-page: 7145
  publication-title: Chem. Commun.
– volume: 10
  start-page: 484
  year: 2008
  publication-title: Green Chem.
– volume: 116
  start-page: 12029
  year: 2016
  end-page: 12122
  publication-title: Chem. Rev.
– start-page: 2187
  year: 1990
  publication-title: J. Chem. Soc.-Perkin Trans.
– volume: 16
  start-page: 4426
  year: 2010
  end-page: 4436
  publication-title: Chem. Eur. J.
– volume: 18
  start-page: 1798
  year: 2016
  end-page: 1806
  publication-title: Green Chem.
– volume: 33
  start-page: 531
  year: 2015
  end-page: 534
  publication-title: Chin. J. Chem.
– volume: 52 125
  start-page: 14089 14339
  year: 2013 2013
  end-page: 14093 14343
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 2588
  year: 2018
  end-page: 2595
  publication-title: Green Chem.
– volume: 19
  start-page: 1109
  year: 2017
  end-page: 1116
  publication-title: Green Chem.
– volume: 7
  start-page: 2220
  year: 2017
  end-page: 2229
  publication-title: ACS Catal.
– volume: 187
  start-page: 17
  year: 2002
  end-page: 33
  publication-title: J. Mol. Catal. A
– volume: 54 127
  start-page: 10239 10377
  year: 2015 2015
  end-page: 10243 10381
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 1334
  year: 2019
  end-page: 1337
  publication-title: Catal. Sci. Technol.
– volume: 17
  start-page: 921
  year: 2003
  end-page: 931
  publication-title: Appl. Organomet. Chem.
– volume: 51
  start-page: 1301
  year: 2018
  end-page: 1314
  publication-title: Acc. Chem. Res.
– volume: 62
  start-page: 2652
  year: 1997
  end-page: 2654
  publication-title: J. Org. Chem.
– volume: 2
  start-page: 2357
  year: 2012
  end-page: 2370
  publication-title: ACS Catal.
– volume: 24
  start-page: 38
  year: 2010
  end-page: 46
  publication-title: Appl. Organomet. Chem.
– ident: e_1_2_7_20_1
  doi: 10.1039/C6CC03017C
– ident: e_1_2_7_19_2
  doi: 10.1002/ange.201503954
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.chemrev.6b00237
– ident: e_1_2_7_23_2
  doi: 10.1002/ange.200702889
– ident: e_1_2_7_8_1
  doi: 10.1039/b404823g
– ident: e_1_2_7_9_2
  doi: 10.1002/ange.200501853
– ident: e_1_2_7_7_1
  doi: 10.1002/cjoc.201500190
– ident: e_1_2_7_3_1
– ident: e_1_2_7_24_1
  doi: 10.1039/C8GC00754C
– ident: e_1_2_7_5_1
  doi: 10.1039/p29900002187
– ident: e_1_2_7_29_1
  doi: 10.1021/cs300471s
– ident: e_1_2_7_13_1
  doi: 10.1002/aoc.548
– ident: e_1_2_7_11_1
  doi: 10.1016/S1381-1169(02)00213-3
– ident: e_1_2_7_25_1
  doi: 10.1039/b801456f
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.201709807
– ident: e_1_2_7_6_1
  doi: 10.1021/jo962202c
– ident: e_1_2_7_16_1
  doi: 10.1039/C8CY02337A
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201308455
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.accounts.8b00125
– ident: e_1_2_7_22_1
  doi: 10.1016/1381-1169(96)00033-7
– ident: e_1_2_7_10_1
  doi: 10.1021/acscatal.7b00367
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201503954
– ident: e_1_2_7_2_1
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.200501853
– ident: e_1_2_7_12_1
  doi: 10.1002/aoc.317
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.200702889
– ident: e_1_2_7_28_1
  doi: 10.1039/C6GC03096C
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.joc.8b01405
– ident: e_1_2_7_21_2
  doi: 10.1002/ange.201308455
– ident: e_1_2_7_27_1
  doi: 10.1039/C5GC02127H
– ident: e_1_2_7_4_1
  doi: 10.1021/cr010439p
– ident: e_1_2_7_14_1
  doi: 10.1002/aoc.1585
– ident: e_1_2_7_17_2
  doi: 10.1002/ange.201709807
– ident: e_1_2_7_26_1
  doi: 10.1002/chem.200902747
SSID ssj0052098
Score 2.3430345
Snippet The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β‐unsaturated imides with the advantage of 100% atomic economy. Herein, the...
The hydroamidocarbonylation of alkynes with amides allows for the synthesis of α,β-unsaturated imides with the advantage of 100% atomic economy. Herein, the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2113
SubjectTerms Alkynes
Amides
Bifunctional ligand
Catalysis
Catalysts
Chemistry
Hydroamidocarbonylation
Imides
In situ leaching
Infrared analysis
Ionic liquids
Leaching
Ligands
Palladium
Pd catalysts
Sulfonic acid
α,β-unsaturated imides
Title Co‐Catalysis for Hydroamidocarbonylation of Alkynes with Amides over a Bifunctional Ligand‐Based Pd Catalyst
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202100551
https://www.proquest.com/docview/2558376103
https://www.proquest.com/docview/2540727308
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gCXil-xUJCRkDisUpx_7zGbUi1ohSqxSFUvkeM4NKJsqu3mUE48Ao_D8_AkzCS2NwtbUbhEie34J_PF4xnPjAl5yd0gl2HMYPaT3AkKXzh5WConBAQV6AvKVWsg-z6afgzenYQng8GPntVSs8oP5NetfiX_Q1VIA7qil-w_UNZWCglwD_SFK1AYrjeicVpbW4UU1TBtdBG0G5xeFctafKkK4FTLHI3P7cowOf98BdNbp4BNoAhGnYWRj8RoUiGX08rBWfUJbR5N_RPgdsXouBjphjZU-qk5Na6zBQWaV1q_b4aA84rWTB9aRnB6VjetXr7BLNPS6Zmo_1Bnz-peiVll8mdVW8G00RjX6guv1ceynkbT5REIsbH2EFf9tPYsnfU0HfXhGG5Mup07q2bg8BhvZQ5dsFl0Tj3AnmD4MXfNBs3W_2_c0dosdvGdvQzfz-z7t8iuBwIKzLC7yeRwcmRWAWhd1LphmuGZgKHMe73Zg80F0VrK6ctK7WJnfpfsaSmFJh3k7pGBWtwnty2ZH5CLtP757bsFHQXQ0WtAR-uSatBRBB3tQEcRdFTQPuhoBzqouYUbPS6ogdtDMj96M0-njj68w5G4V-2ISJUqLoX0eD52hcsFE9KFLxGICISK0ucFEwy4G5Ml8AHXd4uYRWMUEGBZKfxHZGdRL9RjQpUIlWIy4KLMgzAfC8-PRegLGYfKC0p3SBzzATOpA9vj-Srn2XaSDckrW_6iC-lybcl9Q49M_zOXGcjgHLiyy_wheWGz4fPjTptYqLrBMhh3EJgnHxKvpeNfWsqSD28T-_Tkxj18Su6sf6p9srNaNuoZrJJX-XMNyF-s8bZo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co%E2%80%90Catalysis+for+Hydroamidocarbonylation+of+Alkynes+with+Amides+over+a+Bifunctional+Ligand%E2%80%90Based+Pd+Catalyst&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Yang%2C+Da&rft.au=Zhou%2C+Guang%E2%80%90Zhao&rft.au=Zhang%2C+Long%E2%80%90Li&rft.au=Liu%2C+Huan&rft.date=2021-08-02&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=16&rft.issue=15&rft.spage=2113&rft.epage=2117&rft_id=info:doi/10.1002%2Fasia.202100551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_asia_202100551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon