Large‐Scale Synthesis of Functionalized Nanowires to Construct Nanoelectrodes for Intracellular Sensing

A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4‐ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticl...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 35; pp. 19337 - 19343
Main Authors Wu, Wen‐Tao, Jiang, Hong, Qi, Yu‐Ting, Fan, Wen‐Ting, Yan, Jing, Liu, Yan‐Ling, Huang, Wei‐Hua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 23.08.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4‐ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles‐polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core–shell NWs with excellent conductivity, adjustable size, and well‐designed properties. Nanoelectrodes manufactured with such core–shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells. Versatile one‐pot synthesis of functionalized core–shell nanowires breaks through the limitation of nanoelectrode materials to facilely construct high‐performance single nanowire electrodes. Concurrently with excellent electrochemical, mechanical, and antifouling properties, the nanowire electrodes show great superiority in real‐time monitoring of biological molecules and unraveling the relevant signaling pathway inside single living cells.
AbstractList A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.
A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4‐ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles‐polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core–shell NWs with excellent conductivity, adjustable size, and well‐designed properties. Nanoelectrodes manufactured with such core–shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells. Versatile one‐pot synthesis of functionalized core–shell nanowires breaks through the limitation of nanoelectrode materials to facilely construct high‐performance single nanowire electrodes. Concurrently with excellent electrochemical, mechanical, and antifouling properties, the nanowire electrodes show great superiority in real‐time monitoring of biological molecules and unraveling the relevant signaling pathway inside single living cells.
A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4‐ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles‐polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core–shell NWs with excellent conductivity, adjustable size, and well‐designed properties. Nanoelectrodes manufactured with such core–shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.
Author Huang, Wei‐Hua
Yan, Jing
Jiang, Hong
Qi, Yu‐Ting
Liu, Yan‐Ling
Fan, Wen‐Ting
Wu, Wen‐Tao
Author_xml – sequence: 1
  givenname: Wen‐Tao
  surname: Wu
  fullname: Wu, Wen‐Tao
  organization: Wuhan University
– sequence: 2
  givenname: Hong
  surname: Jiang
  fullname: Jiang, Hong
  organization: Wuhan University
– sequence: 3
  givenname: Yu‐Ting
  surname: Qi
  fullname: Qi, Yu‐Ting
  organization: Wuhan University
– sequence: 4
  givenname: Wen‐Ting
  surname: Fan
  fullname: Fan, Wen‐Ting
  organization: Wuhan University
– sequence: 5
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
  organization: Wuhan University
– sequence: 6
  givenname: Yan‐Ling
  orcidid: 0000-0002-7386-354X
  surname: Liu
  fullname: Liu, Yan‐Ling
  organization: Wuhan University
– sequence: 7
  givenname: Wei‐Hua
  orcidid: 0000-0001-8951-075X
  surname: Huang
  fullname: Huang, Wei‐Hua
  email: whhuang@whu.edu.cn
  organization: Wuhan University
BookMark eNqFkMtKAzEUhoMoWKtb1wNu3EzNZWYyXZbipVB0UV0PmcyZmpImNckgdeUj-Iw-iRkrCoK4yiH5_nD-7wjtG2sAoVOCRwRjeiGMghHFlOCC5mQPDUhOSco4Z_txzhhLeZmTQ3Tk_SryZYmLAVJz4Zbw_vq2kEJDstia8Ahe-cS2yVVnZFDWCK1eoEluhbHPyoFPgk2m1vjgOhk-r0GDDM428a21LpmZ4IQErTstXLIA45VZHqODVmgPJ1_nED1cXd5Pb9L53fVsOpmnkuWYpERQUWIWe-SE13lBZMYbVmMGOQYZB8LoWOKsLjgvWiyg5qTMmprKRoybkrMhOt_9u3H2qQMfqrXy_TLCgO18RfMMc8owHkf07Be6sp2LfXuqINEW42Wksh0lnfXeQVtJFUQvJrZUuiK46v1Xvf_q23-MjX7FNk6thdv-HRjvAs9Kw_Yfuprczi5_sh-9k5vu
CitedBy_id crossref_primary_10_1002_anie_202203757
crossref_primary_10_1016_j_trac_2025_118161
crossref_primary_10_1002_ange_202115820
crossref_primary_10_1021_acsnano_3c05825
crossref_primary_10_1039_D0CS01610A
crossref_primary_10_1016_j_scib_2023_11_021
crossref_primary_10_1021_acs_analchem_3c04782
crossref_primary_10_1039_D2CC06729C
crossref_primary_10_1002_ange_202421684
crossref_primary_10_1002_smll_202407685
crossref_primary_10_1002_ange_202403241
crossref_primary_10_1007_s41664_022_00223_1
crossref_primary_10_34133_2022_9763420
crossref_primary_10_1016_j_heliyon_2024_e29244
crossref_primary_10_1002_ange_202208121
crossref_primary_10_1007_s40843_024_2808_2
crossref_primary_10_1021_acssensors_3c00082
crossref_primary_10_1002_ange_202212752
crossref_primary_10_1016_j_aca_2023_341933
crossref_primary_10_1002_smll_202301476
crossref_primary_10_1039_D3AN01551C
crossref_primary_10_1002_adma_202416371
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1016_j_talanta_2024_125946
crossref_primary_10_1039_D3CC06078K
crossref_primary_10_1021_acs_langmuir_2c00915
crossref_primary_10_1021_jacs_3c12913
crossref_primary_10_1002_anie_202115820
crossref_primary_10_1016_j_bios_2023_115741
crossref_primary_10_1038_s41378_024_00819_w
crossref_primary_10_1002_anie_202421684
crossref_primary_10_1360_TB_2023_0214
crossref_primary_10_1002_ange_202203757
crossref_primary_10_1002_anie_202403241
crossref_primary_10_1002_smll_202406796
crossref_primary_10_1002_anie_202208121
crossref_primary_10_1021_jacs_2c01857
crossref_primary_10_1002_anie_202212752
crossref_primary_10_1021_acsami_3c14345
crossref_primary_10_1016_j_jelechem_2022_117125
crossref_primary_10_1002_INMD_20240024
crossref_primary_10_1021_acssensors_2c01897
crossref_primary_10_1038_s41378_024_00814_1
crossref_primary_10_1007_s00216_024_05348_z
crossref_primary_10_34133_research_0149
Cites_doi 10.1021/acs.analchem.8b01396
10.1038/nnano.2010.241
10.1021/ac960887a
10.1021/ac0508595
10.1021/acs.analchem.8b04863
10.1021/acs.analchem.9b04139
10.1016/j.electacta.2016.02.178
10.1038/nrn.2016.155
10.1002/anie.201705900
10.1002/anie.201707187
10.1021/nn5024522
10.1016/j.tips.2018.11.002
10.1002/anie.201902734
10.1039/C7SC00433H
10.1021/jacs.9b13796
10.1016/j.trac.2016.01.018
10.1186/s13058-017-0823-8
10.1074/jbc.M109.055038
10.1002/anie.201903283
10.3389/fimmu.2019.01545
10.1021/acs.analchem.0c00931
10.1073/pnas.1203570109
10.1038/s41586-019-1019-4
10.1002/anie.201404744
10.1039/D0SC02787A
10.1021/jp070387t
10.1016/j.coelec.2020.09.002
10.1021/acs.accounts.6b00294
10.1016/j.canlet.2019.05.027
10.1021/jacs.7b06476
10.1002/ange.201902734
10.1021/jacs.7b12106
10.1002/ange.201504839
10.1002/ange.201903283
10.1073/pnas.1609618113
10.1021/acs.analchem.9b04316
10.1021/ac00037a012
10.1021/ja909408q
10.1039/C9CC01280J
10.1002/ange.201913953
10.1038/nnano.2009.154
10.1016/j.jelechem.2017.01.051
10.1007/s11671-007-9100-6
10.1126/science.250.4984.1118
10.1073/pnas.1602185113
10.1073/pnas.1201552109
10.1021/acs.analchem.7b01430
10.1039/C3CS60380F
10.1038/ncomms6450
10.1002/anie.201504839
10.1021/acs.chemrev.8b00797
10.1039/C5NR06021D
10.1016/j.mce.2005.11.012
10.1126/science.aad4998
10.1002/anie.201913953
10.1039/C9SC05538J
10.1002/ange.201705900
10.1089/ars.2018.7527
10.1021/jacs.0c02202
10.1002/ange.201404744
10.1038/ncomms9323
10.1016/j.bios.2018.08.017
10.1002/ange.201707187
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202106251
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 19343
ExternalDocumentID 10_1002_anie_202106251
ANIE202106251
Genre article
GrantInformation_xml – fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 21721005
– fundername: Major Research Plan
  funderid: 22090050, 22090051
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  funderid: 21725504
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3501-1a2a803202517b561c47d3b03e50ec3b01329c04b6776f0aeb7184db2cda9d873
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 23:01:55 EDT 2025
Fri Jul 25 10:12:15 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Tue Jul 01 01:18:03 EDT 2025
Wed Jan 22 16:28:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-1a2a803202517b561c47d3b03e50ec3b01329c04b6776f0aeb7184db2cda9d873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7386-354X
0000-0001-8951-075X
PQID 2561851378
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2540723009
proquest_journals_2561851378
crossref_citationtrail_10_1002_anie_202106251
crossref_primary_10_1002_anie_202106251
wiley_primary_10_1002_anie_202106251_ANIE202106251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 23, 2021
PublicationDateYYYYMMDD 2021-08-23
PublicationDate_xml – month: 08
  year: 2021
  text: August 23, 2021
  day: 23
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 25
2014 2014; 53 126
2018; 120
2019; 91
2017; 8
2015; 6
2018; 140
2006; 78
2019; 30
2020; 142
2019; 55
2019; 10
1997; 69
2017; 89
2020 2020; 59 132
2019; 567
2010; 285
2020; 11
2017 2017; 56 129
2017; 355
2011; 6
2016; 79
2019 2019; 58 131
2012; 109
2017; 139
2014; 43
2014; 5
2019; 40
2020; 92
2007; 111
2010; 132
2016; 113
2015 2015; 54 127
2018; 90
2019; 119
2017; 19
2017; 18
2007; 2
2009; 4
2019; 459
1992; 64
2014; 8
2016; 49
2016; 8
2016; 196
2017; 787
2006; 246
1990; 250
e_1_2_6_51_1
e_1_2_6_53_2
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_17_3
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_53_3
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_41_1
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_22_3
e_1_2_6_24_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_47_1
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_71_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_12_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_16_3
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_1
e_1_2_6_61_2
e_1_2_6_42_1
e_1_2_6_63_2
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_67_2
e_1_2_6_69_1
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 139
  start-page: 13055
  year: 2017
  end-page: 13062
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 3461
  year: 2019
  end-page: 3464
  publication-title: Chem. Commun.
– volume: 40
  start-page: 38
  year: 2019
  end-page: 49
  publication-title: Trends Pharmacol. Sci.
– volume: 5
  start-page: 5450
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 8182
  year: 2014
  end-page: 8189
  publication-title: ACS Nano
– volume: 30
  start-page: 1124
  year: 2019
  end-page: 1143
  publication-title: Antioxid. Redox Signaling
– volume: 54 127
  start-page: 11978 12146
  year: 2015 2015
  end-page: 11982 12150
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 3338
  year: 2017
  end-page: 3348
  publication-title: Chem. Sci.
– volume: 58 131
  start-page: 8927 9021
  year: 2019 2019
  end-page: 8931 9026
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 246
  start-page: 142
  year: 2006
  end-page: 146
  publication-title: Mol. Cell. Endocrinol.
– volume: 10
  start-page: 1545
  year: 2019
  publication-title: Front. Immunol.
– volume: 53 126
  start-page: 12456 12664
  year: 2014 2014
  end-page: 12460 12668
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 2328
  year: 2016
  end-page: 2335
  publication-title: Acc. Chem. Res.
– volume: 109
  start-page: 11534
  year: 2012
  end-page: 11539
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 91
  start-page: 15355
  year: 2019
  end-page: 15359
  publication-title: Anal. Chem.
– volume: 196
  start-page: 1
  year: 2016
  end-page: 12
  publication-title: Electrochim. Acta
– volume: 79
  start-page: 46
  year: 2016
  end-page: 59
  publication-title: TrAC Trends Anal. Chem.
– volume: 142
  start-page: 5778
  year: 2020
  end-page: 5784
  publication-title: J. Am. Chem. Soc.
– volume: 787
  start-page: 110
  year: 2017
  end-page: 117
  publication-title: J. Electroanal. Chem.
– volume: 92
  start-page: 5621
  year: 2020
  end-page: 5644
  publication-title: Anal. Chem.
– volume: 56 129
  start-page: 12997 13177
  year: 2017 2017
  end-page: 13000 13180
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 4
  start-page: 483
  year: 2009
  end-page: 491
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 214
  year: 2016
  end-page: 218
  publication-title: Nanoscale
– volume: 111
  start-page: 5926
  year: 2007
  end-page: 5931
  publication-title: J. Phys. Chem. C
– volume: 43
  start-page: 1349
  year: 2014
  end-page: 1360
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 8323
  year: 2015
  publication-title: Nat. Commun.
– volume: 142
  start-page: 8890
  year: 2020
  end-page: 8896
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 11802 11964
  year: 2017 2017
  end-page: 11806 11968
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 69
  start-page: 1627
  year: 1997
  end-page: 1634
  publication-title: Anal. Chem.
– volume: 6
  start-page: 57
  year: 2011
  end-page: 64
  publication-title: Nat. Nanotechnol.
– volume: 25
  year: 2021
  publication-title: Curr. Opin. Electrochem.
– volume: 132
  start-page: 3047
  year: 2010
  end-page: 3054
  publication-title: J. Am. Chem. Soc.
– volume: 90
  start-page: 5977
  year: 2018
  end-page: 5981
  publication-title: Anal. Chem.
– volume: 113
  start-page: 9099
  year: 2016
  end-page: 9104
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 59 132
  start-page: 4075 4104
  year: 2020 2020
  end-page: 4081 4110
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 91
  start-page: 2273
  year: 2019
  end-page: 2278
  publication-title: Anal. Chem.
– volume: 19
  start-page: 35
  year: 2017
  publication-title: Breast Cancer Res.
– volume: 285
  start-page: 784
  year: 2010
  end-page: 792
  publication-title: J. Biol. Chem.
– volume: 92
  start-page: 2543
  year: 2020
  end-page: 2549
  publication-title: Anal. Chem.
– volume: 58 131
  start-page: 7753 7835
  year: 2019 2019
  end-page: 7756 7838
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 78
  start-page: 617
  year: 2006
  end-page: 620
  publication-title: Anal. Chem.
– volume: 64
  start-page: 1368
  year: 1992
  end-page: 1373
  publication-title: Anal. Chem.
– volume: 2
  start-page: 546
  year: 2007
  end-page: 549
  publication-title: Nanoscale Res. Lett.
– volume: 113
  start-page: 11436
  year: 2016
  end-page: 11440
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 567
  start-page: 540
  year: 2019
  end-page: 544
  publication-title: Nature
– volume: 119
  start-page: 11551
  year: 2019
  end-page: 11575
  publication-title: Chem. Rev.
– volume: 89
  start-page: 8036
  year: 2017
  end-page: 8043
  publication-title: Anal. Chem.
– volume: 109
  start-page: 11540
  year: 2012
  end-page: 11545
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 7
  year: 2017
  end-page: 19
  publication-title: Nat. Rev. Neurosci.
– volume: 140
  start-page: 5385
  year: 2018
  end-page: 5392
  publication-title: J. Am. Chem. Soc.
– volume: 250
  start-page: 1118
  year: 1990
  end-page: 1121
  publication-title: Science
– volume: 120
  start-page: 115
  year: 2018
  end-page: 121
  publication-title: Biosens. Bioelectron.
– volume: 11
  start-page: 778
  year: 2020
  end-page: 785
  publication-title: Chem. Sci.
– volume: 459
  start-page: 59
  year: 2019
  end-page: 71
  publication-title: Cancer Lett.
– volume: 11
  start-page: 8771
  year: 2020
  end-page: 8778
  publication-title: Chem. Sci.
– ident: e_1_2_6_62_1
– ident: e_1_2_6_52_2
  doi: 10.1021/acs.analchem.8b01396
– ident: e_1_2_6_31_1
– ident: e_1_2_6_36_2
  doi: 10.1038/nnano.2010.241
– ident: e_1_2_6_32_2
  doi: 10.1021/ac960887a
– ident: e_1_2_6_35_2
  doi: 10.1021/ac0508595
– ident: e_1_2_6_61_2
  doi: 10.1021/acs.analchem.8b04863
– ident: e_1_2_6_20_2
  doi: 10.1021/acs.analchem.9b04139
– ident: e_1_2_6_43_1
  doi: 10.1016/j.electacta.2016.02.178
– ident: e_1_2_6_63_2
  doi: 10.1038/nrn.2016.155
– ident: e_1_2_6_37_1
– ident: e_1_2_6_54_1
  doi: 10.1002/anie.201705900
– ident: e_1_2_6_17_2
  doi: 10.1002/anie.201707187
– ident: e_1_2_6_38_2
  doi: 10.1021/nn5024522
– ident: e_1_2_6_59_1
– ident: e_1_2_6_69_1
  doi: 10.1016/j.tips.2018.11.002
– ident: e_1_2_6_41_1
  doi: 10.1002/anie.201902734
– ident: e_1_2_6_5_2
  doi: 10.1039/C7SC00433H
– ident: e_1_2_6_18_2
  doi: 10.1021/jacs.9b13796
– ident: e_1_2_6_6_2
  doi: 10.1016/j.trac.2016.01.018
– ident: e_1_2_6_70_1
  doi: 10.1186/s13058-017-0823-8
– ident: e_1_2_6_44_1
– ident: e_1_2_6_72_1
  doi: 10.1074/jbc.M109.055038
– ident: e_1_2_6_12_2
  doi: 10.1002/anie.201903283
– ident: e_1_2_6_68_2
  doi: 10.3389/fimmu.2019.01545
– ident: e_1_2_6_7_1
  doi: 10.1021/acs.analchem.0c00931
– ident: e_1_2_6_25_2
  doi: 10.1073/pnas.1203570109
– ident: e_1_2_6_67_2
  doi: 10.1038/s41586-019-1019-4
– ident: e_1_2_6_22_2
  doi: 10.1002/anie.201404744
– ident: e_1_2_6_55_1
  doi: 10.1039/D0SC02787A
– ident: e_1_2_6_42_1
  doi: 10.1021/jp070387t
– ident: e_1_2_6_4_2
  doi: 10.1016/j.coelec.2020.09.002
– ident: e_1_2_6_10_2
  doi: 10.1021/acs.accounts.6b00294
– ident: e_1_2_6_57_2
  doi: 10.1016/j.canlet.2019.05.027
– ident: e_1_2_6_30_1
  doi: 10.1021/jacs.7b06476
– ident: e_1_2_6_41_2
  doi: 10.1002/ange.201902734
– ident: e_1_2_6_19_2
  doi: 10.1021/jacs.7b12106
– ident: e_1_2_6_65_1
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.201504839
– ident: e_1_2_6_12_3
  doi: 10.1002/ange.201903283
– ident: e_1_2_6_14_2
  doi: 10.1073/pnas.1609618113
– ident: e_1_2_6_33_2
  doi: 10.1021/acs.analchem.9b04316
– ident: e_1_2_6_34_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_29_2
  doi: 10.1021/ac00037a012
– ident: e_1_2_6_9_2
  doi: 10.1021/ja909408q
– ident: e_1_2_6_40_1
  doi: 10.1039/C9CC01280J
– ident: e_1_2_6_51_1
– ident: e_1_2_6_53_3
  doi: 10.1002/ange.201913953
– ident: e_1_2_6_48_1
– ident: e_1_2_6_26_2
  doi: 10.1038/nnano.2009.154
– ident: e_1_2_6_50_2
  doi: 10.1016/j.jelechem.2017.01.051
– ident: e_1_2_6_45_2
  doi: 10.1007/s11671-007-9100-6
– ident: e_1_2_6_28_2
  doi: 10.1126/science.250.4984.1118
– ident: e_1_2_6_56_1
– ident: e_1_2_6_64_2
  doi: 10.1073/pnas.1602185113
– ident: e_1_2_6_15_2
  doi: 10.1073/pnas.1201552109
– ident: e_1_2_6_60_2
  doi: 10.1021/acs.analchem.7b01430
– ident: e_1_2_6_49_2
  doi: 10.1039/C3CS60380F
– ident: e_1_2_6_3_2
  doi: 10.1038/ncomms6450
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201504839
– ident: e_1_2_6_47_1
  doi: 10.1021/acs.chemrev.8b00797
– ident: e_1_2_6_39_2
  doi: 10.1039/C5NR06021D
– ident: e_1_2_6_71_1
  doi: 10.1016/j.mce.2005.11.012
– ident: e_1_2_6_2_2
  doi: 10.1126/science.aad4998
– ident: e_1_2_6_27_1
– ident: e_1_2_6_53_2
  doi: 10.1002/anie.201913953
– ident: e_1_2_6_24_1
– ident: e_1_2_6_13_1
– ident: e_1_2_6_21_1
– ident: e_1_2_6_8_1
– ident: e_1_2_6_23_2
  doi: 10.1039/C9SC05538J
– ident: e_1_2_6_54_2
  doi: 10.1002/ange.201705900
– ident: e_1_2_6_58_2
  doi: 10.1089/ars.2018.7527
– ident: e_1_2_6_11_2
  doi: 10.1021/jacs.0c02202
– ident: e_1_2_6_22_3
  doi: 10.1002/ange.201404744
– ident: e_1_2_6_66_2
  doi: 10.1038/ncomms9323
– ident: e_1_2_6_46_2
  doi: 10.1016/j.bios.2018.08.017
– ident: e_1_2_6_17_3
  doi: 10.1002/ange.201707187
SSID ssj0028806
Score 2.5411022
Snippet A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is...
A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19337
SubjectTerms Antifouling substances
Biomonitoring
Cations
Electrochemical analysis
Electrochemistry
glucocorticoids
Intracellular
Metal ions
Nanocomposites
nanoelectrode
Nanoparticles
Nanotechnology
nanowire
Nanowires
Nitric oxide
Noble metals
Signal transduction
single cell
Synthesis
Title Large‐Scale Synthesis of Functionalized Nanowires to Construct Nanoelectrodes for Intracellular Sensing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202106251
https://www.proquest.com/docview/2561851378
https://www.proquest.com/docview/2540723009
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqKwieYpPdPI-ltLSiPVgL3sK-KkVJhLQHe_In-Bv9Jc7kVSuIoLcku0uSnd2db2ZnvyHkwpkgQ4sylq-jEAwUT1ihF7mWkoGnPD9kMs_ecDv0-2P3-sF7-HKKv-CHqB1uODPy9RonuJBZa0kaiiewwb4DkwUgPNo_GLCFqOiu5o9iMDiL40WcW5iFvmJttFlrtfmqVlpCza-ANdc4vW0iqm8tAk2eruYzeaUW32gc__MzO2SrhKO0XYyfXbJmkj2y0amywO2T6Q2Gin-8vY9AmIaOXhNAjNk0o-mE9kAnFq7E6cJoCgt1iszHGZ2lFBOB5tS0-eMy2Y6GMgDJdIAeZdwywBhYOsIY-uTxgIx73ftO3yrTM1gKdyMtRzAR5vnXPSeQgMOUG2gubW482yiODlYWKduVfhD4E1sYCXrQ1ZIpLSIdBvyQrCdpYo4INdFESS68KOS2q7WUgGOlUiFoWO06Dm8QqxJPrEruckyh8RwXrMssxg6M6w5skMu6_kvB2vFjzWYl7bicvVkMMBBgjMODsEHO62LoeOwZkZh0jnWQWo4DRG0Qlov2lzfF7eGgW98d_6XRCdnEa3RpM94k6yBGcwqYaCbP8nH_CV7vBA4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC1ED3pxF8e1BcFTNOnOehRxmNFxDo6Ct5BeRgYlEWY86MlP8Bv9Eqs6iwuIoMck3STp6k69qlS_B7DvDYmhRRkn1EmMAUqQOXGQ-I6SUaCCMObSqjdc9MPOtX92E9TVhLQXpuSHaBJutDLs95oWOCWkjz5YQ2kLNgZ4GLMghscAaIZkvW1UddkwSHGcnuUGIyEc0qGveRtdfvS1_1e_9AE2P0NW63PaCyDrpy1LTe4OHyfyUD1_I3L81-sswnyFSNlxOYWWYMrkyzB7UgvBrcCoR9Xiby-vA7SnYYOnHEHjeDRmxZC10S2W2cTRs9EMv9UFkR-P2aRgpAVq2Wnt6UpvR-M1xMmsS0ll-mtAZbBsQGX0-e0qXLdPr046TqXQ4Cj6Iel4Gc9iK8EeeJFEKKb8SAvpChO4RgnKsfJEub4MoygcupmR6Ap9LbnSWaLjSKzBdF7kZh2YSYZKiixIYuH6WkuJUFYqFaOT1b7niRY4tX1SVdGXk4rGfVoSL_OUBjBtBrAFB037h5K448eWW7W502oBj1NEgohkPBHFLdhrLuPA08hkuSkeqQ2xywlEqS3g1ra_3Ck97ndPm6ONv3TahdnO1UUv7XX755swR-cpw83FFkyjSc02QqSJ3LGL4B2cvQgp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKtFeKNBWhFJwpUo9ZTex83COCFjtAl2hbpG4RfEjaAVKkLIc4MRP4Df2l3Qmr4VKVaX2GD-UZMbj-Ty2vwH44ufE0KKtG5lE4gIlzFwZJoGrVRzqMJJc1dkbvk2j8UVwchlePrvF3_BD9AE3sox6viYDvzX5cEkaSjewcX2HSxaE8Lj-eRVEnqRxffS9J5DiODqb-0VCuJSGvqNt9PjwZf-XbmmJNZ8j1trljN5C1n1sc9LkenC3UAP98BuP4__8zQast3iUHTQDaBNWbLEFrw-7NHDvYH5GZ8V_Pj7NUJuWze4LhIzVvGJlzkboFJtY4vzBGoYzdUnUxxVblIwygdbctHVxm23HYB2iZDahkDLtGdAhWDajQ_TF1Xu4GB3_OBy7bX4GV9N2pOtnPJN1AvbQjxUCMR3ERihP2NCzWlCElSfaC1QUx1HuZVahIwyM4tpkiZGx-ACrRVnYbWA2ybUSWZhI4QXGKIVAVmkt0cWawPeFA26nnlS35OWUQ-MmbWiXeUoCTHsBOvC1b3_b0Hb8seVup-20Nd8qRRyIOMYXsXTgc1-NgifJZIUt76gNccsJxKgO8Fq1f3lTejCdHPdPO__SaR_Wzo9G6dlkevoR3lAxhbe52IVV1Kj9hPhoofZqE_gFli8G4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Scale+Synthesis+of+Functionalized+Nanowires+to+Construct+Nanoelectrodes+for+Intracellular+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Wen%E2%80%90Tao&rft.au=Jiang%2C+Hong&rft.au=Qi%2C+Yu%E2%80%90Ting&rft.au=Fan%2C+Wen%E2%80%90Ting&rft.date=2021-08-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=35&rft.spage=19337&rft.epage=19343&rft_id=info:doi/10.1002%2Fanie.202106251&rft.externalDBID=10.1002%252Fanie.202106251&rft.externalDocID=ANIE202106251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon