High‐Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See‐Through Functions
Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising pers...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 32; pp. e2001621 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising perspectives for building‐integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade‐off relationship, of ST‐OSCs, new ternary blends with alloy‐like near‐infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST‐OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780–2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best‐performing multifunctional ST‐OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see‐through.
High‐performance semitransparent organic solar cells are achieved through combined design efforts on the formulation of near‐infrared ternary blends and optical control over photonic reflectors, which exhibit excellent features of power generation, they being see‐through, and infrared reflection. |
---|---|
AbstractList | Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising perspectives for building‐integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade‐off relationship, of ST‐OSCs, new ternary blends with alloy‐like near‐infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST‐OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780–2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best‐performing multifunctional ST‐OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see‐through. Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising perspectives for building‐integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade‐off relationship, of ST‐OSCs, new ternary blends with alloy‐like near‐infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST‐OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780–2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best‐performing multifunctional ST‐OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see‐through. Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high-performance semitransparent organic solar cells (ST-OSCs) with excellent features of power generation, being see-through, and infrared reflection of heat dissipation, with promising perspectives for building-integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade-off relationship, of ST-OSCs, new ternary blends with alloy-like near-infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST-OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780-2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best-performing multifunctional ST-OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see-through.Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high-performance semitransparent organic solar cells (ST-OSCs) with excellent features of power generation, being see-through, and infrared reflection of heat dissipation, with promising perspectives for building-integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade-off relationship, of ST-OSCs, new ternary blends with alloy-like near-infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST-OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780-2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best-performing multifunctional ST-OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see-through. Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar cells (ST‐OSCs) with excellent features of power generation, being see‐through, and infrared reflection of heat dissipation, with promising perspectives for building‐integrated photovoltaics (BIPVs) are reported. To simultaneously improve average visible transmittance (AVT) and power conversion efficiency (PCE), formally in a trade‐off relationship, of ST‐OSCs, new ternary blends with alloy‐like near‐infrared (NIR) acceptors are employed, which are effective to improve device efficiency while maintaining visible absorption unchanged, resulting in PCEs of 16.8% for opaque devices and 13.1% for semitransparent OSCs (AVT of 22.4% and infrared photon radiation rejection (IRR) of 77%). Further, multifunctional ST‐OSCs are realized via introducing simple, yet effective photonic reflectors, together with optical simulation, leading to not only perfect fitting of the visible transmittance peak (555 nm) to the photopic response of the human eye but also an excellent IRR of 90% (780–2500 nm), along with 23% AVT and over 12% PCE. This is thought to be the best‐performing multifunctional ST‐OSC with promising prospects as BIPVs in terms of power generation, heat dissipation, and being see‐through. High‐performance semitransparent organic solar cells are achieved through combined design efforts on the formulation of near‐infrared ternary blends and optical control over photonic reflectors, which exhibit excellent features of power generation, they being see‐through, and infrared reflection. |
Author | Xia, Ruoxi Li, Xue Zhou, Guanqing Lu, Xinhui Chen, Hongzheng Wang, Di Qin, Ran Zhan, Lingling Li, Chang‐Zhi Zhu, Haiming Yip, Hin‐Lap Li, Yuhao |
Author_xml | – sequence: 1 givenname: Di surname: Wang fullname: Wang, Di organization: Zhejiang University – sequence: 2 givenname: Ran surname: Qin fullname: Qin, Ran organization: Zhejiang University – sequence: 3 givenname: Guanqing surname: Zhou fullname: Zhou, Guanqing organization: Zhejiang University – sequence: 4 givenname: Xue surname: Li fullname: Li, Xue organization: Zhejiang University – sequence: 5 givenname: Ruoxi surname: Xia fullname: Xia, Ruoxi organization: South China University of Technology – sequence: 6 givenname: Yuhao surname: Li fullname: Li, Yuhao organization: Chinese University of Hong Kong – sequence: 7 givenname: Lingling surname: Zhan fullname: Zhan, Lingling organization: Zhejiang University – sequence: 8 givenname: Haiming surname: Zhu fullname: Zhu, Haiming organization: Zhejiang University – sequence: 9 givenname: Xinhui surname: Lu fullname: Lu, Xinhui organization: Chinese University of Hong Kong – sequence: 10 givenname: Hin‐Lap surname: Yip fullname: Yip, Hin‐Lap organization: South China University of Technology – sequence: 11 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng organization: Zhejiang University – sequence: 12 givenname: Chang‐Zhi orcidid: 0000-0003-1968-2032 surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University |
BookMark | eNqFkcFO3DAURa2KSgyULWtL3XSTqZ-deOLlaICCBKIqsI6c5HnGKLEHOxGw6yf0G_sldZgKJKSqK8vyOVfv-R6QPecdEnIMbA6M8a-67fWcM84YSA4fyAwKDlnOVLFHZkyJIlMyL_fJQYz3jDElmZyR8dyuN79__vqOwfjQa9cgvcHeDkG7uNUB3UCvw1o729Ab3-lAV9h1kT7aYUNPn5p0mZALZ0KCW_oDTYfNYL2j2rUpClP47Sb4cb2hZ6N7eYqfyEeju4hHf89Dcnd2ers6zy6vv12slpdZIwoGmeYGawQFhucoFiiglK2oOS8lSNEuWCvrFoQALhZaF2VZ81oZKeqm4KViRhySL7vcbfAPI8ah6m2cZtYO_RgrnoNaAPCCJ_TzO_Tej8Gl6RIleAEiVxOV76gm-BgDmqqxg552Sh9muwpYNXVRTV1Ur10kbf5O2wbb6_D8b0HthEfb4fN_6Gp5crV8c_8AH4CgkQ |
CitedBy_id | crossref_primary_10_1021_acsenergylett_2c02348 crossref_primary_10_1002_anie_202307622 crossref_primary_10_1002_aenm_202003576 crossref_primary_10_1002_ange_202116111 crossref_primary_10_1016_j_cej_2023_144850 crossref_primary_10_1002_smtd_202101570 crossref_primary_10_1002_solr_202200441 crossref_primary_10_1002_aenm_202401741 crossref_primary_10_1016_j_cej_2022_139423 crossref_primary_10_1002_macp_202200222 crossref_primary_10_1002_adma_202305092 crossref_primary_10_1002_solr_202200679 crossref_primary_10_1021_acsapm_3c01184 crossref_primary_10_1002_aenm_202104028 crossref_primary_10_1002_solr_202100041 crossref_primary_10_1002_solr_202400724 crossref_primary_10_1016_j_mtener_2021_100852 crossref_primary_10_1002_adfm_202305608 crossref_primary_10_1021_acsami_1c09597 crossref_primary_10_1002_adfm_202110743 crossref_primary_10_1002_adma_202110147 crossref_primary_10_1002_solr_202100785 crossref_primary_10_1039_D3EE04476A crossref_primary_10_34133_research_0375 crossref_primary_10_1021_acsomega_3c00598 crossref_primary_10_1021_acsaem_2c01807 crossref_primary_10_1021_acs_est_3c05887 crossref_primary_10_1002_solr_202000537 crossref_primary_10_1016_j_enconman_2021_114955 crossref_primary_10_1002_solr_202200174 crossref_primary_10_1038_s41578_022_00514_0 crossref_primary_10_1039_D2EE03483B crossref_primary_10_1002_ange_202306847 crossref_primary_10_1002_adfm_202109410 crossref_primary_10_1002_adom_202302285 crossref_primary_10_1016_j_cej_2024_154935 crossref_primary_10_1051_e3sconf_202126102081 crossref_primary_10_1038_s41893_023_01071_2 crossref_primary_10_1039_D3TA03614F crossref_primary_10_1002_aenm_202003177 crossref_primary_10_1021_acsapm_0c00791 crossref_primary_10_1002_adma_202200337 crossref_primary_10_1016_j_orgel_2021_106063 crossref_primary_10_1021_acs_nanolett_5c00246 crossref_primary_10_1039_D1TC03110D crossref_primary_10_1039_D2TC02689A crossref_primary_10_1002_admt_202101556 crossref_primary_10_1021_acsami_3c08028 crossref_primary_10_1007_s11426_022_1256_8 crossref_primary_10_1039_D1TC02413B crossref_primary_10_3390_su151612442 crossref_primary_10_1007_s11426_022_1300_1 crossref_primary_10_1007_s40843_024_3210_y crossref_primary_10_1016_j_cej_2023_145807 crossref_primary_10_1039_D2EE00977C crossref_primary_10_1002_aenm_202101338 crossref_primary_10_1002_solr_202300037 crossref_primary_10_1039_D3TC02570E crossref_primary_10_1002_adfm_202313689 crossref_primary_10_1002_chem_202003925 crossref_primary_10_1002_adom_202201848 crossref_primary_10_1002_aenm_202003441 crossref_primary_10_1002_aenm_202301367 crossref_primary_10_1002_solr_202200070 crossref_primary_10_1080_15421406_2023_2176055 crossref_primary_10_1002_adma_202110569 crossref_primary_10_1038_s41570_022_00409_2 crossref_primary_10_1039_D3CS00233K crossref_primary_10_3390_en17215327 crossref_primary_10_1039_D1QM00407G crossref_primary_10_1016_j_nanoen_2020_105376 crossref_primary_10_1002_adfm_202107934 crossref_primary_10_1039_D1TC06096A crossref_primary_10_1002_solr_202000742 crossref_primary_10_1002_aenm_202400970 crossref_primary_10_1021_acsenergylett_0c01554 crossref_primary_10_1021_acsenergylett_4c00149 crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1038_s43246_022_00325_4 crossref_primary_10_1002_adma_202206269 crossref_primary_10_1002_adfm_202406070 crossref_primary_10_1021_acsami_1c04705 crossref_primary_10_1039_D1TC04569E crossref_primary_10_1002_adfm_202200107 crossref_primary_10_1002_adma_202210760 crossref_primary_10_1002_anie_202306847 crossref_primary_10_1016_j_jcis_2022_07_096 crossref_primary_10_1038_s41598_023_47898_9 crossref_primary_10_1021_acs_chemmater_0c04318 crossref_primary_10_1002_adma_202100830 crossref_primary_10_1002_adom_202100064 crossref_primary_10_1021_acs_chemrev_1c00955 crossref_primary_10_1002_aenm_202002572 crossref_primary_10_1021_acsami_0c12100 crossref_primary_10_1002_adfm_202107827 crossref_primary_10_1002_anie_202116111 crossref_primary_10_1002_adma_202107330 crossref_primary_10_1021_acsenergylett_2c01586 crossref_primary_10_1002_aenm_202003408 crossref_primary_10_1002_adma_202200044 crossref_primary_10_1002_adma_202103091 crossref_primary_10_1021_acsapm_4c02826 crossref_primary_10_1021_acsami_3c09984 crossref_primary_10_1021_acsmaterialslett_4c00393 crossref_primary_10_1007_s11426_023_1828_8 crossref_primary_10_1002_adfm_202007931 crossref_primary_10_1021_acsaem_2c02416 crossref_primary_10_1002_adma_202205844 crossref_primary_10_1002_solr_202300784 crossref_primary_10_1002_aenm_202200453 crossref_primary_10_1021_acs_jpcc_1c05736 crossref_primary_10_1039_D1NJ00807B crossref_primary_10_1002_aenm_202301555 crossref_primary_10_1016_j_polymer_2021_124322 crossref_primary_10_1002_advs_202202150 crossref_primary_10_1039_D2TC04723C crossref_primary_10_1021_acsaem_3c01734 crossref_primary_10_1021_acs_chemmater_2c02146 crossref_primary_10_1021_acsami_3c08068 crossref_primary_10_1002_nano_202000287 crossref_primary_10_1021_acsami_2c18540 crossref_primary_10_1016_j_dyepig_2020_109116 crossref_primary_10_1002_aenm_202102908 crossref_primary_10_1002_marc_202200199 crossref_primary_10_1002_adma_202306681 crossref_primary_10_1002_ange_202307622 crossref_primary_10_1016_j_jechem_2021_05_032 crossref_primary_10_1016_j_synthmet_2023_117480 crossref_primary_10_1039_D4TA00044G crossref_primary_10_1007_s00339_021_05025_3 crossref_primary_10_1016_j_orgel_2021_106276 crossref_primary_10_1360_SSC_2023_0173 crossref_primary_10_1021_acsaem_3c00093 crossref_primary_10_1002_admt_202000960 crossref_primary_10_1016_j_xcrp_2021_100381 crossref_primary_10_1002_eom2_12281 crossref_primary_10_1021_acsnano_1c09018 crossref_primary_10_1016_j_cej_2021_130397 crossref_primary_10_1002_adfm_202414260 crossref_primary_10_1002_aenm_202203266 crossref_primary_10_1021_acsaem_1c03017 crossref_primary_10_1021_acsaem_2c03407 crossref_primary_10_1002_aesr_202000035 crossref_primary_10_1246_bcsj_20200231 crossref_primary_10_1002_ente_202201176 crossref_primary_10_1002_solr_202200308 crossref_primary_10_1039_D2EE03134E crossref_primary_10_1016_j_cej_2021_132048 crossref_primary_10_1007_s40820_024_01547_6 crossref_primary_10_1016_j_joule_2021_02_010 crossref_primary_10_1016_j_joule_2022_12_007 crossref_primary_10_1021_acs_jpcc_4c02528 crossref_primary_10_3390_en15134639 crossref_primary_10_1038_s41467_025_55924_9 crossref_primary_10_1007_s10118_023_2895_5 |
Cites_doi | 10.1002/adma.201902302 10.1021/acsnano.8b08577 10.1021/acsphotonics.7b00618 10.1016/j.scib.2020.01.001 10.1002/advs.201800755 10.1002/solr.201900317 10.1038/nenergy.2016.89 10.1038/ncomms8327 10.1016/j.joule.2019.01.004 10.1002/adma.201903173 10.1002/smtd.201900424 10.1039/C9TA10145D 10.1038/s41560-017-0016-9 10.1002/adma.201908205 10.1016/j.nanoen.2019.04.018 10.1021/jacs.8b12126 10.1002/adma.201905645 10.1038/nmat5063 10.1016/j.joule.2019.06.005 10.1038/s41467-019-12132-6 10.1016/j.joule.2018.06.006 10.1038/s41467-019-10098-z 10.1002/adma.201803769 10.1002/adma.201900904 10.1016/j.joule.2019.12.018 10.1016/j.nanoen.2019.06.003 10.1002/solr.201800270 10.1002/app.1969.070130815 10.1002/aenm.201903298 10.1039/C9TA05789G 10.1039/C9EE03710A 10.1039/C9MH00844F 10.1016/j.scib.2017.11.003 10.1016/j.nanoen.2019.104271 10.1002/adma.201901683 10.1002/adma.201807159 10.1039/C5RA17268C 10.1002/smll.201701120 10.1038/s41560-018-0234-9 10.1039/C9TA11285E 10.1039/C8EE00154E 10.1002/aenm.201301989 10.1002/aenm.201701791 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202001621 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202001621 ADMA202001621 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21722404; 21674093; 21734008 – fundername: Research Grant Council of Hong Kong funderid: N_CUHK418/17 – fundername: National Key Research and Development Program of China funderid: 2019YFA0705900; 2017YF0206600 – fundername: Basic and Applied Basic Research Major Program of Guangdong Province funderid: 2019B030302007 – fundername: Zhejiang Natural Science Fund for Distinguished Young Scholars funderid: LR17E030001 – fundername: General Research Fund funderid: 14303519 – fundername: International Science and Technology Cooperation Programme funderid: 2016YFE0102900 – fundername: CUHK Direct funderid: 4053304 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3501-a2febe191f24e37e3186d3b2286163d70d6bd1331237aa588b2b9f63bc52890f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 07:07:54 EDT 2025 Thu Jul 03 03:41:21 EDT 2025 Tue Jul 01 02:32:49 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Jan 22 16:32:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3501-a2febe191f24e37e3186d3b2286163d70d6bd1331237aa588b2b9f63bc52890f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1968-2032 |
PQID | 2432513492 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2419711252 proquest_journals_2432513492 crossref_citationtrail_10_1002_adma_202001621 crossref_primary_10_1002_adma_202001621 wiley_primary_10_1002_adma_202001621_ADMA202001621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 62 2019; 7 2015; 6 2019; 3 2017; 2 2015; 5 2019; 6 2017; 4 2019; 31 2019; 10 2019; 13 1969; 13 2020; 13 2020; 32 2020; 10 2019; 141 2018; 8 2018; 17 2020; 4 2018; 3 2019; 60 2014; 4 2018; 2 2016; 1 2018; 5 2019; 63 2017; 13 2018; 30 2020; 68 2019; 5197 2020; 65 2018; 11 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 Li X. (e_1_2_5_14_1) 2019; 5197 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 13 start-page: 1071 year: 2019 publication-title: ACS Nano – volume: 63 year: 2019 publication-title: Nano Energy – volume: 62 start-page: 1562 year: 2017 publication-title: Sci. Bull. – volume: 3 start-page: 1803 year: 2019 publication-title: Joule – volume: 3 start-page: 952 year: 2018 publication-title: Nat. Energy – volume: 65 start-page: 272 year: 2020 publication-title: Sci. Bull. – volume: 13 start-page: 635 year: 2020 publication-title: Energy Environ. Sci. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 5197 start-page: 1 year: 2019 publication-title: Chin. Chem. Lett. – volume: 11 start-page: 1688 year: 2018 publication-title: Energy Environ. Sci. – volume: 6 start-page: 2094 year: 2019 publication-title: Mater. Horiz. – volume: 10 start-page: 2152 year: 2019 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 start-page: 1816 year: 2018 publication-title: Joule – volume: 10 start-page: 4100 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 2327 year: 2017 publication-title: ACS Photonics – volume: 6 start-page: 7327 year: 2015 publication-title: Nat. Commun. – volume: 60 start-page: 768 year: 2019 publication-title: Nano Energy – volume: 3 year: 2019 publication-title: Small Methods – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 2 start-page: 849 year: 2017 publication-title: Nat. Energy – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 17 start-page: 119 year: 2018 publication-title: Nat. Mater. – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 4 start-page: 490 year: 2020 publication-title: Joule – volume: 13 year: 2017 publication-title: Small – volume: 141 start-page: 3073 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1741 year: 1969 publication-title: J. Appl. Polym. Sci. – ident: e_1_2_5_27_1 doi: 10.1002/adma.201902302 – ident: e_1_2_5_8_1 doi: 10.1021/acsnano.8b08577 – ident: e_1_2_5_17_1 doi: 10.1021/acsphotonics.7b00618 – ident: e_1_2_5_33_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_5_44_1 doi: 10.1002/advs.201800755 – ident: e_1_2_5_38_1 doi: 10.1002/solr.201900317 – ident: e_1_2_5_39_1 doi: 10.1038/nenergy.2016.89 – ident: e_1_2_5_25_1 doi: 10.1038/ncomms8327 – ident: e_1_2_5_7_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_5_11_1 doi: 10.1002/adma.201903173 – ident: e_1_2_5_15_1 doi: 10.1002/smtd.201900424 – ident: e_1_2_5_30_1 doi: 10.1039/C9TA10145D – ident: e_1_2_5_31_1 doi: 10.1038/s41560-017-0016-9 – ident: e_1_2_5_34_1 doi: 10.1002/adma.201908205 – ident: e_1_2_5_23_1 doi: 10.1016/j.nanoen.2019.04.018 – ident: e_1_2_5_37_1 doi: 10.1021/jacs.8b12126 – ident: e_1_2_5_41_1 doi: 10.1002/adma.201905645 – ident: e_1_2_5_3_1 doi: 10.1038/nmat5063 – ident: e_1_2_5_21_1 doi: 10.1016/j.joule.2019.06.005 – ident: e_1_2_5_24_1 doi: 10.1038/s41467-019-12132-6 – ident: e_1_2_5_13_1 doi: 10.1016/j.joule.2018.06.006 – ident: e_1_2_5_18_1 doi: 10.1038/s41467-019-10098-z – ident: e_1_2_5_6_1 doi: 10.1002/adma.201803769 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201900904 – ident: e_1_2_5_20_1 doi: 10.1016/j.joule.2019.12.018 – ident: e_1_2_5_26_1 doi: 10.1016/j.nanoen.2019.06.003 – ident: e_1_2_5_16_1 doi: 10.1002/solr.201800270 – ident: e_1_2_5_36_1 doi: 10.1002/app.1969.070130815 – volume: 5197 start-page: 1 year: 2019 ident: e_1_2_5_14_1 publication-title: Chin. Chem. Lett. – ident: e_1_2_5_40_1 doi: 10.1002/aenm.201903298 – ident: e_1_2_5_9_1 doi: 10.1039/C9TA05789G – ident: e_1_2_5_29_1 doi: 10.1039/C9EE03710A – ident: e_1_2_5_43_1 doi: 10.1039/C9MH00844F – ident: e_1_2_5_5_1 doi: 10.1016/j.scib.2017.11.003 – ident: e_1_2_5_35_1 doi: 10.1016/j.nanoen.2019.104271 – ident: e_1_2_5_12_1 doi: 10.1002/adma.201901683 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201807159 – ident: e_1_2_5_42_1 doi: 10.1039/C5RA17268C – ident: e_1_2_5_4_1 doi: 10.1002/smll.201701120 – ident: e_1_2_5_22_1 doi: 10.1038/s41560-018-0234-9 – ident: e_1_2_5_32_1 doi: 10.1039/C9TA11285E – ident: e_1_2_5_1_1 doi: 10.1039/C8EE00154E – ident: e_1_2_5_10_1 doi: 10.1002/aenm.201301989 – ident: e_1_2_5_2_1 doi: 10.1002/aenm.201701791 |
SSID | ssj0009606 |
Score | 2.65492 |
Snippet | Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high‐performance semitransparent organic solar... Clean energy production and saving play vital impacts on the sustainability of the global community. Herein, high-performance semitransparent organic solar... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2001621 |
SubjectTerms | Clean energy Energy conservation Energy conversion efficiency Energy dissipation Infrared reflection Materials science morphology Photovoltaic cells Reflectors semitransparent organic solar cells Solar cells ternary blends Transmittance |
Title | High‐Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See‐Through Functions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001621 https://www.proquest.com/docview/2432513492 https://www.proquest.com/docview/2419711252 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i_XFCoKn1XSTbNJjUYsKFbEt9Bb2FRBrKm0K4smf4G_0lzizadIqiKC3hExeu5nMN7vffEvIcayErEdCMxUGigG-bTBpdcAgEqUxN57WjvLfvhVXveCmH_bnqvgLfYhqwA09w_2v0cGlGp_NREOlcbpByAkSrpIcCVuIiu5n-lEIz53Ynh-yhgjiUrXR42dfT_8alWZQcx6wuojTWiWyfNaCaPJ4OsnVqX79JuP4n5dZIytTOEqbxfezThZstkGW50QKN8kEqSAfb-93sxID2rFPD7mTRcdaspwWFZ2adjBRpud2MBhTHOGlly9uZgBMrrN0hGR3em_TgeN_ZVRmBi5l4eLdYrkg2oIw6zxhi_Ral93zKzZdrIFpnJtkkqfwPUD2l_LA-hEOrQrjK85jAZDPRJ4RykBCDJEykjKMY8VVIxW-0iHOdab-NlnMhpndIdS3IgYYo4XQkKwJK5WXujzVRMaPYlEjrOysRE-VzHFBjUFSaDDzBJszqZqzRk4q--dCw-NHy_2y75OpL48THvgAAlHFsUaOqsPghdiAMrPDCdrUGxFA1xBsuOvoX-6UNC_azWpv9y8n7ZEl3C7YiPtkMR9N7AEgpFwdOi_4BPMsCP0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9gAcoPyJpX9GAnFyu-skTvbAYdXtapd2K9Rupd6C_yIhlhR1swJ64hF4FV6FR-BJmHF-tq2EkJB64Jhk4ji2x_5mPPMZ4EWiperE0nAdhZojvu1y5UzIcSXKEmHbxviQ__GhHJ6Eb06j0yX4UefClPwQjcONNMPP16Tg5JDeWbCGKuuJgygoSIpOFVe5775-Rqtt9nrUxy5-KcRgb7I75NXBAtzQPhpXIsO6o6WSidAFMbkBpQ20EIlEeGLjtpXaovGGs3qsVJQkWuhuJgNtItqXywIs9xas0DHiRNffP1owVpFB4On9goh3ZZjUPJFtsXO1vlfXwQW4vQyR_Ro3uA8_69YpQ1s-bM8LvW0urhFH_lfNtwr3KsTNeqWKPIAllz-Eu5d4GB_BnKJdfn37_naRRcGO3cf3hWd-p3S5gpVJq4Ydky-A7brpdMbIic32vvjNDxQZ5dk5xfOzI5dNfYhbzlRusSiHhU_KE5HYAJGEV_bHcHIj__0ElvOz3D0FFjiZIFIzUhq0R6VTup15U9zGNogT2QJej47UVGTtdGbINC1ppkVK3Zc23deCV438p5Km5I-S6_VgS6vpapaKMECcS0SVLXjePMaJhhpQ5e5sTjKdbozoPEIZ4UfWX76U9vrjXnP17F9e2oLbw8n4ID0YHe6vwR26XwZfrsNycT53GwgIC73pVZDBu5setL8BKKRk8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48K5YKGAkECe3WSdxkkMPq25XXUqrqg-pt-BXJMSSVt2seJz6E_pT-lf4C_wSZpzHtkgICakHjkkmjmPPjL-xx58BXqdaqn4iDddxpDni24wrZyKOI1GRChsY41P-t3fk5mH07ig-WoCLdi9MzQ_RTbiRZXh_TQZ-YovVOWmosp43iHKCpOg3aZVb7tsXDNqma-Mh9vAbIUYbB-ubvDlXgBtaRuNKFFh1DFQKEbkwoVlAaUMtRCoRndgksFJbjN3QqSdKxWmqhc4KGWoT07JcEWK5N-BmJIOMDosY7s0Jqyge8Ox-YcwzGaUtTWQgVq_W9-owOMe2lxGyH-JG9-BH2zh1ZsunlVmlV8z333gj_6fWuw93G7zNBrWBPIAFVz6EO5dYGB_BjHJdfp6d7873ULB99_lj5XnfabNcxeotq4bt00wAW3eTyZTRFDbb-OqXPlBkXBanlM3P9lwx8QluJVOlxaIcFn5Qn4fERogjvKk_hsNr-e8lWCyPS_cEWOhkijjNSGkwGpVO6aDwgbhNbJiksge8VY7cNFTtdGLIJK9JpkVO3Zd33deDt538SU1S8kfJ5VbX8sZZTXMRhYhyiaayB6-6x-hmqAFV6Y5nJNPPEsTmMcoIr1h_-VI-GG4Puqun__LSS7i1Oxzl78c7W8_gNt2uMy-XYbE6nbnniAYr_cIbIIMP162zvwBxfGOf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Semitransparent+Organic+Solar+Cells+with+Excellent+Infrared+Reflection+and+See%E2%80%90Through+Functions&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Di&rft.au=Qin%2C+Ran&rft.au=Zhou%2C+Guanqing&rft.au=Li%2C+Xue&rft.date=2020-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=32&rft_id=info:doi/10.1002%2Fadma.202001621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202001621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |