Near‐Infrared Light‐Driven Photoredox Catalysis by Transition‐Metal‐Complex Nanodots
Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a series of earth‐abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are forme...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 39; pp. e202204561 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
26.09.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a series of earth‐abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition‐metal‐complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200–1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations.
Aggregation of transition metal complexes (TMCs) into nanodots generates redshifted and broadened absorption covering the visible and the near‐infrared (NIR) region compared with the individual molecular complexes. The TMC nanodots demonstrate excellent performance for the carbonylation reaction under solar‐light illumination. |
---|---|
AbstractList | Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a series of earth-abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition-metal-complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200-1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations.Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a series of earth-abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition-metal-complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200-1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations. Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a series of earth‐abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition‐metal‐complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200–1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations. Aggregation of transition metal complexes (TMCs) into nanodots generates redshifted and broadened absorption covering the visible and the near‐infrared (NIR) region compared with the individual molecular complexes. The TMC nanodots demonstrate excellent performance for the carbonylation reaction under solar‐light illumination. Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a series of earth‐abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition‐metal‐complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200–1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations. |
Author | Wang, Yan‐jie Yuan, Rusheng Wei, Yingcong Liu, Ming Wang, Wei Fu, Xianzhi Fron, Eduard Long, Jinlin Huang, Haowei Wang, Lele Sa, Rongjian Lu, Chenggang Wang, Junhui Hofkens, Johan Roeffaers, Maarten B. J. Ma, Xiongfeng Huang, Shuping |
Author_xml | – sequence: 1 givenname: Lele orcidid: 0000-0001-6221-3317 surname: Wang fullname: Wang, Lele organization: Fuzhou University – sequence: 2 givenname: Rongjian surname: Sa fullname: Sa, Rongjian organization: Minjiang University – sequence: 3 givenname: Yingcong surname: Wei fullname: Wei, Yingcong organization: Fuzhou University – sequence: 4 givenname: Xiongfeng surname: Ma fullname: Ma, Xiongfeng organization: Fuzhou University – sequence: 5 givenname: Chenggang surname: Lu fullname: Lu, Chenggang organization: Fuzhou University – sequence: 6 givenname: Haowei surname: Huang fullname: Huang, Haowei organization: KU Leuven – sequence: 7 givenname: Eduard surname: Fron fullname: Fron, Eduard organization: KU Leuven – sequence: 8 givenname: Ming surname: Liu fullname: Liu, Ming organization: Fuzhou University – sequence: 9 givenname: Wei surname: Wang fullname: Wang, Wei organization: Fuzhou University – sequence: 10 givenname: Shuping surname: Huang fullname: Huang, Shuping organization: Fuzhou University – sequence: 11 givenname: Johan surname: Hofkens fullname: Hofkens, Johan email: johan.hofkens@kuleuven.be organization: KU Leuven – sequence: 12 givenname: Maarten B. J. surname: Roeffaers fullname: Roeffaers, Maarten B. J. email: maarten.roeffaers@kuleuven.be organization: KU Leuven – sequence: 13 givenname: Yan‐jie surname: Wang fullname: Wang, Yan‐jie organization: Dongguan University of Technology Dongguan 523808 (P. R. China) – sequence: 14 givenname: Junhui surname: Wang fullname: Wang, Junhui organization: Chinese Academy of Sciences – sequence: 15 givenname: Jinlin surname: Long fullname: Long, Jinlin organization: Fuzhou University – sequence: 16 givenname: Xianzhi surname: Fu fullname: Fu, Xianzhi organization: Fuzhou University – sequence: 17 givenname: Rusheng orcidid: 0000-0002-3285-9085 surname: Yuan fullname: Yuan, Rusheng email: yuanrs@fzu.edu.cn organization: Fuzhou University |
BookMark | eNqFkE1PGzEQhq2KSg2h155X4sJlU3-uN0cUviKlgQPcKlne9RgcbexgbyC58RP4jf0ldZQKJCTU04zGzzPyvIfowAcPCP0geEQwpj-1dzCimFLMRUW-oAERlJRMSnaQe85YKWtBvqHDlBaZr2tcDdDvOej45-V16m3UEUwxc_cPfR6cRfcEvrh5CH3I87ApJrrX3Ta5VDTb4jZqn1zvgs_sL8gvuU7CctXBpphrH0zo0xH6anWX4Pu_OkR3F-e3k6tydn05nZzOypYJTEpRN8wa3tKmHtuqsrTCvOUgtGwA8hGNqJi0rcGYNLLR1lTa1MxaY4jhjQY2RCf7vasYHteQerV0qYWu0x7COilajccSE45FRo8_oIuwjj7_TlFJBKeUSZYpvqfaGFKKYFXrer27to_adYpgtYtc7SJXb5FnbfRBW0W31HH7uTDeC8-ug-1_aHU6n56_u38BXhWbkg |
CitedBy_id | crossref_primary_10_1002_anie_202219153 crossref_primary_10_1002_adma_202307759 crossref_primary_10_1016_j_jece_2024_112051 crossref_primary_10_1021_acs_inorgchem_3c00534 crossref_primary_10_1002_adma_202404694 crossref_primary_10_15251_CL_2024_218_631 crossref_primary_10_1002_ange_202219153 crossref_primary_10_1021_acs_jpclett_4c00588 crossref_primary_10_1002_advs_202207514 crossref_primary_10_1016_j_jwpe_2023_104585 crossref_primary_10_1021_acsanm_3c03453 crossref_primary_10_1016_j_ijhydene_2023_01_172 crossref_primary_10_1007_s12598_023_02595_4 crossref_primary_10_1007_s40843_024_2844_8 crossref_primary_10_1021_acsami_3c10832 crossref_primary_10_15251_DJNB_2024_193_1187 crossref_primary_10_1016_j_cej_2024_148696 crossref_primary_10_1021_acssuschemeng_4c07440 crossref_primary_10_1016_j_jcis_2023_05_060 crossref_primary_10_1021_acsanm_4c05747 crossref_primary_10_1021_acs_inorgchem_4c01836 crossref_primary_10_1039_D4NR01116C |
Cites_doi | 10.1021/cr0680336 10.1002/anie.201301306 10.1021/acscatal.5b00644 10.1038/s41586-018-0835-2 10.1126/science.aaf7720 10.1126/sciadv.aay0107 10.1126/science.aaz1293 10.1002/cptc.201800212 10.1126/science.aav2572 10.1021/jacs.9b12108 10.1126/science.aay3060 10.1002/anie.200900013 10.1002/anie.201801103 10.1002/anie.201207904 10.1038/nchem.687 10.1021/cr950083f 10.1021/jacs.6b06860 10.1126/science.1172104 10.1021/jacs.7b08489 10.1126/science.aaw9939 10.1038/nature21430 10.1021/jacs.6b10978 10.1038/nmat3151 10.1038/nature14875 10.1002/adma.201403264 10.1021/acs.oprd.0c00325 10.1126/science.1239176 10.1021/acscatal.0c01479 10.1126/science.aaa4526 10.1021/cr9902897 10.1038/nchem.1380 10.1021/acs.accounts.8b00233 10.1002/ange.201801103 10.1016/S1872-2067(20)63640-3 10.1002/anie.202107553 10.1038/nmat4448 10.1021/ja5093612 10.1021/cr300503r 10.1126/science.aag0209 10.1038/s41467-021-21633-2 10.1126/science.aad8313 10.1021/jacs.0c10618 10.1002/adsc.201700944 10.1038/nmat1710 10.1073/pnas.1707318114 10.1002/anie.202004892 10.1038/nature15200 10.1021/acs.chemrev.8b00732 10.1126/sciadv.1500656 10.1021/ie503241k 10.1126/science.aad1920 10.1002/ange.202107553 10.1126/science.aac5443 10.1126/sciadv.aaw9516 10.1021/acsnano.5b01541 10.1002/ange.202004892 10.1126/science.aaf5251 10.1021/acs.chemrev.8b00315 10.1021/acs.accounts.8b00278 10.1002/ange.201301306 10.1038/nature25185 10.1002/ange.201207904 10.1002/ange.200900013 10.1039/C5EE00161G 10.1021/ja00752a099 10.1038/s41467-020-17852-8 10.1038/s41467-017-02676-w |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202204561 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202204561 ANIE202204561 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21872033; 22102064 – fundername: National Key R&D Program of China funderid: 2018YFE0208500 – fundername: European Union (Horizon 2020) Marie Sklodowska-Curie innovation program funderid: 722591 – fundername: Flemish government for support through Methusalem long term structural funding funderid: CASAS2, Meth/15/04 – fundername: Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment funderid: SKLPEE-KF202102 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3501-58b3fd4c2b89f66f2604c4e5a7bee152b5637fcd001b7bafd6ad83ffdd1d4bae3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:35:42 EDT 2025 Fri Jul 25 11:59:42 EDT 2025 Tue Jul 01 01:18:27 EDT 2025 Thu Apr 24 23:07:45 EDT 2025 Wed Jan 22 16:24:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3501-58b3fd4c2b89f66f2604c4e5a7bee152b5637fcd001b7bafd6ad83ffdd1d4bae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3285-9085 0000-0001-6221-3317 |
PQID | 2715422373 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2699701405 proquest_journals_2715422373 crossref_citationtrail_10_1002_anie_202204561 crossref_primary_10_1002_anie_202204561 wiley_primary_10_1002_anie_202204561_ANIE202204561 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 26, 2022 |
PublicationDateYYYYMMDD | 2022-09-26 |
PublicationDate_xml | – month: 09 year: 2022 text: September 26, 2022 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 360 2015; 347 2009 2009; 48 121 2020 2020; 59 132 2008; 108 2019; 366 2011; 10 2019; 565 2020; 367 2015; 349 2020; 11 2020; 10 2017; 114 2019; 364 2014; 136 2013 2013; 52 125 2018; 9 2020; 6 1971; 93 2018 2018; 57 130 2016; 353 2013; 113 2016; 352 2019; 119 2010; 2 2016; 351 2009; 324 2015; 1 2019; 3 2015; 5 2019; 5 2020; 41 2020; 142 2015; 54 2006; 5 1996; 96 2015; 524 2021; 143 2015; 9 2015; 8 2016; 15 2017; 139 2015; 27 2021; 12 2018; 554 2021 2021; 60 133 2020; 24 2018; 51 2016; 138 2000; 100 2012; 4 2017; 543 2014; 343 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_60_3 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_71_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_3 e_1_2_7_77_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_73_2 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_58_3 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_72_2 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_76_1 e_1_2_7_30_2 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_72_3 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_74_2 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_1 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 351 start-page: 681 year: 2016 end-page: 684 publication-title: Science – volume: 349 start-page: 632 year: 2015 end-page: 635 publication-title: Science – volume: 11 start-page: 4008 year: 2020 publication-title: Nat. Commun. – volume: 351 start-page: 353 year: 2016 end-page: 361 publication-title: Science – volume: 139 start-page: 14724 year: 2017 end-page: 14732 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 683 year: 2006 end-page: 696 publication-title: Nat. Mater. – volume: 5 start-page: 3760 year: 2015 end-page: 3766 publication-title: ACS Catal. – volume: 108 start-page: 1052 year: 2008 end-page: 1103 publication-title: Chem. Rev. – volume: 27 start-page: 363 year: 2015 end-page: 369 publication-title: Adv. Mater. – volume: 96 start-page: 2035 year: 1996 end-page: 2052 publication-title: Chem. Rev. – volume: 119 start-page: 4777 year: 2019 end-page: 4816 publication-title: Chem. Rev. – volume: 59 132 start-page: 19503 19671 year: 2020 2020 end-page: 19509 19677 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 364 start-page: 566 year: 2019 end-page: 570 publication-title: Science – volume: 524 start-page: 297 year: 2015 end-page: 298 publication-title: Nature – volume: 24 start-page: 2665 year: 2020 end-page: 2675 publication-title: Org. Process Res. Dev. – volume: 2 start-page: 527 year: 2010 end-page: 532 publication-title: Nat. Chem. – volume: 9 start-page: 6206 year: 2015 end-page: 6213 publication-title: ACS Nano – volume: 524 start-page: 330 year: 2015 end-page: 334 publication-title: Nature – volume: 366 start-page: 1514 year: 2019 end-page: 1517 publication-title: Science – volume: 139 start-page: 2122 year: 2017 end-page: 2131 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 24 year: 2019 end-page: 27 publication-title: ChemPhotoChem – volume: 352 start-page: 797 year: 2016 end-page: 800 publication-title: Science – volume: 360 start-page: 432 year: 2018 end-page: 437 publication-title: Adv. Synth. Catal. – volume: 136 start-page: 14314 year: 2014 end-page: 14319 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 2732 year: 2020 end-page: 2737 publication-title: J. Am. Chem. Soc. – volume: 367 start-page: 397 year: 2020 end-page: 400 publication-title: Science – volume: 54 start-page: 832 year: 2015 end-page: 841 publication-title: Ind. Eng. Chem. Res. – volume: 9 start-page: 232 year: 2018 publication-title: Nat. Commun. – volume: 51 start-page: 2047 year: 2018 end-page: 2063 publication-title: Acc. Chem. Res. – volume: 93 start-page: 6344 year: 1971 publication-title: J. Am. Chem. Soc. – volume: 324 start-page: 1309 year: 2009 end-page: 1312 publication-title: Science – volume: 52 125 start-page: 1035 1069 year: 2013 2013 end-page: 1039 1073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 113 start-page: 5322 year: 2013 end-page: 5363 publication-title: Chem. Rev. – volume: 48 121 start-page: 4114 4176 year: 2009 2009 end-page: 4133 4196 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 24002 24204 year: 2021 2021 end-page: 24007 24209 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 554 start-page: 86 year: 2018 end-page: 91 publication-title: Nature – volume: 4 start-page: 655 year: 2012 end-page: 662 publication-title: Nat. Chem. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 10 start-page: 911 year: 2011 end-page: 921 publication-title: Nat. Mater. – volume: 353 start-page: 279 year: 2016 end-page: 283 publication-title: Science – volume: 12 start-page: 1393 year: 2021 publication-title: Nat. Commun. – volume: 8 start-page: 1923 year: 2015 end-page: 1937 publication-title: Energy Environ. Sci. – volume: 143 start-page: 6071 year: 2021 end-page: 6078 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 9279 year: 2017 end-page: 9283 publication-title: Proc. Natl. Acad. Sci. USA – volume: 138 start-page: 10128 year: 2016 end-page: 10131 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6510 year: 2020 end-page: 6531 publication-title: ACS Catal. – volume: 51 start-page: 2023 year: 2018 end-page: 2035 publication-title: Acc. Chem. Res. – volume: 57 130 start-page: 4642 4732 year: 2018 2018 end-page: 4646 4736 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 366 start-page: 990 year: 2019 end-page: 994 publication-title: Science – volume: 52 125 start-page: 4810 4910 year: 2013 2013 end-page: 4813 4913 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 353 start-page: 144 year: 2016 end-page: 150 publication-title: Science – volume: 119 start-page: 4628 year: 2019 end-page: 4683 publication-title: Chem. Rev. – volume: 343 year: 2014 publication-title: Science – volume: 100 start-page: 2159 year: 2000 end-page: 2231 publication-title: Chem. Rev. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 41 start-page: 1468 year: 2020 end-page: 1473 publication-title: Chin. J. Catal. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 347 start-page: 1218 year: 2015 end-page: 1220 publication-title: Science – volume: 15 start-page: 211 year: 2016 end-page: 216 publication-title: Nat. Mater. – volume: 565 start-page: 343 year: 2019 end-page: 346 publication-title: Nature – volume: 543 start-page: 695 year: 2017 end-page: 699 publication-title: Nature – ident: e_1_2_7_14_2 doi: 10.1021/cr0680336 – ident: e_1_2_7_23_2 doi: 10.1002/anie.201301306 – ident: e_1_2_7_44_1 doi: 10.1021/acscatal.5b00644 – ident: e_1_2_7_51_1 – ident: e_1_2_7_34_2 doi: 10.1038/s41586-018-0835-2 – ident: e_1_2_7_69_1 doi: 10.1126/science.aaf7720 – ident: e_1_2_7_61_1 doi: 10.1126/sciadv.aay0107 – ident: e_1_2_7_66_2 doi: 10.1126/science.aaz1293 – ident: e_1_2_7_35_2 doi: 10.1002/cptc.201800212 – ident: e_1_2_7_56_1 – ident: e_1_2_7_67_1 doi: 10.1126/science.aav2572 – ident: e_1_2_7_45_1 doi: 10.1021/jacs.9b12108 – ident: e_1_2_7_3_2 doi: 10.1126/science.aay3060 – ident: e_1_2_7_72_2 doi: 10.1002/anie.200900013 – ident: e_1_2_7_60_2 doi: 10.1002/anie.201801103 – ident: e_1_2_7_20_2 doi: 10.1002/anie.201207904 – ident: e_1_2_7_33_1 – ident: e_1_2_7_6_2 doi: 10.1038/nchem.687 – ident: e_1_2_7_47_1 – ident: e_1_2_7_63_2 doi: 10.1021/cr950083f – ident: e_1_2_7_5_1 – ident: e_1_2_7_10_1 – ident: e_1_2_7_59_2 doi: 10.1021/jacs.6b06860 – ident: e_1_2_7_43_1 doi: 10.1126/science.1172104 – ident: e_1_2_7_13_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_32_2 doi: 10.1021/jacs.7b08489 – ident: e_1_2_7_37_2 doi: 10.1126/science.aaw9939 – ident: e_1_2_7_49_2 doi: 10.1038/nature21430 – ident: e_1_2_7_24_1 – ident: e_1_2_7_50_2 doi: 10.1021/jacs.6b10978 – ident: e_1_2_7_7_2 doi: 10.1038/nmat3151 – ident: e_1_2_7_11_2 doi: 10.1038/nature14875 – ident: e_1_2_7_22_2 doi: 10.1002/adma.201403264 – ident: e_1_2_7_65_2 doi: 10.1021/acs.oprd.0c00325 – ident: e_1_2_7_15_2 doi: 10.1126/science.1239176 – ident: e_1_2_7_77_1 doi: 10.1021/acscatal.0c01479 – ident: e_1_2_7_31_2 doi: 10.1126/science.aaa4526 – ident: e_1_2_7_48_2 doi: 10.1021/cr9902897 – ident: e_1_2_7_41_2 doi: 10.1038/nchem.1380 – ident: e_1_2_7_46_1 doi: 10.1021/acs.accounts.8b00233 – ident: e_1_2_7_60_3 doi: 10.1002/ange.201801103 – ident: e_1_2_7_18_2 doi: 10.1016/S1872-2067(20)63640-3 – ident: e_1_2_7_17_2 doi: 10.1002/anie.202107553 – ident: e_1_2_7_42_2 doi: 10.1038/nmat4448 – ident: e_1_2_7_75_1 doi: 10.1021/ja5093612 – ident: e_1_2_7_30_2 doi: 10.1021/cr300503r – ident: e_1_2_7_53_2 doi: 10.1126/science.aag0209 – ident: e_1_2_7_76_1 doi: 10.1038/s41467-021-21633-2 – ident: e_1_2_7_16_2 doi: 10.1126/science.aad8313 – ident: e_1_2_7_57_2 doi: 10.1021/jacs.0c10618 – ident: e_1_2_7_62_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_73_2 doi: 10.1002/adsc.201700944 – ident: e_1_2_7_39_1 doi: 10.1038/nmat1710 – ident: e_1_2_7_40_1 – ident: e_1_2_7_19_2 doi: 10.1073/pnas.1707318114 – ident: e_1_2_7_58_2 doi: 10.1002/anie.202004892 – ident: e_1_2_7_38_2 doi: 10.1038/nature15200 – ident: e_1_2_7_71_1 – ident: e_1_2_7_8_2 doi: 10.1021/acs.chemrev.8b00732 – ident: e_1_2_7_54_1 doi: 10.1126/sciadv.1500656 – ident: e_1_2_7_1_1 – ident: e_1_2_7_26_2 doi: 10.1021/ie503241k – ident: e_1_2_7_2_2 doi: 10.1126/science.aad1920 – ident: e_1_2_7_36_1 – ident: e_1_2_7_17_3 doi: 10.1002/ange.202107553 – ident: e_1_2_7_25_2 doi: 10.1126/science.aac5443 – ident: e_1_2_7_52_2 doi: 10.1126/sciadv.aaw9516 – ident: e_1_2_7_27_2 doi: 10.1021/acsnano.5b01541 – ident: e_1_2_7_55_1 – ident: e_1_2_7_58_3 doi: 10.1002/ange.202004892 – ident: e_1_2_7_74_2 doi: 10.1126/science.aaf5251 – ident: e_1_2_7_4_2 doi: 10.1021/acs.chemrev.8b00315 – ident: e_1_2_7_70_1 doi: 10.1021/acs.accounts.8b00278 – ident: e_1_2_7_23_3 doi: 10.1002/ange.201301306 – ident: e_1_2_7_12_2 doi: 10.1038/nature25185 – ident: e_1_2_7_20_3 doi: 10.1002/ange.201207904 – ident: e_1_2_7_72_3 doi: 10.1002/ange.200900013 – ident: e_1_2_7_9_2 doi: 10.1039/C5EE00161G – ident: e_1_2_7_64_2 doi: 10.1021/ja00752a099 – ident: e_1_2_7_68_1 doi: 10.1038/s41467-020-17852-8 – ident: e_1_2_7_28_2 doi: 10.1038/s41467-017-02676-w |
SSID | ssj0028806 |
Score | 2.5351493 |
Snippet | Developing light‐harvesting materials with broad spectral response is of fundamental importance in full‐spectrum solar energy conversion. We found that, when a... Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202204561 |
SubjectTerms | Absorption Carbonylation Carbonyls Catalysis Copper Dehydrogenation Energy Energy conversion Energy harvesting Full-Spectrum-Light Response Iron Molecules Aggregation Nanodots Near infrared radiation Photons Photoredox catalysis Salts Solar energy Solar energy conversion Spectral sensitivity Transition Metal Complexes |
Title | Near‐Infrared Light‐Driven Photoredox Catalysis by Transition‐Metal‐Complex Nanodots |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202204561 https://www.proquest.com/docview/2715422373 https://www.proquest.com/docview/2699701405 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqEQRP0bqvJMdSW1RsEVHwIIR9Iiip9AHqyZ_gb_SXOJM00Qoi6CmvWZLszOzM7M5-Q8ieibCoDlMh1nEIuTSgUpLZUFshhHdaJjkCX7cnT6752Y24-bKLv8CHqCbcUDPy8RoVXOnh4SdoKO7AhviOIp56Hv9gwhZ6RZcVfhQF4Sy2FzEWYhX6ErWxQQ-nm09bpU9X86vDmlucziJR5bcWiSb3B-ORPjAv32Ac__MzS2Rh4o4GzUJ-lsmMy1bIXKusArdKbnugCu-vb6eZH2CuenCO0TzcOB7gOBlc3PUhane2_xS0cCYIAU4C_RzkNjBPBwParoMncMTB58E9BTCkYzQ8XCPXnfZV6yScVGQIDS5AhiLWzFtuqI4TL6WHYIgb7oSKtHPAdC0ki7yxYPt0pJW3UtmYeW_tkeVaObZOZrN-5jZI0BAxhZYNqxTnhvE4EYJRqx214GOYoxoJS46kZgJXjlUzHtICaJmm2Gdp1Wc1sl_RPxZAHT9S1ksGpxOFHaYUZJaDqxSxGtmtHkNf4_qJylx_DDQySSKMSEWN0Jybv7wpbfZO29XV5l8abZF5PMcMFSrrZHY0GLttcINGeicX9Q8CywMz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5KenAuTR8JceO2KhR6kuPsS9LRuDZ2a5tSbMghILQvAjFy8QPcnvoT-hv7SzojWUpdKIX2JKSdRdLOY2d2Z78BeGMiKqrDs5DqOIRCGVQpxW2orZTSO62SAoFvMlXDuXh_LatsQjoLU-JD1AtupBmFvSYFpwXpy3vUUDqCjQEeI0B1CoAeUlnvIqr6VCNIMRTP8oAR5yHVoa9wGzvs8rD_4bx072z-6rIWc87gBHT1tWWqyV17u9Ft8_U3IMf_-p3H8GjvkQbdUoSewAOXP4VGryoE9wxupqgNP759H-V-RenqwZgCenzwbkWmMvh4u8TA3dnlLujRYhBhnAT6S1BMg0VGGNJOHLbglezPwu0CtOoUEK9PYT7oz3rDcF-UITS0BxnKWHNvhWE6TrxSHuMhYYSTWaSdQ75rqXjkjcXpT0c681ZlNubeW3tlhc4cP4OjfJm7cwg6MmbYs2OzTAjDRZxIyZnVjll0M8xVE8KKJanZI5ZT4YxFWmIts5TGLK3HrAlva_rPJVbHHylbFYfTvc6uU4ZiK9BbingTXtfNONa0hZLlbrlFGpUkEQWlsgmsYOdf3pR2p6N-fff8Xzq9gsZwNhmn49H0wwUc03NKWGGqBUeb1da9QK9oo18Wcv8TJqIHTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD4UBetL66Wla72kIPgUXeeW5FF2XdxWFykVfCiEuSIoWVl3QX3yJ_gb_SWek2ziBYpQn0IyZ0gy5zLnzJz5DsCmTaioDtcx1XGIhbKoUoq72DgpZfBGZSUC39FAHZyIn6fy9Nkp_gofollwI80o7TUp-KULO0-goXQCG-M7RnjqFP_MCtVOSa67vxsAKYbSWZ0v4jymMvQ1bGOb7bzs_3JaevI1n3us5ZTT-wy6_tgq0-R8ezI22_b2FY7je_5mAT5N_dForxKgRfjgiyX42KnLwC3D3wHqwsPdfb8II0pWjw4pnMcH3REZyuj4bIhhu3fD66hDS0GEcBKZm6icBMt8MKQ98tiCV7I-F_46QptO4fDVFzjp7f_pHMTTkgyxpR3IWKaGBycsM2kWlAoYDQkrvNSJ8R65bqTiSbAOJz-TGB2c0i7lITi364TRnn-FmWJY-G8QtWXKsGfbaS2E5SLNpOTMGc8cOhl2twVxzZHcTvHKqWzGRV4hLbOcxixvxqwFWw39ZYXU8U_K1ZrB-VRjr3KGQivQV0p4C340zTjWtIGiCz-cII3KsoRCUtkCVnLzjTfle4P-fnO38j-dNmDuuNvLD_uDX99hnh5TtgpTqzAzHk38GrpEY7NeSv0jLOwGBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared+Light%E2%80%90Driven+Photoredox+Catalysis+by+Transition%E2%80%90Metal%E2%80%90Complex+Nanodots&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Lele&rft.au=Sa%2C+Rongjian&rft.au=Wei%2C+Yingcong&rft.au=Ma%2C+Xiongfeng&rft.date=2022-09-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202204561&rft.externalDBID=10.1002%252Fanie.202204561&rft.externalDocID=ANIE202204561 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |