High‐Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See‐Through Functions

Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising pers...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 32; pp. e2001621 - n/a
Main Authors Wang, Di, Qin, Ran, Zhou, Guanqing, Li, Xue, Xia, Ruoxi, Li, Yuhao, Zhan, Lingling, Zhu, Haiming, Lu, Xinhui, Yip, Hin‐Lap, Chen, Hongzheng, Li, Chang‐Zhi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising perspectives for building‐integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade‐off relationship, of ST‐OSCs, new ternary blends with alloy‐like near‐infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST‐OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780–2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best‐performing multifunctional ST‐OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see‐through. High‐performance semitransparent organic solar cells are achieved through combined design efforts on the formulation of near‐infrared ternary blends and optical control over photonic reflectors, which exhibit excellent features of power generation, they being see‐through, and infrared reflection.
AbstractList Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising perspectives for building‐integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade‐off relationship, of ST‐OSCs, new ternary blends with alloy‐like near‐infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST‐OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780–2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best‐performing multifunctional ST‐OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see‐through.
Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising perspectives for building‐integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade‐off relationship, of ST‐OSCs, new ternary blends with alloy‐like near‐infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST‐OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780–2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best‐performing multifunctional ST‐OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see‐through.
Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high-performance semitransparent organic solar cells (ST-OSCs) with excellent features of power generation, being see-through, and infrared reflection of heat dissipation, with promising perspectives for building-integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade-off relationship, of ST-OSCs, new ternary blends with alloy-like near-infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST-OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780-2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best-performing multifunctional ST-OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see-through.Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high-performance semitransparent organic solar cells (ST-OSCs) with excellent features of power generation, being see-through, and infrared reflection of heat dissipation, with promising perspectives for building-integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade-off relationship, of ST-OSCs, new ternary blends with alloy-like near-infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST-OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780-2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best-performing multifunctional ST-OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see-through.
Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising perspectives for building‐integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade‐off relationship, of ST‐OSCs, new ternary blends with alloy‐like near‐infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST‐OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780–2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best‐performing multifunctional ST‐OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see‐through. High‐performance semitransparent organic solar cells are achieved through combined design efforts on the formulation of near‐infrared ternary blends and optical control over photonic reflectors, which exhibit excellent features of power generation, they being see‐through, and infrared reflection.
Author Xia, Ruoxi
Li, Xue
Zhou, Guanqing
Lu, Xinhui
Chen, Hongzheng
Wang, Di
Qin, Ran
Zhan, Lingling
Li, Chang‐Zhi
Zhu, Haiming
Yip, Hin‐Lap
Li, Yuhao
Author_xml – sequence: 1
  givenname: Di
  surname: Wang
  fullname: Wang, Di
  organization: Zhejiang University
– sequence: 2
  givenname: Ran
  surname: Qin
  fullname: Qin, Ran
  organization: Zhejiang University
– sequence: 3
  givenname: Guanqing
  surname: Zhou
  fullname: Zhou, Guanqing
  organization: Zhejiang University
– sequence: 4
  givenname: Xue
  surname: Li
  fullname: Li, Xue
  organization: Zhejiang University
– sequence: 5
  givenname: Ruoxi
  surname: Xia
  fullname: Xia, Ruoxi
  organization: South China University of Technology
– sequence: 6
  givenname: Yuhao
  surname: Li
  fullname: Li, Yuhao
  organization: Chinese University of Hong Kong
– sequence: 7
  givenname: Lingling
  surname: Zhan
  fullname: Zhan, Lingling
  organization: Zhejiang University
– sequence: 8
  givenname: Haiming
  surname: Zhu
  fullname: Zhu, Haiming
  organization: Zhejiang University
– sequence: 9
  givenname: Xinhui
  surname: Lu
  fullname: Lu, Xinhui
  organization: Chinese University of Hong Kong
– sequence: 10
  givenname: Hin‐Lap
  surname: Yip
  fullname: Yip, Hin‐Lap
  organization: South China University of Technology
– sequence: 11
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  organization: Zhejiang University
– sequence: 12
  givenname: Chang‐Zhi
  orcidid: 0000-0003-1968-2032
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
BookMark eNqFkcFO3DAURa2KSgyULWtL3XSTqZ-deOLlaICCBKIqsI6c5HnGKLEHOxGw6yf0G_sldZgKJKSqK8vyOVfv-R6QPecdEnIMbA6M8a-67fWcM84YSA4fyAwKDlnOVLFHZkyJIlMyL_fJQYz3jDElmZyR8dyuN79__vqOwfjQa9cgvcHeDkG7uNUB3UCvw1o729Ab3-lAV9h1kT7aYUNPn5p0mZALZ0KCW_oDTYfNYL2j2rUpClP47Sb4cb2hZ6N7eYqfyEeju4hHf89Dcnd2ers6zy6vv12slpdZIwoGmeYGawQFhucoFiiglK2oOS8lSNEuWCvrFoQALhZaF2VZ81oZKeqm4KViRhySL7vcbfAPI8ah6m2cZtYO_RgrnoNaAPCCJ_TzO_Tej8Gl6RIleAEiVxOV76gm-BgDmqqxg552Sh9muwpYNXVRTV1Ur10kbf5O2wbb6_D8b0HthEfb4fN_6Gp5crV8c_8AH4CgkQ
CitedBy_id crossref_primary_10_1021_acsenergylett_2c02348
crossref_primary_10_1002_anie_202307622
crossref_primary_10_1002_aenm_202003576
crossref_primary_10_1002_ange_202116111
crossref_primary_10_1016_j_cej_2023_144850
crossref_primary_10_1002_smtd_202101570
crossref_primary_10_1002_solr_202200441
crossref_primary_10_1002_aenm_202401741
crossref_primary_10_1016_j_cej_2022_139423
crossref_primary_10_1002_macp_202200222
crossref_primary_10_1002_adma_202305092
crossref_primary_10_1002_solr_202200679
crossref_primary_10_1021_acsapm_3c01184
crossref_primary_10_1002_aenm_202104028
crossref_primary_10_1002_solr_202100041
crossref_primary_10_1002_solr_202400724
crossref_primary_10_1016_j_mtener_2021_100852
crossref_primary_10_1002_adfm_202305608
crossref_primary_10_1021_acsami_1c09597
crossref_primary_10_1002_adfm_202110743
crossref_primary_10_1002_adma_202110147
crossref_primary_10_1002_solr_202100785
crossref_primary_10_1039_D3EE04476A
crossref_primary_10_34133_research_0375
crossref_primary_10_1021_acsomega_3c00598
crossref_primary_10_1021_acsaem_2c01807
crossref_primary_10_1021_acs_est_3c05887
crossref_primary_10_1002_solr_202000537
crossref_primary_10_1016_j_enconman_2021_114955
crossref_primary_10_1002_solr_202200174
crossref_primary_10_1038_s41578_022_00514_0
crossref_primary_10_1039_D2EE03483B
crossref_primary_10_1002_ange_202306847
crossref_primary_10_1002_adfm_202109410
crossref_primary_10_1002_adom_202302285
crossref_primary_10_1016_j_cej_2024_154935
crossref_primary_10_1051_e3sconf_202126102081
crossref_primary_10_1038_s41893_023_01071_2
crossref_primary_10_1039_D3TA03614F
crossref_primary_10_1002_aenm_202003177
crossref_primary_10_1021_acsapm_0c00791
crossref_primary_10_1002_adma_202200337
crossref_primary_10_1016_j_orgel_2021_106063
crossref_primary_10_1021_acs_nanolett_5c00246
crossref_primary_10_1039_D1TC03110D
crossref_primary_10_1039_D2TC02689A
crossref_primary_10_1002_admt_202101556
crossref_primary_10_1021_acsami_3c08028
crossref_primary_10_1007_s11426_022_1256_8
crossref_primary_10_1039_D1TC02413B
crossref_primary_10_3390_su151612442
crossref_primary_10_1007_s11426_022_1300_1
crossref_primary_10_1007_s40843_024_3210_y
crossref_primary_10_1016_j_cej_2023_145807
crossref_primary_10_1039_D2EE00977C
crossref_primary_10_1002_aenm_202101338
crossref_primary_10_1002_solr_202300037
crossref_primary_10_1039_D3TC02570E
crossref_primary_10_1002_adfm_202313689
crossref_primary_10_1002_chem_202003925
crossref_primary_10_1002_adom_202201848
crossref_primary_10_1002_aenm_202003441
crossref_primary_10_1002_aenm_202301367
crossref_primary_10_1002_solr_202200070
crossref_primary_10_1080_15421406_2023_2176055
crossref_primary_10_1002_adma_202110569
crossref_primary_10_1038_s41570_022_00409_2
crossref_primary_10_1039_D3CS00233K
crossref_primary_10_3390_en17215327
crossref_primary_10_1039_D1QM00407G
crossref_primary_10_1016_j_nanoen_2020_105376
crossref_primary_10_1002_adfm_202107934
crossref_primary_10_1039_D1TC06096A
crossref_primary_10_1002_solr_202000742
crossref_primary_10_1002_aenm_202400970
crossref_primary_10_1021_acsenergylett_0c01554
crossref_primary_10_1021_acsenergylett_4c00149
crossref_primary_10_1002_aenm_202200713
crossref_primary_10_1038_s43246_022_00325_4
crossref_primary_10_1002_adma_202206269
crossref_primary_10_1002_adfm_202406070
crossref_primary_10_1021_acsami_1c04705
crossref_primary_10_1039_D1TC04569E
crossref_primary_10_1002_adfm_202200107
crossref_primary_10_1002_adma_202210760
crossref_primary_10_1002_anie_202306847
crossref_primary_10_1016_j_jcis_2022_07_096
crossref_primary_10_1038_s41598_023_47898_9
crossref_primary_10_1021_acs_chemmater_0c04318
crossref_primary_10_1002_adma_202100830
crossref_primary_10_1002_adom_202100064
crossref_primary_10_1021_acs_chemrev_1c00955
crossref_primary_10_1002_aenm_202002572
crossref_primary_10_1021_acsami_0c12100
crossref_primary_10_1002_adfm_202107827
crossref_primary_10_1002_anie_202116111
crossref_primary_10_1002_adma_202107330
crossref_primary_10_1021_acsenergylett_2c01586
crossref_primary_10_1002_aenm_202003408
crossref_primary_10_1002_adma_202200044
crossref_primary_10_1002_adma_202103091
crossref_primary_10_1021_acsapm_4c02826
crossref_primary_10_1021_acsami_3c09984
crossref_primary_10_1021_acsmaterialslett_4c00393
crossref_primary_10_1007_s11426_023_1828_8
crossref_primary_10_1002_adfm_202007931
crossref_primary_10_1021_acsaem_2c02416
crossref_primary_10_1002_adma_202205844
crossref_primary_10_1002_solr_202300784
crossref_primary_10_1002_aenm_202200453
crossref_primary_10_1021_acs_jpcc_1c05736
crossref_primary_10_1039_D1NJ00807B
crossref_primary_10_1002_aenm_202301555
crossref_primary_10_1016_j_polymer_2021_124322
crossref_primary_10_1002_advs_202202150
crossref_primary_10_1039_D2TC04723C
crossref_primary_10_1021_acsaem_3c01734
crossref_primary_10_1021_acs_chemmater_2c02146
crossref_primary_10_1021_acsami_3c08068
crossref_primary_10_1002_nano_202000287
crossref_primary_10_1021_acsami_2c18540
crossref_primary_10_1016_j_dyepig_2020_109116
crossref_primary_10_1002_aenm_202102908
crossref_primary_10_1002_marc_202200199
crossref_primary_10_1002_adma_202306681
crossref_primary_10_1002_ange_202307622
crossref_primary_10_1016_j_jechem_2021_05_032
crossref_primary_10_1016_j_synthmet_2023_117480
crossref_primary_10_1039_D4TA00044G
crossref_primary_10_1007_s00339_021_05025_3
crossref_primary_10_1016_j_orgel_2021_106276
crossref_primary_10_1360_SSC_2023_0173
crossref_primary_10_1021_acsaem_3c00093
crossref_primary_10_1002_admt_202000960
crossref_primary_10_1016_j_xcrp_2021_100381
crossref_primary_10_1002_eom2_12281
crossref_primary_10_1021_acsnano_1c09018
crossref_primary_10_1016_j_cej_2021_130397
crossref_primary_10_1002_adfm_202414260
crossref_primary_10_1002_aenm_202203266
crossref_primary_10_1021_acsaem_1c03017
crossref_primary_10_1021_acsaem_2c03407
crossref_primary_10_1002_aesr_202000035
crossref_primary_10_1246_bcsj_20200231
crossref_primary_10_1002_ente_202201176
crossref_primary_10_1002_solr_202200308
crossref_primary_10_1039_D2EE03134E
crossref_primary_10_1016_j_cej_2021_132048
crossref_primary_10_1007_s40820_024_01547_6
crossref_primary_10_1016_j_joule_2021_02_010
crossref_primary_10_1016_j_joule_2022_12_007
crossref_primary_10_1021_acs_jpcc_4c02528
crossref_primary_10_3390_en15134639
crossref_primary_10_1038_s41467_025_55924_9
crossref_primary_10_1007_s10118_023_2895_5
Cites_doi 10.1002/adma.201902302
10.1021/acsnano.8b08577
10.1021/acsphotonics.7b00618
10.1016/j.scib.2020.01.001
10.1002/advs.201800755
10.1002/solr.201900317
10.1038/nenergy.2016.89
10.1038/ncomms8327
10.1016/j.joule.2019.01.004
10.1002/adma.201903173
10.1002/smtd.201900424
10.1039/C9TA10145D
10.1038/s41560-017-0016-9
10.1002/adma.201908205
10.1016/j.nanoen.2019.04.018
10.1021/jacs.8b12126
10.1002/adma.201905645
10.1038/nmat5063
10.1016/j.joule.2019.06.005
10.1038/s41467-019-12132-6
10.1016/j.joule.2018.06.006
10.1038/s41467-019-10098-z
10.1002/adma.201803769
10.1002/adma.201900904
10.1016/j.joule.2019.12.018
10.1016/j.nanoen.2019.06.003
10.1002/solr.201800270
10.1002/app.1969.070130815
10.1002/aenm.201903298
10.1039/C9TA05789G
10.1039/C9EE03710A
10.1039/C9MH00844F
10.1016/j.scib.2017.11.003
10.1016/j.nanoen.2019.104271
10.1002/adma.201901683
10.1002/adma.201807159
10.1039/C5RA17268C
10.1002/smll.201701120
10.1038/s41560-018-0234-9
10.1039/C9TA11285E
10.1039/C8EE00154E
10.1002/aenm.201301989
10.1002/aenm.201701791
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202001621
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202001621
ADMA202001621
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21722404; 21674093; 21734008
– fundername: Research Grant Council of Hong Kong
  funderid: N_CUHK418/17
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705900; 2017YF0206600
– fundername: Basic and Applied Basic Research Major Program of Guangdong Province
  funderid: 2019B030302007
– fundername: Zhejiang Natural Science Fund for Distinguished Young Scholars
  funderid: LR17E030001
– fundername: General Research Fund
  funderid: 14303519
– fundername: International Science and Technology Cooperation Programme
  funderid: 2016YFE0102900
– fundername: CUHK Direct
  funderid: 4053304
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3501-a2febe191f24e37e3186d3b2286163d70d6bd1331237aa588b2b9f63bc52890f3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 07:07:54 EDT 2025
Thu Jul 03 03:41:21 EDT 2025
Tue Jul 01 02:32:49 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Wed Jan 22 16:32:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-a2febe191f24e37e3186d3b2286163d70d6bd1331237aa588b2b9f63bc52890f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1968-2032
PQID 2432513492
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2419711252
proquest_journals_2432513492
crossref_citationtrail_10_1002_adma_202001621
crossref_primary_10_1002_adma_202001621
wiley_primary_10_1002_adma_202001621_ADMA202001621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2019; 7
2015; 6
2019; 3
2017; 2
2015; 5
2019; 6
2017; 4
2019; 31
2019; 10
2019; 13
1969; 13
2020; 13
2020; 32
2020; 10
2019; 141
2018; 8
2018; 17
2020; 4
2018; 3
2019; 60
2014; 4
2018; 2
2016; 1
2018; 5
2019; 63
2017; 13
2018; 30
2020; 68
2019; 5197
2020; 65
2018; 11
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
Li X. (e_1_2_5_14_1) 2019; 5197
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 1071
  year: 2019
  publication-title: ACS Nano
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 62
  start-page: 1562
  year: 2017
  publication-title: Sci. Bull.
– volume: 3
  start-page: 1803
  year: 2019
  publication-title: Joule
– volume: 3
  start-page: 952
  year: 2018
  publication-title: Nat. Energy
– volume: 65
  start-page: 272
  year: 2020
  publication-title: Sci. Bull.
– volume: 13
  start-page: 635
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 5197
  start-page: 1
  year: 2019
  publication-title: Chin. Chem. Lett.
– volume: 11
  start-page: 1688
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 2094
  year: 2019
  publication-title: Mater. Horiz.
– volume: 10
  start-page: 2152
  year: 2019
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1816
  year: 2018
  publication-title: Joule
– volume: 10
  start-page: 4100
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2327
  year: 2017
  publication-title: ACS Photonics
– volume: 6
  start-page: 7327
  year: 2015
  publication-title: Nat. Commun.
– volume: 60
  start-page: 768
  year: 2019
  publication-title: Nano Energy
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 2
  start-page: 849
  year: 2017
  publication-title: Nat. Energy
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 119
  year: 2018
  publication-title: Nat. Mater.
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 4
  start-page: 490
  year: 2020
  publication-title: Joule
– volume: 13
  year: 2017
  publication-title: Small
– volume: 141
  start-page: 3073
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1741
  year: 1969
  publication-title: J. Appl. Polym. Sci.
– ident: e_1_2_5_27_1
  doi: 10.1002/adma.201902302
– ident: e_1_2_5_8_1
  doi: 10.1021/acsnano.8b08577
– ident: e_1_2_5_17_1
  doi: 10.1021/acsphotonics.7b00618
– ident: e_1_2_5_33_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_5_44_1
  doi: 10.1002/advs.201800755
– ident: e_1_2_5_38_1
  doi: 10.1002/solr.201900317
– ident: e_1_2_5_39_1
  doi: 10.1038/nenergy.2016.89
– ident: e_1_2_5_25_1
  doi: 10.1038/ncomms8327
– ident: e_1_2_5_7_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_5_11_1
  doi: 10.1002/adma.201903173
– ident: e_1_2_5_15_1
  doi: 10.1002/smtd.201900424
– ident: e_1_2_5_30_1
  doi: 10.1039/C9TA10145D
– ident: e_1_2_5_31_1
  doi: 10.1038/s41560-017-0016-9
– ident: e_1_2_5_34_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_5_23_1
  doi: 10.1016/j.nanoen.2019.04.018
– ident: e_1_2_5_37_1
  doi: 10.1021/jacs.8b12126
– ident: e_1_2_5_41_1
  doi: 10.1002/adma.201905645
– ident: e_1_2_5_3_1
  doi: 10.1038/nmat5063
– ident: e_1_2_5_21_1
  doi: 10.1016/j.joule.2019.06.005
– ident: e_1_2_5_24_1
  doi: 10.1038/s41467-019-12132-6
– ident: e_1_2_5_13_1
  doi: 10.1016/j.joule.2018.06.006
– ident: e_1_2_5_18_1
  doi: 10.1038/s41467-019-10098-z
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201803769
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201900904
– ident: e_1_2_5_20_1
  doi: 10.1016/j.joule.2019.12.018
– ident: e_1_2_5_26_1
  doi: 10.1016/j.nanoen.2019.06.003
– ident: e_1_2_5_16_1
  doi: 10.1002/solr.201800270
– ident: e_1_2_5_36_1
  doi: 10.1002/app.1969.070130815
– volume: 5197
  start-page: 1
  year: 2019
  ident: e_1_2_5_14_1
  publication-title: Chin. Chem. Lett.
– ident: e_1_2_5_40_1
  doi: 10.1002/aenm.201903298
– ident: e_1_2_5_9_1
  doi: 10.1039/C9TA05789G
– ident: e_1_2_5_29_1
  doi: 10.1039/C9EE03710A
– ident: e_1_2_5_43_1
  doi: 10.1039/C9MH00844F
– ident: e_1_2_5_5_1
  doi: 10.1016/j.scib.2017.11.003
– ident: e_1_2_5_35_1
  doi: 10.1016/j.nanoen.2019.104271
– ident: e_1_2_5_12_1
  doi: 10.1002/adma.201901683
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201807159
– ident: e_1_2_5_42_1
  doi: 10.1039/C5RA17268C
– ident: e_1_2_5_4_1
  doi: 10.1002/smll.201701120
– ident: e_1_2_5_22_1
  doi: 10.1038/s41560-018-0234-9
– ident: e_1_2_5_32_1
  doi: 10.1039/C9TA11285E
– ident: e_1_2_5_1_1
  doi: 10.1039/C8EE00154E
– ident: e_1_2_5_10_1
  doi: 10.1002/aenm.201301989
– ident: e_1_2_5_2_1
  doi: 10.1002/aenm.201701791
SSID ssj0009606
Score 2.65492
Snippet Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar...
Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high-performance semitransparent organic solar...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2001621
SubjectTerms Clean energy
Energy conservation
Energy conversion efficiency
Energy dissipation
Infrared reflection
Materials science
morphology
Photovoltaic cells
Reflectors
semitransparent organic solar cells
Solar cells
ternary blends
Transmittance
Title High‐Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See‐Through Functions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001621
https://www.proquest.com/docview/2432513492
https://www.proquest.com/docview/2419711252
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i_XFCoKn1XSTbNJjUYsKFbEt9Bb2FRBrKm0K4smf4G_0lzizadIqiKC3hExeu5nMN7vffEvIcayErEdCMxUGigG-bTBpdcAgEqUxN57WjvLfvhVXveCmH_bnqvgLfYhqwA09w_2v0cGlGp_NREOlcbpByAkSrpIcCVuIiu5n-lEIz53Ynh-yhgjiUrXR42dfT_8alWZQcx6wuojTWiWyfNaCaPJ4OsnVqX79JuP4n5dZIytTOEqbxfezThZstkGW50QKN8kEqSAfb-93sxID2rFPD7mTRcdaspwWFZ2adjBRpud2MBhTHOGlly9uZgBMrrN0hGR3em_TgeN_ZVRmBi5l4eLdYrkg2oIw6zxhi_Ral93zKzZdrIFpnJtkkqfwPUD2l_LA-hEOrQrjK85jAZDPRJ4RykBCDJEykjKMY8VVIxW-0iHOdab-NlnMhpndIdS3IgYYo4XQkKwJK5WXujzVRMaPYlEjrOysRE-VzHFBjUFSaDDzBJszqZqzRk4q--dCw-NHy_2y75OpL48THvgAAlHFsUaOqsPghdiAMrPDCdrUGxFA1xBsuOvoX-6UNC_azWpv9y8n7ZEl3C7YiPtkMR9N7AEgpFwdOi_4BPMsCP0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9gAcoPyJpX9GAnFyu-skTvbAYdXtapd2K9Rupd6C_yIhlhR1swJ64hF4FV6FR-BJmHF-tq2EkJB64Jhk4ji2x_5mPPMZ4EWiperE0nAdhZojvu1y5UzIcSXKEmHbxviQ__GhHJ6Eb06j0yX4UefClPwQjcONNMPP16Tg5JDeWbCGKuuJgygoSIpOFVe5775-Rqtt9nrUxy5-KcRgb7I75NXBAtzQPhpXIsO6o6WSidAFMbkBpQ20EIlEeGLjtpXaovGGs3qsVJQkWuhuJgNtItqXywIs9xas0DHiRNffP1owVpFB4On9goh3ZZjUPJFtsXO1vlfXwQW4vQyR_Ro3uA8_69YpQ1s-bM8LvW0urhFH_lfNtwr3KsTNeqWKPIAllz-Eu5d4GB_BnKJdfn37_naRRcGO3cf3hWd-p3S5gpVJq4Ydky-A7brpdMbIic32vvjNDxQZ5dk5xfOzI5dNfYhbzlRusSiHhU_KE5HYAJGEV_bHcHIj__0ElvOz3D0FFjiZIFIzUhq0R6VTup15U9zGNogT2QJej47UVGTtdGbINC1ppkVK3Zc23deCV438p5Km5I-S6_VgS6vpapaKMECcS0SVLXjePMaJhhpQ5e5sTjKdbozoPEIZ4UfWX76U9vrjXnP17F9e2oLbw8n4ID0YHe6vwR26XwZfrsNycT53GwgIC73pVZDBu5setL8BKKRk8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48K5YKGAkECe3WSdxkkMPq25XXUqrqg-pt-BXJMSSVt2seJz6E_pT-lf4C_wSZpzHtkgICakHjkkmjmPPjL-xx58BXqdaqn4iDddxpDni24wrZyKOI1GRChsY41P-t3fk5mH07ig-WoCLdi9MzQ_RTbiRZXh_TQZ-YovVOWmosp43iHKCpOg3aZVb7tsXDNqma-Mh9vAbIUYbB-ubvDlXgBtaRuNKFFh1DFQKEbkwoVlAaUMtRCoRndgksFJbjN3QqSdKxWmqhc4KGWoT07JcEWK5N-BmJIOMDosY7s0Jqyge8Ox-YcwzGaUtTWQgVq_W9-owOMe2lxGyH-JG9-BH2zh1ZsunlVmlV8z333gj_6fWuw93G7zNBrWBPIAFVz6EO5dYGB_BjHJdfp6d7873ULB99_lj5XnfabNcxeotq4bt00wAW3eTyZTRFDbb-OqXPlBkXBanlM3P9lwx8QluJVOlxaIcFn5Qn4fERogjvKk_hsNr-e8lWCyPS_cEWOhkijjNSGkwGpVO6aDwgbhNbJiksge8VY7cNFTtdGLIJK9JpkVO3Zd33deDt538SU1S8kfJ5VbX8sZZTXMRhYhyiaayB6-6x-hmqAFV6Y5nJNPPEsTmMcoIr1h_-VI-GG4Puqun__LSS7i1Oxzl78c7W8_gNt2uMy-XYbE6nbnniAYr_cIbIIMP162zvwBxfGOf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Semitransparent+Organic+Solar+Cells+with+Excellent+Infrared+Reflection+and+See%E2%80%90Through+Functions&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Di&rft.au=Qin%2C+Ran&rft.au=Zhou%2C+Guanqing&rft.au=Li%2C+Xue&rft.date=2020-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=32&rft_id=info:doi/10.1002%2Fadma.202001621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202001621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon