Large‐Scale Synthesis of Functionalized Nanowires to Construct Nanoelectrodes for Intracellular Sensing
A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4‐ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticl...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 35; pp. 19337 - 19343 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
23.08.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4‐ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles‐polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core–shell NWs with excellent conductivity, adjustable size, and well‐designed properties. Nanoelectrodes manufactured with such core–shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.
Versatile one‐pot synthesis of functionalized core–shell nanowires breaks through the limitation of nanoelectrode materials to facilely construct high‐performance single nanowire electrodes. Concurrently with excellent electrochemical, mechanical, and antifouling properties, the nanowire electrodes show great superiority in real‐time monitoring of biological molecules and unraveling the relevant signaling pathway inside single living cells. |
---|---|
AbstractList | A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells. A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4‐ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles‐polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core–shell NWs with excellent conductivity, adjustable size, and well‐designed properties. Nanoelectrodes manufactured with such core–shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells. Versatile one‐pot synthesis of functionalized core–shell nanowires breaks through the limitation of nanoelectrode materials to facilely construct high‐performance single nanowire electrodes. Concurrently with excellent electrochemical, mechanical, and antifouling properties, the nanowire electrodes show great superiority in real‐time monitoring of biological molecules and unraveling the relevant signaling pathway inside single living cells. A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4‐ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles‐polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core–shell NWs with excellent conductivity, adjustable size, and well‐designed properties. Nanoelectrodes manufactured with such core–shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells. |
Author | Huang, Wei‐Hua Yan, Jing Jiang, Hong Qi, Yu‐Ting Liu, Yan‐Ling Fan, Wen‐Ting Wu, Wen‐Tao |
Author_xml | – sequence: 1 givenname: Wen‐Tao surname: Wu fullname: Wu, Wen‐Tao organization: Wuhan University – sequence: 2 givenname: Hong surname: Jiang fullname: Jiang, Hong organization: Wuhan University – sequence: 3 givenname: Yu‐Ting surname: Qi fullname: Qi, Yu‐Ting organization: Wuhan University – sequence: 4 givenname: Wen‐Ting surname: Fan fullname: Fan, Wen‐Ting organization: Wuhan University – sequence: 5 givenname: Jing surname: Yan fullname: Yan, Jing organization: Wuhan University – sequence: 6 givenname: Yan‐Ling orcidid: 0000-0002-7386-354X surname: Liu fullname: Liu, Yan‐Ling organization: Wuhan University – sequence: 7 givenname: Wei‐Hua orcidid: 0000-0001-8951-075X surname: Huang fullname: Huang, Wei‐Hua email: whhuang@whu.edu.cn organization: Wuhan University |
BookMark | eNqFkMtKAzEUhoMoWKtb1wNu3EzNZWYyXZbipVB0UV0PmcyZmpImNckgdeUj-Iw-iRkrCoK4yiH5_nD-7wjtG2sAoVOCRwRjeiGMghHFlOCC5mQPDUhOSco4Z_txzhhLeZmTQ3Tk_SryZYmLAVJz4Zbw_vq2kEJDstia8Ahe-cS2yVVnZFDWCK1eoEluhbHPyoFPgk2m1vjgOhk-r0GDDM428a21LpmZ4IQErTstXLIA45VZHqODVmgPJ1_nED1cXd5Pb9L53fVsOpmnkuWYpERQUWIWe-SE13lBZMYbVmMGOQYZB8LoWOKsLjgvWiyg5qTMmprKRoybkrMhOt_9u3H2qQMfqrXy_TLCgO18RfMMc8owHkf07Be6sp2LfXuqINEW42Wksh0lnfXeQVtJFUQvJrZUuiK46v1Xvf_q23-MjX7FNk6thdv-HRjvAs9Kw_Yfuprczi5_sh-9k5vu |
CitedBy_id | crossref_primary_10_1002_anie_202203757 crossref_primary_10_1016_j_trac_2025_118161 crossref_primary_10_1002_ange_202115820 crossref_primary_10_1021_acsnano_3c05825 crossref_primary_10_1039_D0CS01610A crossref_primary_10_1016_j_scib_2023_11_021 crossref_primary_10_1021_acs_analchem_3c04782 crossref_primary_10_1039_D2CC06729C crossref_primary_10_1002_ange_202421684 crossref_primary_10_1002_smll_202407685 crossref_primary_10_1002_ange_202403241 crossref_primary_10_1007_s41664_022_00223_1 crossref_primary_10_34133_2022_9763420 crossref_primary_10_1016_j_heliyon_2024_e29244 crossref_primary_10_1002_ange_202208121 crossref_primary_10_1007_s40843_024_2808_2 crossref_primary_10_1021_acssensors_3c00082 crossref_primary_10_1002_ange_202212752 crossref_primary_10_1016_j_aca_2023_341933 crossref_primary_10_1002_smll_202301476 crossref_primary_10_1039_D3AN01551C crossref_primary_10_1002_adma_202416371 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1016_j_talanta_2024_125946 crossref_primary_10_1039_D3CC06078K crossref_primary_10_1021_acs_langmuir_2c00915 crossref_primary_10_1021_jacs_3c12913 crossref_primary_10_1002_anie_202115820 crossref_primary_10_1016_j_bios_2023_115741 crossref_primary_10_1038_s41378_024_00819_w crossref_primary_10_1002_anie_202421684 crossref_primary_10_1360_TB_2023_0214 crossref_primary_10_1002_ange_202203757 crossref_primary_10_1002_anie_202403241 crossref_primary_10_1002_smll_202406796 crossref_primary_10_1002_anie_202208121 crossref_primary_10_1021_jacs_2c01857 crossref_primary_10_1002_anie_202212752 crossref_primary_10_1021_acsami_3c14345 crossref_primary_10_1016_j_jelechem_2022_117125 crossref_primary_10_1002_INMD_20240024 crossref_primary_10_1021_acssensors_2c01897 crossref_primary_10_1038_s41378_024_00814_1 crossref_primary_10_1007_s00216_024_05348_z crossref_primary_10_34133_research_0149 |
Cites_doi | 10.1021/acs.analchem.8b01396 10.1038/nnano.2010.241 10.1021/ac960887a 10.1021/ac0508595 10.1021/acs.analchem.8b04863 10.1021/acs.analchem.9b04139 10.1016/j.electacta.2016.02.178 10.1038/nrn.2016.155 10.1002/anie.201705900 10.1002/anie.201707187 10.1021/nn5024522 10.1016/j.tips.2018.11.002 10.1002/anie.201902734 10.1039/C7SC00433H 10.1021/jacs.9b13796 10.1016/j.trac.2016.01.018 10.1186/s13058-017-0823-8 10.1074/jbc.M109.055038 10.1002/anie.201903283 10.3389/fimmu.2019.01545 10.1021/acs.analchem.0c00931 10.1073/pnas.1203570109 10.1038/s41586-019-1019-4 10.1002/anie.201404744 10.1039/D0SC02787A 10.1021/jp070387t 10.1016/j.coelec.2020.09.002 10.1021/acs.accounts.6b00294 10.1016/j.canlet.2019.05.027 10.1021/jacs.7b06476 10.1002/ange.201902734 10.1021/jacs.7b12106 10.1002/ange.201504839 10.1002/ange.201903283 10.1073/pnas.1609618113 10.1021/acs.analchem.9b04316 10.1021/ac00037a012 10.1021/ja909408q 10.1039/C9CC01280J 10.1002/ange.201913953 10.1038/nnano.2009.154 10.1016/j.jelechem.2017.01.051 10.1007/s11671-007-9100-6 10.1126/science.250.4984.1118 10.1073/pnas.1602185113 10.1073/pnas.1201552109 10.1021/acs.analchem.7b01430 10.1039/C3CS60380F 10.1038/ncomms6450 10.1002/anie.201504839 10.1021/acs.chemrev.8b00797 10.1039/C5NR06021D 10.1016/j.mce.2005.11.012 10.1126/science.aad4998 10.1002/anie.201913953 10.1039/C9SC05538J 10.1002/ange.201705900 10.1089/ars.2018.7527 10.1021/jacs.0c02202 10.1002/ange.201404744 10.1038/ncomms9323 10.1016/j.bios.2018.08.017 10.1002/ange.201707187 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202106251 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 19343 |
ExternalDocumentID | 10_1002_anie_202106251 ANIE202106251 |
Genre | article |
GrantInformation_xml | – fundername: Innovative Research Group Project of the National Natural Science Foundation of China funderid: 21721005 – fundername: Major Research Plan funderid: 22090050, 22090051 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China funderid: 21725504 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3501-1a2a803202517b561c47d3b03e50ec3b01329c04b6776f0aeb7184db2cda9d873 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 23:01:55 EDT 2025 Fri Jul 25 10:12:15 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Tue Jul 01 01:18:03 EDT 2025 Wed Jan 22 16:28:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3501-1a2a803202517b561c47d3b03e50ec3b01329c04b6776f0aeb7184db2cda9d873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7386-354X 0000-0001-8951-075X |
PQID | 2561851378 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2540723009 proquest_journals_2561851378 crossref_citationtrail_10_1002_anie_202106251 crossref_primary_10_1002_anie_202106251 wiley_primary_10_1002_anie_202106251_ANIE202106251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 23, 2021 |
PublicationDateYYYYMMDD | 2021-08-23 |
PublicationDate_xml | – month: 08 year: 2021 text: August 23, 2021 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 25 2014 2014; 53 126 2018; 120 2019; 91 2017; 8 2015; 6 2018; 140 2006; 78 2019; 30 2020; 142 2019; 55 2019; 10 1997; 69 2017; 89 2020 2020; 59 132 2019; 567 2010; 285 2020; 11 2017 2017; 56 129 2017; 355 2011; 6 2016; 79 2019 2019; 58 131 2012; 109 2017; 139 2014; 43 2014; 5 2019; 40 2020; 92 2007; 111 2010; 132 2016; 113 2015 2015; 54 127 2018; 90 2019; 119 2017; 19 2017; 18 2007; 2 2009; 4 2019; 459 1992; 64 2014; 8 2016; 49 2016; 8 2016; 196 2017; 787 2006; 246 1990; 250 e_1_2_6_51_1 e_1_2_6_53_2 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_17_3 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_53_3 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_41_1 e_1_2_6_60_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_22_3 e_1_2_6_24_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_31_1 e_1_2_6_71_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_12_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_16_3 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_1 e_1_2_6_61_2 e_1_2_6_42_1 e_1_2_6_63_2 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_67_2 e_1_2_6_69_1 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 139 start-page: 13055 year: 2017 end-page: 13062 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 3461 year: 2019 end-page: 3464 publication-title: Chem. Commun. – volume: 40 start-page: 38 year: 2019 end-page: 49 publication-title: Trends Pharmacol. Sci. – volume: 5 start-page: 5450 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 8182 year: 2014 end-page: 8189 publication-title: ACS Nano – volume: 30 start-page: 1124 year: 2019 end-page: 1143 publication-title: Antioxid. Redox Signaling – volume: 54 127 start-page: 11978 12146 year: 2015 2015 end-page: 11982 12150 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 3338 year: 2017 end-page: 3348 publication-title: Chem. Sci. – volume: 58 131 start-page: 8927 9021 year: 2019 2019 end-page: 8931 9026 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 246 start-page: 142 year: 2006 end-page: 146 publication-title: Mol. Cell. Endocrinol. – volume: 10 start-page: 1545 year: 2019 publication-title: Front. Immunol. – volume: 53 126 start-page: 12456 12664 year: 2014 2014 end-page: 12460 12668 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 2328 year: 2016 end-page: 2335 publication-title: Acc. Chem. Res. – volume: 109 start-page: 11534 year: 2012 end-page: 11539 publication-title: Proc. Natl. Acad. Sci. USA – volume: 91 start-page: 15355 year: 2019 end-page: 15359 publication-title: Anal. Chem. – volume: 196 start-page: 1 year: 2016 end-page: 12 publication-title: Electrochim. Acta – volume: 79 start-page: 46 year: 2016 end-page: 59 publication-title: TrAC Trends Anal. Chem. – volume: 142 start-page: 5778 year: 2020 end-page: 5784 publication-title: J. Am. Chem. Soc. – volume: 787 start-page: 110 year: 2017 end-page: 117 publication-title: J. Electroanal. Chem. – volume: 92 start-page: 5621 year: 2020 end-page: 5644 publication-title: Anal. Chem. – volume: 56 129 start-page: 12997 13177 year: 2017 2017 end-page: 13000 13180 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 355 year: 2017 publication-title: Science – volume: 4 start-page: 483 year: 2009 end-page: 491 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 214 year: 2016 end-page: 218 publication-title: Nanoscale – volume: 111 start-page: 5926 year: 2007 end-page: 5931 publication-title: J. Phys. Chem. C – volume: 43 start-page: 1349 year: 2014 end-page: 1360 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 8323 year: 2015 publication-title: Nat. Commun. – volume: 142 start-page: 8890 year: 2020 end-page: 8896 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 11802 11964 year: 2017 2017 end-page: 11806 11968 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 69 start-page: 1627 year: 1997 end-page: 1634 publication-title: Anal. Chem. – volume: 6 start-page: 57 year: 2011 end-page: 64 publication-title: Nat. Nanotechnol. – volume: 25 year: 2021 publication-title: Curr. Opin. Electrochem. – volume: 132 start-page: 3047 year: 2010 end-page: 3054 publication-title: J. Am. Chem. Soc. – volume: 90 start-page: 5977 year: 2018 end-page: 5981 publication-title: Anal. Chem. – volume: 113 start-page: 9099 year: 2016 end-page: 9104 publication-title: Proc. Natl. Acad. Sci. USA – volume: 59 132 start-page: 4075 4104 year: 2020 2020 end-page: 4081 4110 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 91 start-page: 2273 year: 2019 end-page: 2278 publication-title: Anal. Chem. – volume: 19 start-page: 35 year: 2017 publication-title: Breast Cancer Res. – volume: 285 start-page: 784 year: 2010 end-page: 792 publication-title: J. Biol. Chem. – volume: 92 start-page: 2543 year: 2020 end-page: 2549 publication-title: Anal. Chem. – volume: 58 131 start-page: 7753 7835 year: 2019 2019 end-page: 7756 7838 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 78 start-page: 617 year: 2006 end-page: 620 publication-title: Anal. Chem. – volume: 64 start-page: 1368 year: 1992 end-page: 1373 publication-title: Anal. Chem. – volume: 2 start-page: 546 year: 2007 end-page: 549 publication-title: Nanoscale Res. Lett. – volume: 113 start-page: 11436 year: 2016 end-page: 11440 publication-title: Proc. Natl. Acad. Sci. USA – volume: 567 start-page: 540 year: 2019 end-page: 544 publication-title: Nature – volume: 119 start-page: 11551 year: 2019 end-page: 11575 publication-title: Chem. Rev. – volume: 89 start-page: 8036 year: 2017 end-page: 8043 publication-title: Anal. Chem. – volume: 109 start-page: 11540 year: 2012 end-page: 11545 publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 7 year: 2017 end-page: 19 publication-title: Nat. Rev. Neurosci. – volume: 140 start-page: 5385 year: 2018 end-page: 5392 publication-title: J. Am. Chem. Soc. – volume: 250 start-page: 1118 year: 1990 end-page: 1121 publication-title: Science – volume: 120 start-page: 115 year: 2018 end-page: 121 publication-title: Biosens. Bioelectron. – volume: 11 start-page: 778 year: 2020 end-page: 785 publication-title: Chem. Sci. – volume: 459 start-page: 59 year: 2019 end-page: 71 publication-title: Cancer Lett. – volume: 11 start-page: 8771 year: 2020 end-page: 8778 publication-title: Chem. Sci. – ident: e_1_2_6_62_1 – ident: e_1_2_6_52_2 doi: 10.1021/acs.analchem.8b01396 – ident: e_1_2_6_31_1 – ident: e_1_2_6_36_2 doi: 10.1038/nnano.2010.241 – ident: e_1_2_6_32_2 doi: 10.1021/ac960887a – ident: e_1_2_6_35_2 doi: 10.1021/ac0508595 – ident: e_1_2_6_61_2 doi: 10.1021/acs.analchem.8b04863 – ident: e_1_2_6_20_2 doi: 10.1021/acs.analchem.9b04139 – ident: e_1_2_6_43_1 doi: 10.1016/j.electacta.2016.02.178 – ident: e_1_2_6_63_2 doi: 10.1038/nrn.2016.155 – ident: e_1_2_6_37_1 – ident: e_1_2_6_54_1 doi: 10.1002/anie.201705900 – ident: e_1_2_6_17_2 doi: 10.1002/anie.201707187 – ident: e_1_2_6_38_2 doi: 10.1021/nn5024522 – ident: e_1_2_6_59_1 – ident: e_1_2_6_69_1 doi: 10.1016/j.tips.2018.11.002 – ident: e_1_2_6_41_1 doi: 10.1002/anie.201902734 – ident: e_1_2_6_5_2 doi: 10.1039/C7SC00433H – ident: e_1_2_6_18_2 doi: 10.1021/jacs.9b13796 – ident: e_1_2_6_6_2 doi: 10.1016/j.trac.2016.01.018 – ident: e_1_2_6_70_1 doi: 10.1186/s13058-017-0823-8 – ident: e_1_2_6_44_1 – ident: e_1_2_6_72_1 doi: 10.1074/jbc.M109.055038 – ident: e_1_2_6_12_2 doi: 10.1002/anie.201903283 – ident: e_1_2_6_68_2 doi: 10.3389/fimmu.2019.01545 – ident: e_1_2_6_7_1 doi: 10.1021/acs.analchem.0c00931 – ident: e_1_2_6_25_2 doi: 10.1073/pnas.1203570109 – ident: e_1_2_6_67_2 doi: 10.1038/s41586-019-1019-4 – ident: e_1_2_6_22_2 doi: 10.1002/anie.201404744 – ident: e_1_2_6_55_1 doi: 10.1039/D0SC02787A – ident: e_1_2_6_42_1 doi: 10.1021/jp070387t – ident: e_1_2_6_4_2 doi: 10.1016/j.coelec.2020.09.002 – ident: e_1_2_6_10_2 doi: 10.1021/acs.accounts.6b00294 – ident: e_1_2_6_57_2 doi: 10.1016/j.canlet.2019.05.027 – ident: e_1_2_6_30_1 doi: 10.1021/jacs.7b06476 – ident: e_1_2_6_41_2 doi: 10.1002/ange.201902734 – ident: e_1_2_6_19_2 doi: 10.1021/jacs.7b12106 – ident: e_1_2_6_65_1 – ident: e_1_2_6_16_3 doi: 10.1002/ange.201504839 – ident: e_1_2_6_12_3 doi: 10.1002/ange.201903283 – ident: e_1_2_6_14_2 doi: 10.1073/pnas.1609618113 – ident: e_1_2_6_33_2 doi: 10.1021/acs.analchem.9b04316 – ident: e_1_2_6_34_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_29_2 doi: 10.1021/ac00037a012 – ident: e_1_2_6_9_2 doi: 10.1021/ja909408q – ident: e_1_2_6_40_1 doi: 10.1039/C9CC01280J – ident: e_1_2_6_51_1 – ident: e_1_2_6_53_3 doi: 10.1002/ange.201913953 – ident: e_1_2_6_48_1 – ident: e_1_2_6_26_2 doi: 10.1038/nnano.2009.154 – ident: e_1_2_6_50_2 doi: 10.1016/j.jelechem.2017.01.051 – ident: e_1_2_6_45_2 doi: 10.1007/s11671-007-9100-6 – ident: e_1_2_6_28_2 doi: 10.1126/science.250.4984.1118 – ident: e_1_2_6_56_1 – ident: e_1_2_6_64_2 doi: 10.1073/pnas.1602185113 – ident: e_1_2_6_15_2 doi: 10.1073/pnas.1201552109 – ident: e_1_2_6_60_2 doi: 10.1021/acs.analchem.7b01430 – ident: e_1_2_6_49_2 doi: 10.1039/C3CS60380F – ident: e_1_2_6_3_2 doi: 10.1038/ncomms6450 – ident: e_1_2_6_16_2 doi: 10.1002/anie.201504839 – ident: e_1_2_6_47_1 doi: 10.1021/acs.chemrev.8b00797 – ident: e_1_2_6_39_2 doi: 10.1039/C5NR06021D – ident: e_1_2_6_71_1 doi: 10.1016/j.mce.2005.11.012 – ident: e_1_2_6_2_2 doi: 10.1126/science.aad4998 – ident: e_1_2_6_27_1 – ident: e_1_2_6_53_2 doi: 10.1002/anie.201913953 – ident: e_1_2_6_24_1 – ident: e_1_2_6_13_1 – ident: e_1_2_6_21_1 – ident: e_1_2_6_8_1 – ident: e_1_2_6_23_2 doi: 10.1039/C9SC05538J – ident: e_1_2_6_54_2 doi: 10.1002/ange.201705900 – ident: e_1_2_6_58_2 doi: 10.1089/ars.2018.7527 – ident: e_1_2_6_11_2 doi: 10.1021/jacs.0c02202 – ident: e_1_2_6_22_3 doi: 10.1002/ange.201404744 – ident: e_1_2_6_66_2 doi: 10.1038/ncomms9323 – ident: e_1_2_6_46_2 doi: 10.1016/j.bios.2018.08.017 – ident: e_1_2_6_17_3 doi: 10.1002/ange.201707187 |
SSID | ssj0028806 |
Score | 2.5411022 |
Snippet | A strategy for one‐pot and large‐scale synthesis of functionalized core–shell nanowires (NWs) to high‐efficiently construct single nanowire electrodes is... A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19337 |
SubjectTerms | Antifouling substances Biomonitoring Cations Electrochemical analysis Electrochemistry glucocorticoids Intracellular Metal ions Nanocomposites nanoelectrode Nanoparticles Nanotechnology nanowire Nanowires Nitric oxide Noble metals Signal transduction single cell Synthesis |
Title | Large‐Scale Synthesis of Functionalized Nanowires to Construct Nanoelectrodes for Intracellular Sensing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202106251 https://www.proquest.com/docview/2561851378 https://www.proquest.com/docview/2540723009 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqKwieYpPdPI-ltLSiPVgL3sK-KkVJhLQHe_In-Bv9Jc7kVSuIoLcku0uSnd2db2ZnvyHkwpkgQ4sylq-jEAwUT1ihF7mWkoGnPD9kMs_ecDv0-2P3-sF7-HKKv-CHqB1uODPy9RonuJBZa0kaiiewwb4DkwUgPNo_GLCFqOiu5o9iMDiL40WcW5iFvmJttFlrtfmqVlpCza-ANdc4vW0iqm8tAk2eruYzeaUW32gc__MzO2SrhKO0XYyfXbJmkj2y0amywO2T6Q2Gin-8vY9AmIaOXhNAjNk0o-mE9kAnFq7E6cJoCgt1iszHGZ2lFBOB5tS0-eMy2Y6GMgDJdIAeZdwywBhYOsIY-uTxgIx73ftO3yrTM1gKdyMtRzAR5vnXPSeQgMOUG2gubW482yiODlYWKduVfhD4E1sYCXrQ1ZIpLSIdBvyQrCdpYo4INdFESS68KOS2q7WUgGOlUiFoWO06Dm8QqxJPrEruckyh8RwXrMssxg6M6w5skMu6_kvB2vFjzWYl7bicvVkMMBBgjMODsEHO62LoeOwZkZh0jnWQWo4DRG0Qlov2lzfF7eGgW98d_6XRCdnEa3RpM94k6yBGcwqYaCbP8nH_CV7vBA4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC1ED3pxF8e1BcFTNOnOehRxmNFxDo6Ct5BeRgYlEWY86MlP8Bv9Eqs6iwuIoMck3STp6k69qlS_B7DvDYmhRRkn1EmMAUqQOXGQ-I6SUaCCMObSqjdc9MPOtX92E9TVhLQXpuSHaBJutDLs95oWOCWkjz5YQ2kLNgZ4GLMghscAaIZkvW1UddkwSHGcnuUGIyEc0qGveRtdfvS1_1e_9AE2P0NW63PaCyDrpy1LTe4OHyfyUD1_I3L81-sswnyFSNlxOYWWYMrkyzB7UgvBrcCoR9Xiby-vA7SnYYOnHEHjeDRmxZC10S2W2cTRs9EMv9UFkR-P2aRgpAVq2Wnt6UpvR-M1xMmsS0ll-mtAZbBsQGX0-e0qXLdPr046TqXQ4Cj6Iel4Gc9iK8EeeJFEKKb8SAvpChO4RgnKsfJEub4MoygcupmR6Ap9LbnSWaLjSKzBdF7kZh2YSYZKiixIYuH6WkuJUFYqFaOT1b7niRY4tX1SVdGXk4rGfVoSL_OUBjBtBrAFB037h5K448eWW7W502oBj1NEgohkPBHFLdhrLuPA08hkuSkeqQ2xywlEqS3g1ra_3Ck97ndPm6ONv3TahdnO1UUv7XX755swR-cpw83FFkyjSc02QqSJ3LGL4B2cvQgp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKtFeKNBWhFJwpUo9ZTex83COCFjtAl2hbpG4RfEjaAVKkLIc4MRP4Df2l3Qmr4VKVaX2GD-UZMbj-Ty2vwH44ufE0KKtG5lE4gIlzFwZJoGrVRzqMJJc1dkbvk2j8UVwchlePrvF3_BD9AE3sox6viYDvzX5cEkaSjewcX2HSxaE8Lj-eRVEnqRxffS9J5DiODqb-0VCuJSGvqNt9PjwZf-XbmmJNZ8j1trljN5C1n1sc9LkenC3UAP98BuP4__8zQast3iUHTQDaBNWbLEFrw-7NHDvYH5GZ8V_Pj7NUJuWze4LhIzVvGJlzkboFJtY4vzBGoYzdUnUxxVblIwygdbctHVxm23HYB2iZDahkDLtGdAhWDajQ_TF1Xu4GB3_OBy7bX4GV9N2pOtnPJN1AvbQjxUCMR3ERihP2NCzWlCElSfaC1QUx1HuZVahIwyM4tpkiZGx-ACrRVnYbWA2ybUSWZhI4QXGKIVAVmkt0cWawPeFA26nnlS35OWUQ-MmbWiXeUoCTHsBOvC1b3_b0Hb8seVup-20Nd8qRRyIOMYXsXTgc1-NgifJZIUt76gNccsJxKgO8Fq1f3lTejCdHPdPO__SaR_Wzo9G6dlkevoR3lAxhbe52IVV1Kj9hPhoofZqE_gFli8G4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Scale+Synthesis+of+Functionalized+Nanowires+to+Construct+Nanoelectrodes+for+Intracellular+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Wen%E2%80%90Tao&rft.au=Jiang%2C+Hong&rft.au=Qi%2C+Yu%E2%80%90Ting&rft.au=Fan%2C+Wen%E2%80%90Ting&rft.date=2021-08-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=35&rft.spage=19337&rft.epage=19343&rft_id=info:doi/10.1002%2Fanie.202106251&rft.externalDBID=10.1002%252Fanie.202106251&rft.externalDocID=ANIE202106251 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |