Organic–Inorganic Hybridization Engineering of Polyperylenediimide Cathodes for Efficient Potassium Storage

Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti3C2Tx), where Fe/Sn single atoms are bound to the N‐d...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 44; pp. 23596 - 23601
Main Authors Han, Pinyu, Liu, Fusheng, Zhang, Yamin, Wang, Yuyan, Qin, Guohui, Hou, Linrui, Yuan, Changzhou
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 25.10.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti3C2Tx), where Fe/Sn single atoms are bound to the N‐doped MXenes (N‐Ti3C2Tx) via the unsaturated Fe/Sn–N3 bonds, and functionalized with PDI via d–π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14‐electron involved high‐rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures. Hierarchical organic–inorganic hybrid PDI@Fe‐Sn@N‐Ti3C2Tx is smartly designed and exhibits superb potassium‐storage properties, thanks to its unique properties including abundant contactable active sites, Fe/Sn–N3 bonds, electronic polarization, and strong coordination interactions, as shown by detailed experiments and theoretical calculations/simulations.
AbstractList Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti3C2Tx), where Fe/Sn single atoms are bound to the N‐doped MXenes (N‐Ti3C2Tx) via the unsaturated Fe/Sn–N3 bonds, and functionalized with PDI via d–π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14‐electron involved high‐rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures.
Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti3C2Tx), where Fe/Sn single atoms are bound to the N‐doped MXenes (N‐Ti3C2Tx) via the unsaturated Fe/Sn–N3 bonds, and functionalized with PDI via d–π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14‐electron involved high‐rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures. Hierarchical organic–inorganic hybrid PDI@Fe‐Sn@N‐Ti3C2Tx is smartly designed and exhibits superb potassium‐storage properties, thanks to its unique properties including abundant contactable active sites, Fe/Sn–N3 bonds, electronic polarization, and strong coordination interactions, as shown by detailed experiments and theoretical calculations/simulations.
Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic–inorganic hybrid (PDI@Fe‐Sn@N‐Ti 3 C 2 T x ), where Fe/Sn single atoms are bound to the N‐doped MXenes (N‐Ti 3 C 2 T x ) via the unsaturated Fe/Sn–N 3 bonds, and functionalized with PDI via d–π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14‐electron involved high‐rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures.
Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic-inorganic hybrid (PDI@Fe-Sn@N-Ti3 C2 Tx ), where Fe/Sn single atoms are bound to the N-doped MXenes (N-Ti3 C2 Tx ) via the unsaturated Fe/Sn-N3 bonds, and functionalized with PDI via d-π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14-electron involved high-rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures.Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To address these issues, herein, we firstly propose an organic-inorganic hybrid (PDI@Fe-Sn@N-Ti3 C2 Tx ), where Fe/Sn single atoms are bound to the N-doped MXenes (N-Ti3 C2 Tx ) via the unsaturated Fe/Sn-N3 bonds, and functionalized with PDI via d-π hybridization, forming a high conjugated δ skeleton. The resulted hybrid cathode endowed with enhanced electronic/ionic conductivities, lowered dissociation barriers of multiple redox centers and a stable cathode electrolyte interphase layer displays a 14-electron involved high-rate capacities and long cycle life. Moreover, it shows competitive performance in full cells even under different folding states and low operating temperatures.
Author Hou, Linrui
Wang, Yuyan
Han, Pinyu
Zhang, Yamin
Yuan, Changzhou
Liu, Fusheng
Qin, Guohui
Author_xml – sequence: 1
  givenname: Pinyu
  surname: Han
  fullname: Han, Pinyu
  organization: Qingdao University of Science & Technology
– sequence: 2
  givenname: Fusheng
  surname: Liu
  fullname: Liu, Fusheng
  organization: Qingdao University of Science & Technology
– sequence: 3
  givenname: Yamin
  surname: Zhang
  fullname: Zhang, Yamin
  organization: University of Jinan
– sequence: 4
  givenname: Yuyan
  surname: Wang
  fullname: Wang, Yuyan
  organization: University of Jinan
– sequence: 5
  givenname: Guohui
  surname: Qin
  fullname: Qin, Guohui
  email: 03326@qust.edu.cn
  organization: Qingdao University of Science & Technology
– sequence: 6
  givenname: Linrui
  surname: Hou
  fullname: Hou, Linrui
  organization: University of Jinan
– sequence: 7
  givenname: Changzhou
  orcidid: 0000-0002-6484-8970
  surname: Yuan
  fullname: Yuan, Changzhou
  email: mse_yuancz@ujn.edu.cn
  organization: University of Jinan
BookMark eNqFkcFu1DAQhi1UJNqFK-dIXLhk67GT2DlWq4WuVLVIwDlynPEyVWIvdlYonHgH3pAnwWURSJUQl5k5fN9oNP8FO_PBI2Mvga-Bc3FpPOFacAHARQNP2DnUAkqplDzLcyVlqXQNz9hFSveZ15o352y6i_ss2h_fvu98OM3F9dJHGuirmSn4Yuv35BEj-X0RXPEujMsB4zKix4FoogGLjZk_hQFT4UIsts6RJfRzRmeTEh2n4v0cotnjc_bUmTHhi999xT6-2X7YXJc3d293m6ub0sqaQ6mVbhtn2qrvh0Y1su1bp6HHphKVaGylhEUrtMFBOtfa3minXK1kK4wD0xi5Yq9Pew8xfD5imruJksVxNB7DMXWiVhwANIeMvnqE3odj9Pm6TGmhJKhcVqw6UTaGlCK6ztL86z1zNDR2wLuHDLqHDLo_GWRt_Ug7RJpMXP4ttCfhC424_Ifurm5327_uT0VhnrM
CitedBy_id crossref_primary_10_1002_ange_202117661
crossref_primary_10_1007_s40843_022_2142_1
crossref_primary_10_1016_j_jechem_2025_01_037
crossref_primary_10_1002_adma_202210082
crossref_primary_10_1039_D2TA02694E
crossref_primary_10_1002_adma_202201420
crossref_primary_10_1039_D4CC05786D
crossref_primary_10_1021_acsaem_2c01216
crossref_primary_10_1039_D2RA04906F
crossref_primary_10_2139_ssrn_4158373
crossref_primary_10_1002_bte2_20230033
crossref_primary_10_1016_j_electacta_2022_140678
crossref_primary_10_1002_adfm_202302235
crossref_primary_10_1002_ange_202403775
crossref_primary_10_3390_ma16186170
crossref_primary_10_1002_anie_202117661
crossref_primary_10_1002_aenm_202300414
crossref_primary_10_1021_acs_jpclett_2c01032
crossref_primary_10_1002_adfm_202404653
crossref_primary_10_1002_smll_202304690
crossref_primary_10_1002_eem2_12553
crossref_primary_10_1016_j_ensm_2022_02_027
crossref_primary_10_1016_j_cej_2022_139575
crossref_primary_10_1007_s12598_022_02067_1
crossref_primary_10_1002_cssc_202202174
crossref_primary_10_1002_cssc_202301847
crossref_primary_10_1021_jacs_4c03576
crossref_primary_10_1002_adfm_202413491
crossref_primary_10_1021_acsami_2c21559
crossref_primary_10_1002_anie_202403775
crossref_primary_10_1016_j_jcis_2023_09_079
crossref_primary_10_1002_adfm_202306424
crossref_primary_10_1002_aic_18604
crossref_primary_10_1021_acsami_2c17104
crossref_primary_10_1016_j_jallcom_2022_167064
crossref_primary_10_1002_smll_202309905
crossref_primary_10_1002_adem_202401235
crossref_primary_10_1002_eem2_12785
crossref_primary_10_1002_tcr_202200072
crossref_primary_10_1016_j_apcatb_2024_123884
crossref_primary_10_1039_D3SC06331C
Cites_doi 10.1002/ange.202000566
10.1007/s12598-019-01289-0
10.1002/ange.202103052
10.1002/anie.202016082
10.1002/adfm.201303138
10.1002/ange.202001191
10.1007/s12598-017-0936-3
10.1002/ange.201609306
10.1002/adma.201901478
10.1002/ange.201902109
10.1021/jacs.0c07992
10.1002/adma.201504705
10.1002/adfm.201903960
10.1039/D0EE03947K
10.1002/smll.201703419
10.1002/ange.202016233
10.1002/ange.201913343
10.1002/anie.202012322
10.1002/adfm.202007158
10.1002/adfm.202004189
10.1002/anie.202103052
10.1002/ange.202016082
10.1002/aenm.202000717
10.1002/anie.202000566
10.1002/anie.202001191
10.1002/anie.201609306
10.1002/adfm.202000060
10.1002/aenm.201900429
10.1002/adfm.202103912
10.1002/adfm.201203844
10.1021/nn400601y
10.1002/anie.201902109
10.1002/aenm.201701912
10.1002/aenm.201300456
10.1007/s12598-020-01654-4
10.1007/s12598-018-1049-3
10.1002/anie.202016233
10.1002/aenm.201802986
10.1002/ange.202012322
10.1002/anie.201913343
10.1002/adfm.202005417
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202110261
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 23601
ExternalDocumentID 10_1002_anie_202110261
ANIE202110261
Genre shortCommunication
GrantInformation_xml – fundername: national natural science foundation of china
  funderid: 51772127, 51772131, 21805152, 52072151, 52171211, 22175103 and 22178191
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3501-87896fa94bbd67639b9f81be642426c472cec28aed3ff9cba8f7f57392af1a6a3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 18:27:19 EDT 2025
Fri Jul 25 10:22:36 EDT 2025
Tue Jul 01 01:18:08 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Wed Jan 22 16:27:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-87896fa94bbd67639b9f81be642426c472cec28aed3ff9cba8f7f57392af1a6a3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6484-8970
PQID 2582731727
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2570111801
proquest_journals_2582731727
crossref_citationtrail_10_1002_anie_202110261
crossref_primary_10_1002_anie_202110261
wiley_primary_10_1002_anie_202110261_ANIE202110261
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 25, 2021
PublicationDateYYYYMMDD 2021-10-25
PublicationDate_xml – month: 10
  year: 2021
  text: October 25, 2021
  day: 25
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 14
2019; 9
2018; 8
2013; 3
2021; 31
2019; 31
2020; 30
2020; 142
2013; 23
2020 2020; 59 132
2021 2021; 60 133
2019; 38
2014; 24
2019; 29
2020; 10
2017 2017; 56 129
2013; 7
2016; 28
2021; 40
2018; 37
2019 2019; 58 131
2018; 14
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_4_2
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_29_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_26_2
e_1_2_2_27_1
e_1_2_2_9_2
e_1_2_2_26_1
e_1_2_2_13_2
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_17_1
e_1_2_2_16_1
e_1_2_2_14_2
e_1_2_2_15_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 38
  start-page: 996
  year: 2019
  end-page: 1002
  publication-title: Rare Met.
– volume: 56 129
  start-page: 1825 1851
  year: 2017 2017
  end-page: 1829 1855
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 449
  year: 2018
  end-page: 458
  publication-title: Rare Met.
– volume: 58 131
  start-page: 7035 7109
  year: 2019 2019
  end-page: 7039 7113
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 3627
  year: 2013
  end-page: 3634
  publication-title: ACS Nano
– volume: 24
  start-page: 2630
  year: 2014
  end-page: 2637
  publication-title: Adv. Funct. Mater.
– volume: 60 133
  start-page: 2861 2897
  year: 2021 2021
  end-page: 2865 2901
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 59 132
  start-page: 9631 9718
  year: 2020 2020
  end-page: 9638 9725
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 6326 6396
  year: 2021 2021
  end-page: 6332 6402
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 2473 2494
  year: 2020 2020
  end-page: 2482 2503
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 3019
  year: 2021
  end-page: 3028
  publication-title: Energy Environ. Sci.
– volume: 59 132
  start-page: 11992 12090
  year: 2020 2020
  end-page: 11998 12096
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 3909
  year: 2013
  end-page: 3915
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1484
  year: 2013
  end-page: 1489
  publication-title: Adv. Energy Mater.
– volume: 38
  start-page: 199
  year: 2019
  end-page: 205
  publication-title: Rare Met.
– volume: 28
  start-page: 1517
  year: 2016
  end-page: 1522
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 142
  start-page: 19570
  year: 2020
  end-page: 19578
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 246
  year: 2021
  end-page: 248
  publication-title: Rare Met.
– volume: 60 133
  start-page: 7180 7256
  year: 2021 2021
  end-page: 7187 7263
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 11835 11941
  year: 2021 2021
  end-page: 11840 11946
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_12_2
  doi: 10.1002/ange.202000566
– ident: e_1_2_2_25_1
  doi: 10.1007/s12598-019-01289-0
– ident: e_1_2_2_4_2
  doi: 10.1002/ange.202103052
– ident: e_1_2_2_13_1
  doi: 10.1002/anie.202016082
– ident: e_1_2_2_2_1
  doi: 10.1002/adfm.201303138
– ident: e_1_2_2_17_2
  doi: 10.1002/ange.202001191
– ident: e_1_2_2_18_1
  doi: 10.1007/s12598-017-0936-3
– ident: e_1_2_2_29_2
  doi: 10.1002/ange.201609306
– ident: e_1_2_2_10_1
  doi: 10.1002/adma.201901478
– ident: e_1_2_2_26_2
  doi: 10.1002/ange.201902109
– ident: e_1_2_2_21_1
  doi: 10.1021/jacs.0c07992
– ident: e_1_2_2_28_1
  doi: 10.1002/adma.201504705
– ident: e_1_2_2_27_1
  doi: 10.1002/adfm.201903960
– ident: e_1_2_2_22_1
  doi: 10.1039/D0EE03947K
– ident: e_1_2_2_24_1
  doi: 10.1002/smll.201703419
– ident: e_1_2_2_9_2
  doi: 10.1002/ange.202016233
– ident: e_1_2_2_16_2
  doi: 10.1002/ange.201913343
– ident: e_1_2_2_14_1
  doi: 10.1002/anie.202012322
– ident: e_1_2_2_3_1
  doi: 10.1002/adfm.202007158
– ident: e_1_2_2_20_1
  doi: 10.1002/adfm.202004189
– ident: e_1_2_2_4_1
  doi: 10.1002/anie.202103052
– ident: e_1_2_2_13_2
  doi: 10.1002/ange.202016082
– ident: e_1_2_2_1_1
  doi: 10.1002/aenm.202000717
– ident: e_1_2_2_12_1
  doi: 10.1002/anie.202000566
– ident: e_1_2_2_17_1
  doi: 10.1002/anie.202001191
– ident: e_1_2_2_29_1
  doi: 10.1002/anie.201609306
– ident: e_1_2_2_30_1
  doi: 10.1002/adfm.202000060
– ident: e_1_2_2_6_1
  doi: 10.1002/aenm.201900429
– ident: e_1_2_2_7_1
  doi: 10.1002/adfm.202103912
– ident: e_1_2_2_11_1
  doi: 10.1002/adfm.201203844
– ident: e_1_2_2_32_1
  doi: 10.1021/nn400601y
– ident: e_1_2_2_26_1
  doi: 10.1002/anie.201902109
– ident: e_1_2_2_31_1
  doi: 10.1002/aenm.201701912
– ident: e_1_2_2_5_1
  doi: 10.1002/aenm.201300456
– ident: e_1_2_2_23_1
  doi: 10.1007/s12598-020-01654-4
– ident: e_1_2_2_19_1
  doi: 10.1007/s12598-018-1049-3
– ident: e_1_2_2_9_1
  doi: 10.1002/anie.202016233
– ident: e_1_2_2_8_1
  doi: 10.1002/aenm.201802986
– ident: e_1_2_2_14_2
  doi: 10.1002/ange.202012322
– ident: e_1_2_2_16_1
  doi: 10.1002/anie.201913343
– ident: e_1_2_2_15_1
  doi: 10.1002/adfm.202005417
SSID ssj0028806
Score 2.530865
Snippet Polyperylenediimide (PDI) is always subject to its modest conductivities, limited reversible active sites and inferior stability for potassium storage. To...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23596
SubjectTerms Cathodes
Electrolytic cells
Fe/Sn single atoms
Hybridization
Low temperature
N-doped MXenes
Operating temperature
organic–inorganic hybrid
polyperylenediimide cathode
Potassium
potassium-ion batteries
Shelf life
Title Organic–Inorganic Hybridization Engineering of Polyperylenediimide Cathodes for Efficient Potassium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110261
https://www.proquest.com/docview/2582731727
https://www.proquest.com/docview/2570111801
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqKwie0qa7SdMcS2lpBYuohd7C7mYXim0ifRzqyf_gP_SXOJNXW0EEvSVkQpJ9zPdNducbQm5c5kjBjLKEz6XlmBq3hCu5paVyQlsyI5IV0_t-vTtw7obucC2LP9WHKH644cxI_DVOcCFn1ZVoKGZgQ3yHAQxL4h_csIWs6LHQj2IwONP0Is4trEKfqzbarLp5-yYqrajmOmFNEKezT0T-rulGk5fKYi4r6u2bjON_PuaA7GV0lDbT8XNItnR0RHZaeRW4YzJJkzXV5_tHL0pLQCnaXWKeV5bBSdckDWls6EM8hth2ugQ4A2AcTUahpphnGId6RoEi03aiWgFgB6Zz4O6jxYQ-QegPnu2EDDrt51bXyko0WApXJMGXNvy6Eb4jZVgHV-VL3wAR1hDVAPQrx2NKK9YQOuTG-EqKhvGM6wEpE6Ym6oKfku0ojvQZobZE9sZYzcD4cbkQwCxC7XuutA23hS4RK--iQGX65VhGYxykyssswEYMikYskdvC_jVV7vjRspz3eJDN4FnA3AYwO6R3JXJdXIbGxwUVEel4gTYeuMcagHyJsKR7f3lS0Oz32sXZ-V9uuiC7eIzwydwy2Z5PF_oSeNFcXiVj_wtAgAdP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2hcoALO6KsRkLiFJraSdMcERS1LBVikbhFtmNLFTRB0B7gxD_wh3wJM9lYJIQExyRjJbE9M29szxuAHZ97SnKrHRkK5Xi2KRzpK-EYpb3YVdzKbMf0rN_qXnvHN355mpByYXJ-iGrBjTQjs9ek4LQg3fhgDaUUbAzwKILhFABNUllvos8_vKgYpDhOzzzBSAiH6tCXvI0ub3xt_9UvfYDNz5A18zlHs6DKr82PmtzujUdqTz9_I3L81-_MwUyBSNl-PoXmYcIkCzB1UBaCW4Rhnq-p315ee0leBUqz7hOlehVJnOwTqyFLLTtP7zC8fXhCj4a-cTAcxIZRqmEam0eGKJl1MuIK9HcoOkL4PhgP2SVG_2jcluD6qHN10HWKKg2Opk1JNKftsGVl6CkVt9BahSq0iIUNBjbo_bUXcG00b0sTC2tDrWTbBtYPEJdJ25QtKZahlqSJWQHmKgJwnDctTiFfSIngIjZh4CvXCleaOjjlGEW6oDCnShp3UU6-zCPqxKjqxDrsVvL3OXnHj5Lr5ZBHhRI_RtxvI7gjhFeH7eoxdj7tqcjEpGOSCdBCNtHP14Fn4_vLm6L9fq9TXa3-pdEWTHWvzk6j017_ZA2m6T55U-6vQ230MDYbCJNGajNThHew6wtr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hKrW9FMpDpDy6SEicHJxdP-IjgkQJLRHiIeVm7a53pQhiRyE5wIn_0H_IL2HGLwJSVYkebc_K9j7m-8br-QbgwOeektxqR0ZCOZ5tCUf6SjhGaS9xFbcy3zE9HwS9G-9s6A8XsvgLfYj6gxutjNxf0wKfJPboVTSUMrAxvqMAhlP888kL3IiKN5xe1gJSHGdnkV8khENl6CvZRpcfvW3_FpZeueYiY80hp7sCsnrY4k-T2-Z8ppr68Z2O4_-8zSp8K_koOy4m0HdYMukafDmpysCtw7jI1tTPT3_6aVEDSrPeAyV6lSmcbEHTkGWWXWR3GNxOHxDPEBlH41FiGCUaZom5Z8iRWSeXrUC0Q9MZkvfRfMyuMPZH17YBN93O9UnPKWs0OJq2JNGZtqPAyshTKgnQV0UqssiEDYY1iP3aC7k2mrelSYS1kVaybUPrh8jKpG3JQIpNWE6z1GwBcxXRN85bFieQL6REapGYKPSVa4UrTQOcaohiXQqYUx2Nu7iQXuYxdWJcd2IDDmv7SSHd8VfLnWrE43IJ38fcbyO1I37XgP36MnY-7ajI1GRzsgnRP7YQ5RvA8-H9x53i40G_Ux_9-Eijn_D54rQb_-4Pfm3DVzpNUMr9HVieTedmFznSTO3ly-AFhZIKGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic%E2%80%93Inorganic+Hybridization+Engineering+of+Polyperylenediimide+Cathodes+for+Efficient+Potassium+Storage&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Han%2C+Pinyu&rft.au=Liu%2C+Fusheng&rft.au=Zhang%2C+Yamin&rft.au=Wang%2C+Yuyan&rft.date=2021-10-25&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=44&rft.spage=23596&rft.epage=23601&rft_id=info:doi/10.1002%2Fanie.202110261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202110261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon