Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy
Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In this work, self‐delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specific...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 40; pp. e2102470 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In this work, self‐delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self‐assembly of chlorine e6 (Ce6) and TH588 through π–π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588‐mediated MTH1 inhibition could destroy the ROS‐defensing system of tumor cells by preventing the elimination of 8‐oxo‐2′‐deoxyguanosine triphosphate (8‐oxo‐dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self‐delivery nanoplatforms in photodynamic tumor therapy in clinic.
Carrier free photodynamic synergists are developed for oxidative damage amplified tumor therapy by destroying the reactive oxygen species (ROS)‐defensing system without generating excessive ROS, which shed light on the development of self‐delivery nanoplatforms for efficient photodynamic therapy by utilizing the limited oxygen in hypoxic tumors. |
---|---|
AbstractList | Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In this work, self‐delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self‐assembly of chlorine e6 (Ce6) and TH588 through π–π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588‐mediated MTH1 inhibition could destroy the ROS‐defensing system of tumor cells by preventing the elimination of 8‐oxo‐2′‐deoxyguanosine triphosphate (8‐oxo‐dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self‐delivery nanoplatforms in photodynamic tumor therapy in clinic. Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588-mediated MTH1 inhibition could destroy the ROS-defensing system of tumor cells by preventing the elimination of 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self-delivery nanoplatforms in photodynamic tumor therapy in clinic.Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588-mediated MTH1 inhibition could destroy the ROS-defensing system of tumor cells by preventing the elimination of 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self-delivery nanoplatforms in photodynamic tumor therapy in clinic. Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In this work, self‐delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self‐assembly of chlorine e6 (Ce6) and TH588 through π–π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588‐mediated MTH1 inhibition could destroy the ROS‐defensing system of tumor cells by preventing the elimination of 8‐oxo‐2′‐deoxyguanosine triphosphate (8‐oxo‐dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self‐delivery nanoplatforms in photodynamic tumor therapy in clinic. Carrier free photodynamic synergists are developed for oxidative damage amplified tumor therapy by destroying the reactive oxygen species (ROS)‐defensing system without generating excessive ROS, which shed light on the development of self‐delivery nanoplatforms for efficient photodynamic therapy by utilizing the limited oxygen in hypoxic tumors. |
Author | Liu, Yi‐Bin Cheng, Hong Li, Xin‐Yu Yu, Xi‐Yong Liu, Ling‐Shan Chen, A‐Li Zheng, Rong‐Rong Deng, Fu‐An Kong, Ren‐Jiang Li, Shi‐Ying |
Author_xml | – sequence: 1 givenname: Xin‐Yu surname: Li fullname: Li, Xin‐Yu organization: Southern Medical University – sequence: 2 givenname: Fu‐An surname: Deng fullname: Deng, Fu‐An organization: Guangzhou Medical University – sequence: 3 givenname: Rong‐Rong surname: Zheng fullname: Zheng, Rong‐Rong organization: Guangzhou Medical University – sequence: 4 givenname: Ling‐Shan surname: Liu fullname: Liu, Ling‐Shan organization: Southern Medical University – sequence: 5 givenname: Yi‐Bin surname: Liu fullname: Liu, Yi‐Bin organization: Guangzhou Medical University – sequence: 6 givenname: Ren‐Jiang surname: Kong fullname: Kong, Ren‐Jiang organization: Southern Medical University – sequence: 7 givenname: A‐Li surname: Chen fullname: Chen, A‐Li organization: Guangzhou Medical University – sequence: 8 givenname: Xi‐Yong surname: Yu fullname: Yu, Xi‐Yong organization: Guangzhou Medical University – sequence: 9 givenname: Shi‐Ying surname: Li fullname: Li, Shi‐Ying email: lisy-sci@gzhmu.edu.cn organization: Guangzhou Medical University – sequence: 10 givenname: Hong orcidid: 0000-0002-3560-4432 surname: Cheng fullname: Cheng, Hong email: chengh@smu.edu.cn organization: Southern Medical University |
BookMark | eNqFkE1Lw0AQhhdRsK1ePQe8eGndr2Szx1KtCpEqreewSSbtliQbdxM1_96USoWCeJr38DzDzDtEp5WpAKErgicEY3rryqKYUEwJplzgEzQgAWHjIKTy9JAJPkdD57YYM9JTA_Q6U9ZqsN7cAngvG9OYrKtUqVNv2VVg19o1zsuN9RZfOlON_gDvTpVqDd60rAuda8i8VVv2wGoDVtXdBTrLVeHg8meO0Nv8fjV7HEeLh6fZNBqnzMd4nHMOwg8gU4nkMkh4onKfkhyISNKMcAJ-koWKs1AEwGgAAfWVyBICod8nzEboZr-3tua9BdfEpXYpFIWqwLQupn4gmeBE7tDrI3RrWlv11_WUkAwLSXhP8T2VWuOchTxOddN_bKrGKl3EBMe7nuNdz_Gh516bHGm11aWy3d-C3AufuoDuHzpePkfRr_sNfWaSpQ |
CitedBy_id | crossref_primary_10_1016_j_actbio_2022_12_059 crossref_primary_10_3390_microorganisms13040708 crossref_primary_10_1021_acsnano_1c08978 crossref_primary_10_3389_fbioe_2022_943906 crossref_primary_10_1007_s40242_023_3127_9 crossref_primary_10_1021_acsabm_3c00263 crossref_primary_10_1002_smll_202200330 crossref_primary_10_1002_adfm_202415087 crossref_primary_10_1080_17435889_2025_2456450 crossref_primary_10_1016_j_jphotobiol_2024_112886 crossref_primary_10_1021_acsnano_4c09027 crossref_primary_10_1002_adhm_202102038 crossref_primary_10_1038_s41392_023_01491_8 crossref_primary_10_1021_acsmaterialslett_4c00058 crossref_primary_10_1039_D4BM00316K crossref_primary_10_1002_smll_202107467 crossref_primary_10_1016_j_jcis_2024_06_153 crossref_primary_10_1016_j_biomaterials_2022_121576 crossref_primary_10_1016_j_cej_2022_141226 crossref_primary_10_1039_D2BM01320G crossref_primary_10_1016_j_drudis_2023_103598 crossref_primary_10_1071_CH22246 crossref_primary_10_1002_adhm_202301517 crossref_primary_10_1021_acsanm_2c01384 crossref_primary_10_1016_j_jconrel_2024_03_035 crossref_primary_10_1016_j_cej_2022_139729 crossref_primary_10_1016_j_cej_2024_154849 crossref_primary_10_3390_pharmaceutics14051074 crossref_primary_10_1002_agt2_443 crossref_primary_10_1021_acsanm_1c04143 crossref_primary_10_1002_adtp_202200237 crossref_primary_10_1016_j_jcis_2022_04_090 crossref_primary_10_1021_acsmaterialslett_4c01066 crossref_primary_10_1016_j_bioorg_2025_108282 crossref_primary_10_1016_j_jconrel_2023_10_037 crossref_primary_10_1016_j_cej_2022_134783 crossref_primary_10_1021_acs_nanolett_3c01812 crossref_primary_10_1039_D1BM01876K crossref_primary_10_1002_adhm_202202307 crossref_primary_10_1002_adhm_202301346 crossref_primary_10_1039_D2CC00235C crossref_primary_10_1002_adhm_202300711 crossref_primary_10_3390_molecules28196972 crossref_primary_10_1016_j_biomaterials_2022_121746 |
Cites_doi | 10.1016/j.biomaterials.2018.10.005 10.1039/C9CS00129H 10.1016/j.jconrel.2019.12.041 10.1002/smll.202004829 10.1021/acsnano.7b02533 10.1021/acs.accounts.8b00214 10.3390/cancers6031597 10.1021/acs.nanolett.9b02112 10.1016/j.dnarep.2007.11.007 10.1038/sj.emboj.7601975 10.1038/s41571-020-0410-2 10.1016/j.biomaterials.2015.08.021 10.1021/ja505212y 10.1126/sciadv.aaz0575 10.1039/C8CC01841C 10.1016/j.jconrel.2021.01.037 10.1021/acsnano.9b08133 10.1038/nature13194 10.1002/adma.201703135 10.1016/j.biomaterials.2020.119827 10.1039/D1BM00119A 10.1002/anie.201805138 10.1038/nature13181 10.1016/j.nantod.2018.02.010 10.1021/jacs.9b12788 10.2174/1381612825666190215121712 10.1021/acs.accounts.9b00569 10.1038/nrc2981 10.1158/0008-5472.CAN-19-0883 10.1016/j.biomaterials.2019.119701 10.1021/acsnano.0c10045 10.1016/j.actbio.2020.04.009 10.1021/acs.chemrev.8b00626 10.1021/acs.chemrev.6b00525 10.1096/fj.09-132621 10.1021/acs.nanolett.0c00047 10.1021/acsnano.0c06765 10.3322/caac.20114 10.1039/C6CS00271D 10.1016/j.redox.2018.101084 10.1089/ars.2009.2917 10.1016/j.biomaterials.2016.10.016 10.1038/nrd4002 10.1016/j.biomaterials.2020.120557 10.1016/j.jconrel.2020.07.010 10.7150/thno.42260 10.3390/ijms150712543 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202102470 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202102470 SMLL202102470 |
Genre | article |
GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515010418; 2021B1515020043 – fundername: Science and Technology Programs of Guangzhou funderid: 202002030178 – fundername: National Natural Science Foundation of China funderid: 51803086; 52073140 – fundername: Young Elite Scientist Sponsorship Program – fundername: CAST funderid: 2018QNRC001 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3500-f44e756edab9496b4baf521fe17bcd141e5bd8a43876e326e625a7db1e8525a03 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:23:42 EDT 2025 Fri Jul 25 11:56:58 EDT 2025 Tue Jul 01 02:54:02 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Jan 22 16:56:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3500-f44e756edab9496b4baf521fe17bcd141e5bd8a43876e326e625a7db1e8525a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3560-4432 |
PQID | 2579307914 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2569374190 proquest_journals_2579307914 crossref_citationtrail_10_1002_smll_202102470 crossref_primary_10_1002_smll_202102470 wiley_primary_10_1002_smll_202102470_SMLL202102470 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 2019 2020 2018; 6 19 109 54 2011 2020 2020; 61 17 53 2019 2018 2020; 188 57 319 2014 2020 2021 2021; 136 14 15 331 2020 2020 2018; 237 14 19 2010 2009; 12 23 2016 2019 2020; 45 119 49 2014 2008 2008; 15 27 7 2017 2020 2018 2017; 117 142 51 11 2014 2014 2015 2020; 508 508 69 80 2014 2019; 6 25 2017 2020 2021; 112 232 11 2013 2018 2011; 12 24 11 2021 2020 2020; 9 326 16 2020 2017 2021; 20 29 268 e_1_2_8_9_3 e_1_2_8_8_3 e_1_2_8_9_2 e_1_2_8_9_4 e_1_2_8_1_3 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_3_3 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_2_3 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_5_3 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_4_3 e_1_2_8_5_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_9_1 e_1_2_8_5_4 e_1_2_8_6_3 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_1_1 e_1_2_8_10_4 e_1_2_8_11_3 e_1_2_8_12_2 e_1_2_8_13_1 e_1_2_8_11_4 e_1_2_8_12_3 e_1_2_8_13_2 e_1_2_8_14_1 e_1_2_8_13_3 e_1_2_8_14_2 e_1_2_8_15_1 e_1_2_8_14_3 e_1_2_8_15_2 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_11_1 e_1_2_8_10_3 e_1_2_8_11_2 e_1_2_8_12_1 |
References_xml | – volume: 6 25 start-page: 1597 year: 2014 2019 publication-title: Cancers Redox Biol. – volume: 15 27 7 start-page: 421 418 year: 2014 2008 2008 publication-title: Int. J. Mol. Sci. EMBO J. DNA Repair – volume: 61 17 53 start-page: 250 657 752 year: 2011 2020 2020 publication-title: Ca‐Cancer J. Clin. Nat. Rev. Clin. Oncol. Acc. Chem. Res. – volume: 508 508 69 80 start-page: 215 222 212 3530 year: 2014 2014 2015 2020 publication-title: Nature Nature Biomaterials Cancer Res. – volume: 6 19 109 54 start-page: 5568 229 4310 year: 2020 2019 2020 2018 publication-title: Sci. Adv. Nano Lett. Acta Biomater. Chem. Commun. – volume: 45 119 49 start-page: 6597 4881 1041 year: 2016 2019 2020 publication-title: Chem. Soc. Rev. Chem. Rev. Chem. Soc. Rev. – volume: 20 29 268 start-page: 2062 year: 2020 2017 2021 publication-title: Nano Lett. Adv. Mater. Biomaterials – volume: 237 14 19 start-page: 2585 146 year: 2020 2020 2018 publication-title: Biomaterials ACS Nano Nano Today – volume: 12 23 start-page: 933 3790 year: 2010 2009 publication-title: Antioxid. Redox Signaling FASEB J. – volume: 9 326 16 start-page: 3445 276 year: 2021 2020 2020 publication-title: Biomater. Sci. J. Controlled Release Small – volume: 117 142 51 11 start-page: 6160 3939 2502 7006 year: 2017 2020 2018 2017 publication-title: Chem. Rev. J. Am. Chem. Soc. Acc. Chem. Res. ACS Nano – volume: 12 24 11 start-page: 931 4771 85 year: 2013 2018 2011 publication-title: Nat. Rev. Drug Discovery Curr. Pharm. Des. Nat. Rev. Cancer – volume: 136 14 15 331 start-page: 1841 460 year: 2014 2020 2021 2021 publication-title: J. Am. Chem. Soc. ACS Nano ACS Nano J. Controlled Release – volume: 112 232 11 start-page: 234 4171 year: 2017 2020 2021 publication-title: Biomaterials Biomaterials Theranostics – volume: 188 57 319 start-page: 1 135 year: 2019 2018 2020 publication-title: Biomaterials Angew. Chem., Int. Ed. J. Controlled Release – ident: e_1_2_8_3_1 doi: 10.1016/j.biomaterials.2018.10.005 – ident: e_1_2_8_2_3 doi: 10.1039/C9CS00129H – ident: e_1_2_8_3_3 doi: 10.1016/j.jconrel.2019.12.041 – ident: e_1_2_8_12_3 doi: 10.1002/smll.202004829 – ident: e_1_2_8_5_4 doi: 10.1021/acsnano.7b02533 – ident: e_1_2_8_5_3 doi: 10.1021/acs.accounts.8b00214 – ident: e_1_2_8_7_1 doi: 10.3390/cancers6031597 – ident: e_1_2_8_10_2 doi: 10.1021/acs.nanolett.9b02112 – ident: e_1_2_8_8_3 doi: 10.1016/j.dnarep.2007.11.007 – ident: e_1_2_8_8_2 doi: 10.1038/sj.emboj.7601975 – ident: e_1_2_8_1_2 doi: 10.1038/s41571-020-0410-2 – ident: e_1_2_8_9_3 doi: 10.1016/j.biomaterials.2015.08.021 – ident: e_1_2_8_11_1 doi: 10.1021/ja505212y – ident: e_1_2_8_10_1 doi: 10.1126/sciadv.aaz0575 – ident: e_1_2_8_10_4 doi: 10.1039/C8CC01841C – ident: e_1_2_8_11_4 doi: 10.1016/j.jconrel.2021.01.037 – ident: e_1_2_8_4_2 doi: 10.1021/acsnano.9b08133 – ident: e_1_2_8_9_2 doi: 10.1038/nature13194 – ident: e_1_2_8_14_2 doi: 10.1002/adma.201703135 – ident: e_1_2_8_4_1 doi: 10.1016/j.biomaterials.2020.119827 – ident: e_1_2_8_12_1 doi: 10.1039/D1BM00119A – ident: e_1_2_8_3_2 doi: 10.1002/anie.201805138 – ident: e_1_2_8_9_1 doi: 10.1038/nature13181 – ident: e_1_2_8_4_3 doi: 10.1016/j.nantod.2018.02.010 – ident: e_1_2_8_5_2 doi: 10.1021/jacs.9b12788 – ident: e_1_2_8_6_2 doi: 10.2174/1381612825666190215121712 – ident: e_1_2_8_1_3 doi: 10.1021/acs.accounts.9b00569 – ident: e_1_2_8_6_3 doi: 10.1038/nrc2981 – ident: e_1_2_8_9_4 doi: 10.1158/0008-5472.CAN-19-0883 – ident: e_1_2_8_13_2 doi: 10.1016/j.biomaterials.2019.119701 – ident: e_1_2_8_11_3 doi: 10.1021/acsnano.0c10045 – ident: e_1_2_8_10_3 doi: 10.1016/j.actbio.2020.04.009 – ident: e_1_2_8_2_2 doi: 10.1021/acs.chemrev.8b00626 – ident: e_1_2_8_5_1 doi: 10.1021/acs.chemrev.6b00525 – ident: e_1_2_8_15_2 doi: 10.1096/fj.09-132621 – ident: e_1_2_8_14_1 doi: 10.1021/acs.nanolett.0c00047 – ident: e_1_2_8_11_2 doi: 10.1021/acsnano.0c06765 – ident: e_1_2_8_1_1 doi: 10.3322/caac.20114 – ident: e_1_2_8_2_1 doi: 10.1039/C6CS00271D – ident: e_1_2_8_7_2 doi: 10.1016/j.redox.2018.101084 – ident: e_1_2_8_15_1 doi: 10.1089/ars.2009.2917 – ident: e_1_2_8_13_1 doi: 10.1016/j.biomaterials.2016.10.016 – ident: e_1_2_8_6_1 doi: 10.1038/nrd4002 – ident: e_1_2_8_14_3 doi: 10.1016/j.biomaterials.2020.120557 – ident: e_1_2_8_12_2 doi: 10.1016/j.jconrel.2020.07.010 – ident: e_1_2_8_13_3 doi: 10.7150/thno.42260 – ident: e_1_2_8_8_1 doi: 10.3390/ijms150712543 |
SSID | ssj0031247 |
Score | 2.5636733 |
Snippet | Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In... Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2102470 |
SubjectTerms | Anticancer properties Chlorine Hydrophobicity Lethality Light irradiation Loading rate MTH1 inhibition nanoplatform Nanotechnology Oxidation resistance oxidative damage Photodynamic therapy Radiation damage self‐delivery Size distribution Toxicity |
Title | Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202102470 https://www.proquest.com/docview/2579307914 https://www.proquest.com/docview/2569374190 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_ikz74LU6nRBB86my7pB-PYzqGzM9t4FtJmiuK2yr7APWv967duk0QQd9SeqFtLnf3S3P5HWNnbmgblSSB5QUSiFTbWMpPwPIDZWLHhtDLdkxvbr1mV1w_yaeFU_w5P0Txw40sI_PXZOBKjy7mpKGjfo-2DmjJInxatFPCFqGix4I_qorBK6uugjHLIuKtGWuj7V4sd1-OSnOouQhYs4jT2GRq9q55oslrZTLWlfjzG43jfz5mi21M4Siv5fNnm63AYIetL5AU7rKHuhpSWTveGALw--d0nJq8jD1vf9DJQZwoI47Yl9-9v5iMR5xfqj76KV6jdPUEQS7vTPoo0MkpDPZYt3HVqTetaSEGK65K27YSIcCXHhilQxF6WmiVYNhPwPF1bBzhgNQmUKKKrhUQDwIuqpRvtAOBxJZd3Werg3QAB4wb4RlXxwHqxhGJkVoaz1YiFEA89q4sMWumiCiespRTsYxelPMruxENVVQMVYmdF_JvOT_Hj5LlmV6jqZ2OInRYIXq50BEldlrcRgujbRM1gHRCMh5iOIHIqcTcTIm_PClq37RaxdXhXzodsTVq51mDZbY6Hk7gGNHPWJ9kM_wLMUD8Bg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9tAEB5V8FB4KJRDpA3tIlXiyWA7uz4eEWmUloRyBIk3a9c7FogcVQ4J-us7Y8cOICEkePMxlu2dnZlvd2e_Afjhx67VWRY5QaSQSbWto8MMnTDSNvVcjIN8xbR7GrSv5O9rVWYT8l6Ygh-imnBjy8j9NRs4T0gfLlhDJ4M-rx3wmEWGNGpf5rLeTJ_fvKgYpBoUvvL6KhS1HKbeKnkbXf_w6fNP49ICbD6GrHnMaa2BKb-2SDW5O5hNzUH67xmR47t-Zx0-zRGpOCq60Gf4gMMNWH3EU7gJ58d6zJXtRGuMKM5uRtORLSrZi8sH3jxIfWUiCP6KP_e3NqcSF009IFcljjhjPSOcK3qzAQn0ChaDLbhq_ewdt515LQYnbSjXdTIpMVQBWm1iGQdGGp1R5M_QC01qPemhMjbSskHeFQkSIo2rdGiNh5GiI7exDUvD0RB3QFgZWN-kESnHk5lVRtnA1TKWyFT2vqqBU2oiSedE5Vwvo58UFMt-wk2VVE1Vg_1K_m9B0fGiZL1UbDI31UlCPismRxd7sgZ71W0yMl450UMczVgmIBgnCTzVwM-1-Mqbkstup1OdfXnLQ9_hY7vX7SSdX6cnX2GFrxdJhHVYmo5nuEtgaGq-5d39P_s_ADE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT-MwEB4hkNDywLWLKBQwEhJPgSS1neSxolQc5VqKxFtkx2OBoC3qIQG_nnHShrLSaqXlLcdYSTyemW9i-xuAvTDxjbI29mQs0JFqG09FFr0oViYLfExkPmN6cSlP7vjZvbif2sVf8EOUP9ycZeT-2hn4i7GHn6Shg86zmzpwKQuPKGmf49JPXPGGxu-SQKpG0Ssvr0JBy3PMWxPaRj88_Nr-a1j6xJrTiDUPOc0lUJOXLVaaPB2Mhvoge_-Dx_E7X7MMi2M8yurFAFqBGeyuwsIUS-FPuDlSfVfXjjX7iOz6oTfsmaKOPbt9c1sHaaQMGIFfdvX6aHIicdZQHXJUrO7Wq1tCuaw96pBAu-Aw-AV3zeP20Yk3rsTgZTXh-57lHCMh0Sid8ERqrpWluG8xiHRmAh6g0CZWvEa-FQkQImVVKjI6wFjQkV9bg9lur4vrwAyXJtRZTLoJuDVCCyN9xROOjsg-FBXwJopIszFNuauW8ZwWBMth6roqLbuqAvul_EtB0PFXyepEr-nYUAcpeayE3FwS8ArslrfJxNy8iepib-RkJIE4TtCpAmGuxH88Kb29aLXKs43_abQD89eNZto6vTzfhB_ucrGCsAqzw_4ItwgJDfV2Ptg_APSR_tE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carrier+Free+Photodynamic+Synergists+for+Oxidative+Damage+Amplified+Tumor+Therapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xin%E2%80%90Yu+Li&rft.au=Fu%E2%80%90An+Deng&rft.au=Rong%E2%80%90Rong+Zheng&rft.au=Ling%E2%80%90Shan+Liu&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=40&rft_id=info:doi/10.1002%2Fsmll.202102470&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |