Organic–Inorganic Hybridization Engineering of Polyperylenediimide Cathodes for Efficient Potassium Storage
Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti3C2Tx), where Fe/Sn single atoms are bound to the N‐d...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 44; pp. 23596 - 23601 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
25.10.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti3C2Tx), where Fe/Sn single atoms are bound to the N‐doped MXenes (N‐Ti3C2Tx) via the unsaturated Fe/Sn–N3 bonds, and functionalized with PDI via d–π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14‐electron involved high‐rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures.
Hierarchical organic–inorganic hybrid PDI@Fe‐Sn@N‐Ti3C2Tx is smartly designed and exhibits superb potassium‐storage properties, thanks to its unique properties including abundant contactable active sites, Fe/Sn–N3 bonds, electronic polarization, and strong coordination interactions, as shown by detailed experiments and theoretical calculations/simulations. |
---|---|
AbstractList | Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti3C2Tx), where Fe/Sn single atoms are bound to the N‐doped MXenes (N‐Ti3C2Tx) via the unsaturated Fe/Sn–N3 bonds, and functionalized with PDI via d–π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14‐electron involved high‐rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures. Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti3C2Tx), where Fe/Sn single atoms are bound to the N‐doped MXenes (N‐Ti3C2Tx) via the unsaturated Fe/Sn–N3 bonds, and functionalized with PDI via d–π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14‐electron involved high‐rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures. Hierarchical organic–inorganic hybrid PDI@Fe‐Sn@N‐Ti3C2Tx is smartly designed and exhibits superb potassium‐storage properties, thanks to its unique properties including abundant contactable active sites, Fe/Sn–N3 bonds, electronic polarization, and strong coordination interactions, as shown by detailed experiments and theoretical calculations/simulations. Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti 3 C 2 T x ), where Fe/Sn single atoms are bound to the N‐doped MXenes (N‐Ti 3 C 2 T x ) via the unsaturated Fe/Sn–N 3 bonds, and functionalized with PDI via d–π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14‐electron involved high‐rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures. Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic-inorganic hybrid (PDI@Fe-Sn@N-Ti3 C2 Tx ), where Fe/Sn single atoms are bound to the N-doped MXenes (N-Ti3 C2 Tx ) via the unsaturated Fe/Sn-N3 bonds, and functionalized with PDI via d-π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14-electron involved high-rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures.Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic-inorganic hybrid (PDI@Fe-Sn@N-Ti3 C2 Tx ), where Fe/Sn single atoms are bound to the N-doped MXenes (N-Ti3 C2 Tx ) via the unsaturated Fe/Sn-N3 bonds, and functionalized with PDI via d-π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14-electron involved high-rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures. |
Author | Hou, Linrui Wang, Yuyan Han, Pinyu Zhang, Yamin Yuan, Changzhou Liu, Fusheng Qin, Guohui |
Author_xml | – sequence: 1 givenname: Pinyu surname: Han fullname: Han, Pinyu organization: Qingdao University of Science & Technology – sequence: 2 givenname: Fusheng surname: Liu fullname: Liu, Fusheng organization: Qingdao University of Science & Technology – sequence: 3 givenname: Yamin surname: Zhang fullname: Zhang, Yamin organization: University of Jinan – sequence: 4 givenname: Yuyan surname: Wang fullname: Wang, Yuyan organization: University of Jinan – sequence: 5 givenname: Guohui surname: Qin fullname: Qin, Guohui email: 03326@qust.edu.cn organization: Qingdao University of Science & Technology – sequence: 6 givenname: Linrui surname: Hou fullname: Hou, Linrui organization: University of Jinan – sequence: 7 givenname: Changzhou orcidid: 0000-0002-6484-8970 surname: Yuan fullname: Yuan, Changzhou email: mse_yuancz@ujn.edu.cn organization: University of Jinan |
BookMark | eNqFkcFu1DAQhi1UJNqFK-dIXLhk67GT2DlWq4WuVLVIwDlynPEyVWIvdlYonHgH3pAnwWURSJUQl5k5fN9oNP8FO_PBI2Mvga-Bc3FpPOFacAHARQNP2DnUAkqplDzLcyVlqXQNz9hFSveZ15o352y6i_ss2h_fvu98OM3F9dJHGuirmSn4Yuv35BEj-X0RXPEujMsB4zKix4FoogGLjZk_hQFT4UIsts6RJfRzRmeTEh2n4v0cotnjc_bUmTHhi999xT6-2X7YXJc3d293m6ub0sqaQ6mVbhtn2qrvh0Y1su1bp6HHphKVaGylhEUrtMFBOtfa3minXK1kK4wD0xi5Yq9Pew8xfD5imruJksVxNB7DMXWiVhwANIeMvnqE3odj9Pm6TGmhJKhcVqw6UTaGlCK6ztL86z1zNDR2wLuHDLqHDLo_GWRt_Ug7RJpMXP4ttCfhC424_Ifurm5327_uT0VhnrM |
CitedBy_id | crossref_primary_10_1002_ange_202117661 crossref_primary_10_1007_s40843_022_2142_1 crossref_primary_10_1016_j_jechem_2025_01_037 crossref_primary_10_1002_adma_202210082 crossref_primary_10_1039_D2TA02694E crossref_primary_10_1002_adma_202201420 crossref_primary_10_1039_D4CC05786D crossref_primary_10_1021_acsaem_2c01216 crossref_primary_10_1039_D2RA04906F crossref_primary_10_2139_ssrn_4158373 crossref_primary_10_1002_bte2_20230033 crossref_primary_10_1016_j_electacta_2022_140678 crossref_primary_10_1002_adfm_202302235 crossref_primary_10_1002_ange_202403775 crossref_primary_10_3390_ma16186170 crossref_primary_10_1002_anie_202117661 crossref_primary_10_1002_aenm_202300414 crossref_primary_10_1021_acs_jpclett_2c01032 crossref_primary_10_1002_adfm_202404653 crossref_primary_10_1002_smll_202304690 crossref_primary_10_1002_eem2_12553 crossref_primary_10_1016_j_ensm_2022_02_027 crossref_primary_10_1016_j_cej_2022_139575 crossref_primary_10_1007_s12598_022_02067_1 crossref_primary_10_1002_cssc_202202174 crossref_primary_10_1002_cssc_202301847 crossref_primary_10_1021_jacs_4c03576 crossref_primary_10_1002_adfm_202413491 crossref_primary_10_1021_acsami_2c21559 crossref_primary_10_1002_anie_202403775 crossref_primary_10_1016_j_jcis_2023_09_079 crossref_primary_10_1002_adfm_202306424 crossref_primary_10_1002_aic_18604 crossref_primary_10_1021_acsami_2c17104 crossref_primary_10_1016_j_jallcom_2022_167064 crossref_primary_10_1002_smll_202309905 crossref_primary_10_1002_adem_202401235 crossref_primary_10_1002_eem2_12785 crossref_primary_10_1002_tcr_202200072 crossref_primary_10_1016_j_apcatb_2024_123884 crossref_primary_10_1039_D3SC06331C |
Cites_doi | 10.1002/ange.202000566 10.1007/s12598-019-01289-0 10.1002/ange.202103052 10.1002/anie.202016082 10.1002/adfm.201303138 10.1002/ange.202001191 10.1007/s12598-017-0936-3 10.1002/ange.201609306 10.1002/adma.201901478 10.1002/ange.201902109 10.1021/jacs.0c07992 10.1002/adma.201504705 10.1002/adfm.201903960 10.1039/D0EE03947K 10.1002/smll.201703419 10.1002/ange.202016233 10.1002/ange.201913343 10.1002/anie.202012322 10.1002/adfm.202007158 10.1002/adfm.202004189 10.1002/anie.202103052 10.1002/ange.202016082 10.1002/aenm.202000717 10.1002/anie.202000566 10.1002/anie.202001191 10.1002/anie.201609306 10.1002/adfm.202000060 10.1002/aenm.201900429 10.1002/adfm.202103912 10.1002/adfm.201203844 10.1021/nn400601y 10.1002/anie.201902109 10.1002/aenm.201701912 10.1002/aenm.201300456 10.1007/s12598-020-01654-4 10.1007/s12598-018-1049-3 10.1002/anie.202016233 10.1002/aenm.201802986 10.1002/ange.202012322 10.1002/anie.201913343 10.1002/adfm.202005417 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202110261 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 23601 |
ExternalDocumentID | 10_1002_anie_202110261 ANIE202110261 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: national natural science foundation of china funderid: 51772127, 51772131, 21805152, 52072151, 52171211, 22175103 and 22178191 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3501-87896fa94bbd67639b9f81be642426c472cec28aed3ff9cba8f7f57392af1a6a3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 18:27:19 EDT 2025 Fri Jul 25 10:22:36 EDT 2025 Tue Jul 01 01:18:08 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Jan 22 16:27:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3501-87896fa94bbd67639b9f81be642426c472cec28aed3ff9cba8f7f57392af1a6a3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6484-8970 |
PQID | 2582731727 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2570111801 proquest_journals_2582731727 crossref_citationtrail_10_1002_anie_202110261 crossref_primary_10_1002_anie_202110261 wiley_primary_10_1002_anie_202110261_ANIE202110261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 25, 2021 |
PublicationDateYYYYMMDD | 2021-10-25 |
PublicationDate_xml | – month: 10 year: 2021 text: October 25, 2021 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 14 2019; 9 2018; 8 2013; 3 2021; 31 2019; 31 2020; 30 2020; 142 2013; 23 2020 2020; 59 132 2021 2021; 60 133 2019; 38 2014; 24 2019; 29 2020; 10 2017 2017; 56 129 2013; 7 2016; 28 2021; 40 2018; 37 2019 2019; 58 131 2018; 14 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_4_2 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_29_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_26_2 e_1_2_2_27_1 e_1_2_2_9_2 e_1_2_2_26_1 e_1_2_2_13_2 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_17_1 e_1_2_2_16_1 e_1_2_2_14_2 e_1_2_2_15_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 38 start-page: 996 year: 2019 end-page: 1002 publication-title: Rare Met. – volume: 56 129 start-page: 1825 1851 year: 2017 2017 end-page: 1829 1855 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 449 year: 2018 end-page: 458 publication-title: Rare Met. – volume: 58 131 start-page: 7035 7109 year: 2019 2019 end-page: 7039 7113 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 3627 year: 2013 end-page: 3634 publication-title: ACS Nano – volume: 24 start-page: 2630 year: 2014 end-page: 2637 publication-title: Adv. Funct. Mater. – volume: 60 133 start-page: 2861 2897 year: 2021 2021 end-page: 2865 2901 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 year: 2018 publication-title: Small – volume: 59 132 start-page: 9631 9718 year: 2020 2020 end-page: 9638 9725 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 6326 6396 year: 2021 2021 end-page: 6332 6402 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 2473 2494 year: 2020 2020 end-page: 2482 2503 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 3019 year: 2021 end-page: 3028 publication-title: Energy Environ. Sci. – volume: 59 132 start-page: 11992 12090 year: 2020 2020 end-page: 11998 12096 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 23 start-page: 3909 year: 2013 end-page: 3915 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1484 year: 2013 end-page: 1489 publication-title: Adv. Energy Mater. – volume: 38 start-page: 199 year: 2019 end-page: 205 publication-title: Rare Met. – volume: 28 start-page: 1517 year: 2016 end-page: 1522 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 142 start-page: 19570 year: 2020 end-page: 19578 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 40 start-page: 246 year: 2021 end-page: 248 publication-title: Rare Met. – volume: 60 133 start-page: 7180 7256 year: 2021 2021 end-page: 7187 7263 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 11835 11941 year: 2021 2021 end-page: 11840 11946 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_12_2 doi: 10.1002/ange.202000566 – ident: e_1_2_2_25_1 doi: 10.1007/s12598-019-01289-0 – ident: e_1_2_2_4_2 doi: 10.1002/ange.202103052 – ident: e_1_2_2_13_1 doi: 10.1002/anie.202016082 – ident: e_1_2_2_2_1 doi: 10.1002/adfm.201303138 – ident: e_1_2_2_17_2 doi: 10.1002/ange.202001191 – ident: e_1_2_2_18_1 doi: 10.1007/s12598-017-0936-3 – ident: e_1_2_2_29_2 doi: 10.1002/ange.201609306 – ident: e_1_2_2_10_1 doi: 10.1002/adma.201901478 – ident: e_1_2_2_26_2 doi: 10.1002/ange.201902109 – ident: e_1_2_2_21_1 doi: 10.1021/jacs.0c07992 – ident: e_1_2_2_28_1 doi: 10.1002/adma.201504705 – ident: e_1_2_2_27_1 doi: 10.1002/adfm.201903960 – ident: e_1_2_2_22_1 doi: 10.1039/D0EE03947K – ident: e_1_2_2_24_1 doi: 10.1002/smll.201703419 – ident: e_1_2_2_9_2 doi: 10.1002/ange.202016233 – ident: e_1_2_2_16_2 doi: 10.1002/ange.201913343 – ident: e_1_2_2_14_1 doi: 10.1002/anie.202012322 – ident: e_1_2_2_3_1 doi: 10.1002/adfm.202007158 – ident: e_1_2_2_20_1 doi: 10.1002/adfm.202004189 – ident: e_1_2_2_4_1 doi: 10.1002/anie.202103052 – ident: e_1_2_2_13_2 doi: 10.1002/ange.202016082 – ident: e_1_2_2_1_1 doi: 10.1002/aenm.202000717 – ident: e_1_2_2_12_1 doi: 10.1002/anie.202000566 – ident: e_1_2_2_17_1 doi: 10.1002/anie.202001191 – ident: e_1_2_2_29_1 doi: 10.1002/anie.201609306 – ident: e_1_2_2_30_1 doi: 10.1002/adfm.202000060 – ident: e_1_2_2_6_1 doi: 10.1002/aenm.201900429 – ident: e_1_2_2_7_1 doi: 10.1002/adfm.202103912 – ident: e_1_2_2_11_1 doi: 10.1002/adfm.201203844 – ident: e_1_2_2_32_1 doi: 10.1021/nn400601y – ident: e_1_2_2_26_1 doi: 10.1002/anie.201902109 – ident: e_1_2_2_31_1 doi: 10.1002/aenm.201701912 – ident: e_1_2_2_5_1 doi: 10.1002/aenm.201300456 – ident: e_1_2_2_23_1 doi: 10.1007/s12598-020-01654-4 – ident: e_1_2_2_19_1 doi: 10.1007/s12598-018-1049-3 – ident: e_1_2_2_9_1 doi: 10.1002/anie.202016233 – ident: e_1_2_2_8_1 doi: 10.1002/aenm.201802986 – ident: e_1_2_2_14_2 doi: 10.1002/ange.202012322 – ident: e_1_2_2_16_1 doi: 10.1002/anie.201913343 – ident: e_1_2_2_15_1 doi: 10.1002/adfm.202005417 |
SSID | ssj0028806 |
Score | 2.530865 |
Snippet | Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23596 |
SubjectTerms | Cathodes Electrolytic cells Fe/Sn single atoms Hybridization Low temperature N-doped MXenes Operating temperature organic–inorganic hybrid polyperylenediimide cathode Potassium potassium-ion batteries Shelf life |
Title | Organic–Inorganic Hybridization Engineering of Polyperylenediimide Cathodes for Efficient Potassium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110261 https://www.proquest.com/docview/2582731727 https://www.proquest.com/docview/2570111801 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqKwie0qa7SdMcS2lpBYuohd7C7mYXim0ifRzqyf_gP_SXOJNXW0EEvSVkQpJ9zPdNducbQm5c5kjBjLKEz6XlmBq3hCu5paVyQlsyI5IV0_t-vTtw7obucC2LP9WHKH644cxI_DVOcCFn1ZVoKGZgQ3yHAQxL4h_csIWs6LHQj2IwONP0Is4trEKfqzbarLp5-yYqrajmOmFNEKezT0T-rulGk5fKYi4r6u2bjON_PuaA7GV0lDbT8XNItnR0RHZaeRW4YzJJkzXV5_tHL0pLQCnaXWKeV5bBSdckDWls6EM8hth2ugQ4A2AcTUahpphnGId6RoEi03aiWgFgB6Zz4O6jxYQ-QegPnu2EDDrt51bXyko0WApXJMGXNvy6Eb4jZVgHV-VL3wAR1hDVAPQrx2NKK9YQOuTG-EqKhvGM6wEpE6Ym6oKfku0ojvQZobZE9sZYzcD4cbkQwCxC7XuutA23hS4RK--iQGX65VhGYxykyssswEYMikYskdvC_jVV7vjRspz3eJDN4FnA3AYwO6R3JXJdXIbGxwUVEel4gTYeuMcagHyJsKR7f3lS0Oz32sXZ-V9uuiC7eIzwydwy2Z5PF_oSeNFcXiVj_wtAgAdP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2hcoALO6KsRkLiFJraSdMcERS1LBVikbhFtmNLFTRB0B7gxD_wh3wJM9lYJIQExyRjJbE9M29szxuAHZ97SnKrHRkK5Xi2KRzpK-EYpb3YVdzKbMf0rN_qXnvHN355mpByYXJ-iGrBjTQjs9ek4LQg3fhgDaUUbAzwKILhFABNUllvos8_vKgYpDhOzzzBSAiH6tCXvI0ub3xt_9UvfYDNz5A18zlHs6DKr82PmtzujUdqTz9_I3L81-_MwUyBSNl-PoXmYcIkCzB1UBaCW4Rhnq-p315ee0leBUqz7hOlehVJnOwTqyFLLTtP7zC8fXhCj4a-cTAcxIZRqmEam0eGKJl1MuIK9HcoOkL4PhgP2SVG_2jcluD6qHN10HWKKg2Opk1JNKftsGVl6CkVt9BahSq0iIUNBjbo_bUXcG00b0sTC2tDrWTbBtYPEJdJ25QtKZahlqSJWQHmKgJwnDctTiFfSIngIjZh4CvXCleaOjjlGEW6oDCnShp3UU6-zCPqxKjqxDrsVvL3OXnHj5Lr5ZBHhRI_RtxvI7gjhFeH7eoxdj7tqcjEpGOSCdBCNtHP14Fn4_vLm6L9fq9TXa3-pdEWTHWvzk6j017_ZA2m6T55U-6vQ230MDYbCJNGajNThHew6wtr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hKrW9FMpDpDy6SEicHJxdP-IjgkQJLRHiIeVm7a53pQhiRyE5wIn_0H_IL2HGLwJSVYkebc_K9j7m-8br-QbgwOeektxqR0ZCOZ5tCUf6SjhGaS9xFbcy3zE9HwS9G-9s6A8XsvgLfYj6gxutjNxf0wKfJPboVTSUMrAxvqMAhlP888kL3IiKN5xe1gJSHGdnkV8khENl6CvZRpcfvW3_FpZeueYiY80hp7sCsnrY4k-T2-Z8ppr68Z2O4_-8zSp8K_koOy4m0HdYMukafDmpysCtw7jI1tTPT3_6aVEDSrPeAyV6lSmcbEHTkGWWXWR3GNxOHxDPEBlH41FiGCUaZom5Z8iRWSeXrUC0Q9MZkvfRfMyuMPZH17YBN93O9UnPKWs0OJq2JNGZtqPAyshTKgnQV0UqssiEDYY1iP3aC7k2mrelSYS1kVaybUPrh8jKpG3JQIpNWE6z1GwBcxXRN85bFieQL6REapGYKPSVa4UrTQOcaohiXQqYUx2Nu7iQXuYxdWJcd2IDDmv7SSHd8VfLnWrE43IJ38fcbyO1I37XgP36MnY-7ajI1GRzsgnRP7YQ5RvA8-H9x53i40G_Ux_9-Eijn_D54rQb_-4Pfm3DVzpNUMr9HVieTedmFznSTO3ly-AFhZIKGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic%E2%80%93Inorganic+Hybridization+Engineering+of+Polyperylenediimide+Cathodes+for+Efficient+Potassium+Storage&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Han%2C+Pinyu&rft.au=Liu%2C+Fusheng&rft.au=Zhang%2C+Yamin&rft.au=Wang%2C+Yuyan&rft.date=2021-10-25&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=44&rft.spage=23596&rft.epage=23601&rft_id=info:doi/10.1002%2Fanie.202110261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202110261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |