Near‐Infrared Light‐Driven Photoredox Catalysis by Transition‐Metal‐Complex Nanodots

Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a series of earth‐abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are forme...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 39; pp. e202204561 - n/a
Main Authors Wang, Lele, Sa, Rongjian, Wei, Yingcong, Ma, Xiongfeng, Lu, Chenggang, Huang, Haowei, Fron, Eduard, Liu, Ming, Wang, Wei, Huang, Shuping, Hofkens, Johan, Roeffaers, Maarten B. J., Wang, Yan‐jie, Wang, Junhui, Long, Jinlin, Fu, Xianzhi, Yuan, Rusheng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 26.09.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a series of earth‐abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition‐metal‐complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200–1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations. Aggregation of transition metal complexes (TMCs) into nanodots generates redshifted and broadened absorption covering the visible and the near‐infrared (NIR) region compared with the individual molecular complexes. The TMC nanodots demonstrate excellent performance for the carbonylation reaction under solar‐light illumination.
AbstractList Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a series of earth-abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition-metal-complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200-1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations.Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a series of earth-abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition-metal-complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200-1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations.
Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a series of earth‐abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition‐metal‐complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200–1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations. Aggregation of transition metal complexes (TMCs) into nanodots generates redshifted and broadened absorption covering the visible and the near‐infrared (NIR) region compared with the individual molecular complexes. The TMC nanodots demonstrate excellent performance for the carbonylation reaction under solar‐light illumination.
Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a series of earth‐abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition‐metal‐complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200–1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations.
Author Wang, Yan‐jie
Yuan, Rusheng
Wei, Yingcong
Liu, Ming
Wang, Wei
Fu, Xianzhi
Fron, Eduard
Long, Jinlin
Huang, Haowei
Wang, Lele
Sa, Rongjian
Lu, Chenggang
Wang, Junhui
Hofkens, Johan
Roeffaers, Maarten B. J.
Ma, Xiongfeng
Huang, Shuping
Author_xml – sequence: 1
  givenname: Lele
  orcidid: 0000-0001-6221-3317
  surname: Wang
  fullname: Wang, Lele
  organization: Fuzhou University
– sequence: 2
  givenname: Rongjian
  surname: Sa
  fullname: Sa, Rongjian
  organization: Minjiang University
– sequence: 3
  givenname: Yingcong
  surname: Wei
  fullname: Wei, Yingcong
  organization: Fuzhou University
– sequence: 4
  givenname: Xiongfeng
  surname: Ma
  fullname: Ma, Xiongfeng
  organization: Fuzhou University
– sequence: 5
  givenname: Chenggang
  surname: Lu
  fullname: Lu, Chenggang
  organization: Fuzhou University
– sequence: 6
  givenname: Haowei
  surname: Huang
  fullname: Huang, Haowei
  organization: KU Leuven
– sequence: 7
  givenname: Eduard
  surname: Fron
  fullname: Fron, Eduard
  organization: KU Leuven
– sequence: 8
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Fuzhou University
– sequence: 9
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Fuzhou University
– sequence: 10
  givenname: Shuping
  surname: Huang
  fullname: Huang, Shuping
  organization: Fuzhou University
– sequence: 11
  givenname: Johan
  surname: Hofkens
  fullname: Hofkens, Johan
  email: johan.hofkens@kuleuven.be
  organization: KU Leuven
– sequence: 12
  givenname: Maarten B. J.
  surname: Roeffaers
  fullname: Roeffaers, Maarten B. J.
  email: maarten.roeffaers@kuleuven.be
  organization: KU Leuven
– sequence: 13
  givenname: Yan‐jie
  surname: Wang
  fullname: Wang, Yan‐jie
  organization: Dongguan University of Technology Dongguan 523808 (P. R. China)
– sequence: 14
  givenname: Junhui
  surname: Wang
  fullname: Wang, Junhui
  organization: Chinese Academy of Sciences
– sequence: 15
  givenname: Jinlin
  surname: Long
  fullname: Long, Jinlin
  organization: Fuzhou University
– sequence: 16
  givenname: Xianzhi
  surname: Fu
  fullname: Fu, Xianzhi
  organization: Fuzhou University
– sequence: 17
  givenname: Rusheng
  orcidid: 0000-0002-3285-9085
  surname: Yuan
  fullname: Yuan, Rusheng
  email: yuanrs@fzu.edu.cn
  organization: Fuzhou University
BookMark eNqFkE1PGzEQhq2KSg2h155X4sJlU3-uN0cUviKlgQPcKlne9RgcbexgbyC58RP4jf0ldZQKJCTU04zGzzPyvIfowAcPCP0geEQwpj-1dzCimFLMRUW-oAERlJRMSnaQe85YKWtBvqHDlBaZr2tcDdDvOej45-V16m3UEUwxc_cPfR6cRfcEvrh5CH3I87ApJrrX3Ta5VDTb4jZqn1zvgs_sL8gvuU7CctXBpphrH0zo0xH6anWX4Pu_OkR3F-e3k6tydn05nZzOypYJTEpRN8wa3tKmHtuqsrTCvOUgtGwA8hGNqJi0rcGYNLLR1lTa1MxaY4jhjQY2RCf7vasYHteQerV0qYWu0x7COilajccSE45FRo8_oIuwjj7_TlFJBKeUSZYpvqfaGFKKYFXrer27to_adYpgtYtc7SJXb5FnbfRBW0W31HH7uTDeC8-ug-1_aHU6n56_u38BXhWbkg
CitedBy_id crossref_primary_10_1002_anie_202219153
crossref_primary_10_1002_adma_202307759
crossref_primary_10_1016_j_jece_2024_112051
crossref_primary_10_1021_acs_inorgchem_3c00534
crossref_primary_10_1002_adma_202404694
crossref_primary_10_15251_CL_2024_218_631
crossref_primary_10_1002_ange_202219153
crossref_primary_10_1021_acs_jpclett_4c00588
crossref_primary_10_1002_advs_202207514
crossref_primary_10_1016_j_jwpe_2023_104585
crossref_primary_10_1021_acsanm_3c03453
crossref_primary_10_1016_j_ijhydene_2023_01_172
crossref_primary_10_1007_s12598_023_02595_4
crossref_primary_10_1007_s40843_024_2844_8
crossref_primary_10_1021_acsami_3c10832
crossref_primary_10_15251_DJNB_2024_193_1187
crossref_primary_10_1016_j_cej_2024_148696
crossref_primary_10_1021_acssuschemeng_4c07440
crossref_primary_10_1016_j_jcis_2023_05_060
crossref_primary_10_1021_acsanm_4c05747
crossref_primary_10_1021_acs_inorgchem_4c01836
crossref_primary_10_1039_D4NR01116C
Cites_doi 10.1021/cr0680336
10.1002/anie.201301306
10.1021/acscatal.5b00644
10.1038/s41586-018-0835-2
10.1126/science.aaf7720
10.1126/sciadv.aay0107
10.1126/science.aaz1293
10.1002/cptc.201800212
10.1126/science.aav2572
10.1021/jacs.9b12108
10.1126/science.aay3060
10.1002/anie.200900013
10.1002/anie.201801103
10.1002/anie.201207904
10.1038/nchem.687
10.1021/cr950083f
10.1021/jacs.6b06860
10.1126/science.1172104
10.1021/jacs.7b08489
10.1126/science.aaw9939
10.1038/nature21430
10.1021/jacs.6b10978
10.1038/nmat3151
10.1038/nature14875
10.1002/adma.201403264
10.1021/acs.oprd.0c00325
10.1126/science.1239176
10.1021/acscatal.0c01479
10.1126/science.aaa4526
10.1021/cr9902897
10.1038/nchem.1380
10.1021/acs.accounts.8b00233
10.1002/ange.201801103
10.1016/S1872-2067(20)63640-3
10.1002/anie.202107553
10.1038/nmat4448
10.1021/ja5093612
10.1021/cr300503r
10.1126/science.aag0209
10.1038/s41467-021-21633-2
10.1126/science.aad8313
10.1021/jacs.0c10618
10.1002/adsc.201700944
10.1038/nmat1710
10.1073/pnas.1707318114
10.1002/anie.202004892
10.1038/nature15200
10.1021/acs.chemrev.8b00732
10.1126/sciadv.1500656
10.1021/ie503241k
10.1126/science.aad1920
10.1002/ange.202107553
10.1126/science.aac5443
10.1126/sciadv.aaw9516
10.1021/acsnano.5b01541
10.1002/ange.202004892
10.1126/science.aaf5251
10.1021/acs.chemrev.8b00315
10.1021/acs.accounts.8b00278
10.1002/ange.201301306
10.1038/nature25185
10.1002/ange.201207904
10.1002/ange.200900013
10.1039/C5EE00161G
10.1021/ja00752a099
10.1038/s41467-020-17852-8
10.1038/s41467-017-02676-w
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202204561
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202204561
ANIE202204561
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21872033; 22102064
– fundername: National Key R&D Program of China
  funderid: 2018YFE0208500
– fundername: European Union (Horizon 2020) Marie Sklodowska-Curie innovation program
  funderid: 722591
– fundername: Flemish government for support through Methusalem long term structural funding
  funderid: CASAS2, Meth/15/04
– fundername: Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment
  funderid: SKLPEE-KF202102
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3501-58b3fd4c2b89f66f2604c4e5a7bee152b5637fcd001b7bafd6ad83ffdd1d4bae3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:35:42 EDT 2025
Fri Jul 25 11:59:42 EDT 2025
Tue Jul 01 01:18:27 EDT 2025
Thu Apr 24 23:07:45 EDT 2025
Wed Jan 22 16:24:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-58b3fd4c2b89f66f2604c4e5a7bee152b5637fcd001b7bafd6ad83ffdd1d4bae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3285-9085
0000-0001-6221-3317
PQID 2715422373
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2699701405
proquest_journals_2715422373
crossref_citationtrail_10_1002_anie_202204561
crossref_primary_10_1002_anie_202204561
wiley_primary_10_1002_anie_202204561_ANIE202204561
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 26, 2022
PublicationDateYYYYMMDD 2022-09-26
PublicationDate_xml – month: 09
  year: 2022
  text: September 26, 2022
  day: 26
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 360
2015; 347
2009 2009; 48 121
2020 2020; 59 132
2008; 108
2019; 366
2011; 10
2019; 565
2020; 367
2015; 349
2020; 11
2020; 10
2017; 114
2019; 364
2014; 136
2013 2013; 52 125
2018; 9
2020; 6
1971; 93
2018 2018; 57 130
2016; 353
2013; 113
2016; 352
2019; 119
2010; 2
2016; 351
2009; 324
2015; 1
2019; 3
2015; 5
2019; 5
2020; 41
2020; 142
2015; 54
2006; 5
1996; 96
2015; 524
2021; 143
2015; 9
2015; 8
2016; 15
2017; 139
2015; 27
2021; 12
2018; 554
2021 2021; 60 133
2020; 24
2018; 51
2016; 138
2000; 100
2012; 4
2017; 543
2014; 343
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_60_3
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_41_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_71_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_3
e_1_2_7_77_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_73_2
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_58_3
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_72_2
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_76_1
e_1_2_7_30_2
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_72_3
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_1
e_1_2_7_57_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – volume: 351
  start-page: 681
  year: 2016
  end-page: 684
  publication-title: Science
– volume: 349
  start-page: 632
  year: 2015
  end-page: 635
  publication-title: Science
– volume: 11
  start-page: 4008
  year: 2020
  publication-title: Nat. Commun.
– volume: 351
  start-page: 353
  year: 2016
  end-page: 361
  publication-title: Science
– volume: 139
  start-page: 14724
  year: 2017
  end-page: 14732
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 683
  year: 2006
  end-page: 696
  publication-title: Nat. Mater.
– volume: 5
  start-page: 3760
  year: 2015
  end-page: 3766
  publication-title: ACS Catal.
– volume: 108
  start-page: 1052
  year: 2008
  end-page: 1103
  publication-title: Chem. Rev.
– volume: 27
  start-page: 363
  year: 2015
  end-page: 369
  publication-title: Adv. Mater.
– volume: 96
  start-page: 2035
  year: 1996
  end-page: 2052
  publication-title: Chem. Rev.
– volume: 119
  start-page: 4777
  year: 2019
  end-page: 4816
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 19503 19671
  year: 2020 2020
  end-page: 19509 19677
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 364
  start-page: 566
  year: 2019
  end-page: 570
  publication-title: Science
– volume: 524
  start-page: 297
  year: 2015
  end-page: 298
  publication-title: Nature
– volume: 24
  start-page: 2665
  year: 2020
  end-page: 2675
  publication-title: Org. Process Res. Dev.
– volume: 2
  start-page: 527
  year: 2010
  end-page: 532
  publication-title: Nat. Chem.
– volume: 9
  start-page: 6206
  year: 2015
  end-page: 6213
  publication-title: ACS Nano
– volume: 524
  start-page: 330
  year: 2015
  end-page: 334
  publication-title: Nature
– volume: 366
  start-page: 1514
  year: 2019
  end-page: 1517
  publication-title: Science
– volume: 139
  start-page: 2122
  year: 2017
  end-page: 2131
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 24
  year: 2019
  end-page: 27
  publication-title: ChemPhotoChem
– volume: 352
  start-page: 797
  year: 2016
  end-page: 800
  publication-title: Science
– volume: 360
  start-page: 432
  year: 2018
  end-page: 437
  publication-title: Adv. Synth. Catal.
– volume: 136
  start-page: 14314
  year: 2014
  end-page: 14319
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 2732
  year: 2020
  end-page: 2737
  publication-title: J. Am. Chem. Soc.
– volume: 367
  start-page: 397
  year: 2020
  end-page: 400
  publication-title: Science
– volume: 54
  start-page: 832
  year: 2015
  end-page: 841
  publication-title: Ind. Eng. Chem. Res.
– volume: 9
  start-page: 232
  year: 2018
  publication-title: Nat. Commun.
– volume: 51
  start-page: 2047
  year: 2018
  end-page: 2063
  publication-title: Acc. Chem. Res.
– volume: 93
  start-page: 6344
  year: 1971
  publication-title: J. Am. Chem. Soc.
– volume: 324
  start-page: 1309
  year: 2009
  end-page: 1312
  publication-title: Science
– volume: 52 125
  start-page: 1035 1069
  year: 2013 2013
  end-page: 1039 1073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 113
  start-page: 5322
  year: 2013
  end-page: 5363
  publication-title: Chem. Rev.
– volume: 48 121
  start-page: 4114 4176
  year: 2009 2009
  end-page: 4133 4196
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 24002 24204
  year: 2021 2021
  end-page: 24007 24209
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 554
  start-page: 86
  year: 2018
  end-page: 91
  publication-title: Nature
– volume: 4
  start-page: 655
  year: 2012
  end-page: 662
  publication-title: Nat. Chem.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 10
  start-page: 911
  year: 2011
  end-page: 921
  publication-title: Nat. Mater.
– volume: 353
  start-page: 279
  year: 2016
  end-page: 283
  publication-title: Science
– volume: 12
  start-page: 1393
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1923
  year: 2015
  end-page: 1937
  publication-title: Energy Environ. Sci.
– volume: 143
  start-page: 6071
  year: 2021
  end-page: 6078
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 9279
  year: 2017
  end-page: 9283
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 138
  start-page: 10128
  year: 2016
  end-page: 10131
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6510
  year: 2020
  end-page: 6531
  publication-title: ACS Catal.
– volume: 51
  start-page: 2023
  year: 2018
  end-page: 2035
  publication-title: Acc. Chem. Res.
– volume: 57 130
  start-page: 4642 4732
  year: 2018 2018
  end-page: 4646 4736
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 366
  start-page: 990
  year: 2019
  end-page: 994
  publication-title: Science
– volume: 52 125
  start-page: 4810 4910
  year: 2013 2013
  end-page: 4813 4913
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 353
  start-page: 144
  year: 2016
  end-page: 150
  publication-title: Science
– volume: 119
  start-page: 4628
  year: 2019
  end-page: 4683
  publication-title: Chem. Rev.
– volume: 343
  year: 2014
  publication-title: Science
– volume: 100
  start-page: 2159
  year: 2000
  end-page: 2231
  publication-title: Chem. Rev.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 41
  start-page: 1468
  year: 2020
  end-page: 1473
  publication-title: Chin. J. Catal.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 347
  start-page: 1218
  year: 2015
  end-page: 1220
  publication-title: Science
– volume: 15
  start-page: 211
  year: 2016
  end-page: 216
  publication-title: Nat. Mater.
– volume: 565
  start-page: 343
  year: 2019
  end-page: 346
  publication-title: Nature
– volume: 543
  start-page: 695
  year: 2017
  end-page: 699
  publication-title: Nature
– ident: e_1_2_7_14_2
  doi: 10.1021/cr0680336
– ident: e_1_2_7_23_2
  doi: 10.1002/anie.201301306
– ident: e_1_2_7_44_1
  doi: 10.1021/acscatal.5b00644
– ident: e_1_2_7_51_1
– ident: e_1_2_7_34_2
  doi: 10.1038/s41586-018-0835-2
– ident: e_1_2_7_69_1
  doi: 10.1126/science.aaf7720
– ident: e_1_2_7_61_1
  doi: 10.1126/sciadv.aay0107
– ident: e_1_2_7_66_2
  doi: 10.1126/science.aaz1293
– ident: e_1_2_7_35_2
  doi: 10.1002/cptc.201800212
– ident: e_1_2_7_56_1
– ident: e_1_2_7_67_1
  doi: 10.1126/science.aav2572
– ident: e_1_2_7_45_1
  doi: 10.1021/jacs.9b12108
– ident: e_1_2_7_3_2
  doi: 10.1126/science.aay3060
– ident: e_1_2_7_72_2
  doi: 10.1002/anie.200900013
– ident: e_1_2_7_60_2
  doi: 10.1002/anie.201801103
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.201207904
– ident: e_1_2_7_33_1
– ident: e_1_2_7_6_2
  doi: 10.1038/nchem.687
– ident: e_1_2_7_47_1
– ident: e_1_2_7_63_2
  doi: 10.1021/cr950083f
– ident: e_1_2_7_5_1
– ident: e_1_2_7_10_1
– ident: e_1_2_7_59_2
  doi: 10.1021/jacs.6b06860
– ident: e_1_2_7_43_1
  doi: 10.1126/science.1172104
– ident: e_1_2_7_13_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_32_2
  doi: 10.1021/jacs.7b08489
– ident: e_1_2_7_37_2
  doi: 10.1126/science.aaw9939
– ident: e_1_2_7_49_2
  doi: 10.1038/nature21430
– ident: e_1_2_7_24_1
– ident: e_1_2_7_50_2
  doi: 10.1021/jacs.6b10978
– ident: e_1_2_7_7_2
  doi: 10.1038/nmat3151
– ident: e_1_2_7_11_2
  doi: 10.1038/nature14875
– ident: e_1_2_7_22_2
  doi: 10.1002/adma.201403264
– ident: e_1_2_7_65_2
  doi: 10.1021/acs.oprd.0c00325
– ident: e_1_2_7_15_2
  doi: 10.1126/science.1239176
– ident: e_1_2_7_77_1
  doi: 10.1021/acscatal.0c01479
– ident: e_1_2_7_31_2
  doi: 10.1126/science.aaa4526
– ident: e_1_2_7_48_2
  doi: 10.1021/cr9902897
– ident: e_1_2_7_41_2
  doi: 10.1038/nchem.1380
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.accounts.8b00233
– ident: e_1_2_7_60_3
  doi: 10.1002/ange.201801103
– ident: e_1_2_7_18_2
  doi: 10.1016/S1872-2067(20)63640-3
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.202107553
– ident: e_1_2_7_42_2
  doi: 10.1038/nmat4448
– ident: e_1_2_7_75_1
  doi: 10.1021/ja5093612
– ident: e_1_2_7_30_2
  doi: 10.1021/cr300503r
– ident: e_1_2_7_53_2
  doi: 10.1126/science.aag0209
– ident: e_1_2_7_76_1
  doi: 10.1038/s41467-021-21633-2
– ident: e_1_2_7_16_2
  doi: 10.1126/science.aad8313
– ident: e_1_2_7_57_2
  doi: 10.1021/jacs.0c10618
– ident: e_1_2_7_62_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_73_2
  doi: 10.1002/adsc.201700944
– ident: e_1_2_7_39_1
  doi: 10.1038/nmat1710
– ident: e_1_2_7_40_1
– ident: e_1_2_7_19_2
  doi: 10.1073/pnas.1707318114
– ident: e_1_2_7_58_2
  doi: 10.1002/anie.202004892
– ident: e_1_2_7_38_2
  doi: 10.1038/nature15200
– ident: e_1_2_7_71_1
– ident: e_1_2_7_8_2
  doi: 10.1021/acs.chemrev.8b00732
– ident: e_1_2_7_54_1
  doi: 10.1126/sciadv.1500656
– ident: e_1_2_7_1_1
– ident: e_1_2_7_26_2
  doi: 10.1021/ie503241k
– ident: e_1_2_7_2_2
  doi: 10.1126/science.aad1920
– ident: e_1_2_7_36_1
– ident: e_1_2_7_17_3
  doi: 10.1002/ange.202107553
– ident: e_1_2_7_25_2
  doi: 10.1126/science.aac5443
– ident: e_1_2_7_52_2
  doi: 10.1126/sciadv.aaw9516
– ident: e_1_2_7_27_2
  doi: 10.1021/acsnano.5b01541
– ident: e_1_2_7_55_1
– ident: e_1_2_7_58_3
  doi: 10.1002/ange.202004892
– ident: e_1_2_7_74_2
  doi: 10.1126/science.aaf5251
– ident: e_1_2_7_4_2
  doi: 10.1021/acs.chemrev.8b00315
– ident: e_1_2_7_70_1
  doi: 10.1021/acs.accounts.8b00278
– ident: e_1_2_7_23_3
  doi: 10.1002/ange.201301306
– ident: e_1_2_7_12_2
  doi: 10.1038/nature25185
– ident: e_1_2_7_20_3
  doi: 10.1002/ange.201207904
– ident: e_1_2_7_72_3
  doi: 10.1002/ange.200900013
– ident: e_1_2_7_9_2
  doi: 10.1039/C5EE00161G
– ident: e_1_2_7_64_2
  doi: 10.1021/ja00752a099
– ident: e_1_2_7_68_1
  doi: 10.1038/s41467-020-17852-8
– ident: e_1_2_7_28_2
  doi: 10.1038/s41467-017-02676-w
SSID ssj0028806
Score 2.5351493
Snippet Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a...
Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202204561
SubjectTerms Absorption
Carbonylation
Carbonyls
Catalysis
Copper
Dehydrogenation
Energy
Energy conversion
Energy harvesting
Full-Spectrum-Light Response
Iron
Molecules Aggregation
Nanodots
Near infrared radiation
Photons
Photoredox catalysis
Salts
Solar energy
Solar energy conversion
Spectral sensitivity
Transition Metal Complexes
Title Near‐Infrared Light‐Driven Photoredox Catalysis by Transition‐Metal‐Complex Nanodots
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202204561
https://www.proquest.com/docview/2715422373
https://www.proquest.com/docview/2699701405
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqEQRP0bqvJMdSW1RsEVHwIIR9Iiip9AHqyZ_gb_SXOJM00Qoi6CmvWZLszOzM7M5-Q8ieibCoDlMh1nEIuTSgUpLZUFshhHdaJjkCX7cnT6752Y24-bKLv8CHqCbcUDPy8RoVXOnh4SdoKO7AhviOIp56Hv9gwhZ6RZcVfhQF4Sy2FzEWYhX6ErWxQQ-nm09bpU9X86vDmlucziJR5bcWiSb3B-ORPjAv32Ac__MzS2Rh4o4GzUJ-lsmMy1bIXKusArdKbnugCu-vb6eZH2CuenCO0TzcOB7gOBlc3PUhane2_xS0cCYIAU4C_RzkNjBPBwParoMncMTB58E9BTCkYzQ8XCPXnfZV6yScVGQIDS5AhiLWzFtuqI4TL6WHYIgb7oSKtHPAdC0ki7yxYPt0pJW3UtmYeW_tkeVaObZOZrN-5jZI0BAxhZYNqxTnhvE4EYJRqx214GOYoxoJS46kZgJXjlUzHtICaJmm2Gdp1Wc1sl_RPxZAHT9S1ksGpxOFHaYUZJaDqxSxGtmtHkNf4_qJylx_DDQySSKMSEWN0Jybv7wpbfZO29XV5l8abZF5PMcMFSrrZHY0GLttcINGeicX9Q8CywMz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5KenAuTR8JceO2KhR6kuPsS9LRuDZ2a5tSbMghILQvAjFy8QPcnvoT-hv7SzojWUpdKIX2JKSdRdLOY2d2Z78BeGMiKqrDs5DqOIRCGVQpxW2orZTSO62SAoFvMlXDuXh_LatsQjoLU-JD1AtupBmFvSYFpwXpy3vUUDqCjQEeI0B1CoAeUlnvIqr6VCNIMRTP8oAR5yHVoa9wGzvs8rD_4bx072z-6rIWc87gBHT1tWWqyV17u9Ft8_U3IMf_-p3H8GjvkQbdUoSewAOXP4VGryoE9wxupqgNP759H-V-RenqwZgCenzwbkWmMvh4u8TA3dnlLujRYhBhnAT6S1BMg0VGGNJOHLbglezPwu0CtOoUEK9PYT7oz3rDcF-UITS0BxnKWHNvhWE6TrxSHuMhYYSTWaSdQ75rqXjkjcXpT0c681ZlNubeW3tlhc4cP4OjfJm7cwg6MmbYs2OzTAjDRZxIyZnVjll0M8xVE8KKJanZI5ZT4YxFWmIts5TGLK3HrAlva_rPJVbHHylbFYfTvc6uU4ZiK9BbingTXtfNONa0hZLlbrlFGpUkEQWlsgmsYOdf3pR2p6N-fff8Xzq9gsZwNhmn49H0wwUc03NKWGGqBUeb1da9QK9oo18Wcv8TJqIHTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD4UBetL66Wla72kIPgUXeeW5FF2XdxWFykVfCiEuSIoWVl3QX3yJ_gb_SWek2ziBYpQn0IyZ0gy5zLnzJz5DsCmTaioDtcx1XGIhbKoUoq72DgpZfBGZSUC39FAHZyIn6fy9Nkp_gofollwI80o7TUp-KULO0-goXQCG-M7RnjqFP_MCtVOSa67vxsAKYbSWZ0v4jymMvQ1bGOb7bzs_3JaevI1n3us5ZTT-wy6_tgq0-R8ezI22_b2FY7je_5mAT5N_dForxKgRfjgiyX42KnLwC3D3wHqwsPdfb8II0pWjw4pnMcH3REZyuj4bIhhu3fD66hDS0GEcBKZm6icBMt8MKQ98tiCV7I-F_46QptO4fDVFzjp7f_pHMTTkgyxpR3IWKaGBycsM2kWlAoYDQkrvNSJ8R65bqTiSbAOJz-TGB2c0i7lITi364TRnn-FmWJY-G8QtWXKsGfbaS2E5SLNpOTMGc8cOhl2twVxzZHcTvHKqWzGRV4hLbOcxixvxqwFWw39ZYXU8U_K1ZrB-VRjr3KGQivQV0p4C340zTjWtIGiCz-cII3KsoRCUtkCVnLzjTfle4P-fnO38j-dNmDuuNvLD_uDX99hnh5TtgpTqzAzHk38GrpEY7NeSv0jLOwGBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared+Light%E2%80%90Driven+Photoredox+Catalysis+by+Transition%E2%80%90Metal%E2%80%90Complex+Nanodots&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Lele&rft.au=Sa%2C+Rongjian&rft.au=Wei%2C+Yingcong&rft.au=Ma%2C+Xiongfeng&rft.date=2022-09-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202204561&rft.externalDBID=10.1002%252Fanie.202204561&rft.externalDocID=ANIE202204561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon