Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy

Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In this work, self‐delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specific...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 40; pp. e2102470 - n/a
Main Authors Li, Xin‐Yu, Deng, Fu‐An, Zheng, Rong‐Rong, Liu, Ling‐Shan, Liu, Yi‐Bin, Kong, Ren‐Jiang, Chen, A‐Li, Yu, Xi‐Yong, Li, Shi‐Ying, Cheng, Hong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In this work, self‐delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self‐assembly of chlorine e6 (Ce6) and TH588 through π–π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588‐mediated MTH1 inhibition could destroy the ROS‐defensing system of tumor cells by preventing the elimination of 8‐oxo‐2′‐deoxyguanosine triphosphate (8‐oxo‐dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self‐delivery nanoplatforms in photodynamic tumor therapy in clinic. Carrier free photodynamic synergists are developed for oxidative damage amplified tumor therapy by destroying the reactive oxygen species (ROS)‐defensing system without generating excessive ROS, which shed light on the development of self‐delivery nanoplatforms for efficient photodynamic therapy by utilizing the limited oxygen in hypoxic tumors.
AbstractList Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In this work, self‐delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self‐assembly of chlorine e6 (Ce6) and TH588 through π–π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588‐mediated MTH1 inhibition could destroy the ROS‐defensing system of tumor cells by preventing the elimination of 8‐oxo‐2′‐deoxyguanosine triphosphate (8‐oxo‐dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self‐delivery nanoplatforms in photodynamic tumor therapy in clinic.
Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588-mediated MTH1 inhibition could destroy the ROS-defensing system of tumor cells by preventing the elimination of 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self-delivery nanoplatforms in photodynamic tumor therapy in clinic.Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588-mediated MTH1 inhibition could destroy the ROS-defensing system of tumor cells by preventing the elimination of 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self-delivery nanoplatforms in photodynamic tumor therapy in clinic.
Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In this work, self‐delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self‐assembly of chlorine e6 (Ce6) and TH588 through π–π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588‐mediated MTH1 inhibition could destroy the ROS‐defensing system of tumor cells by preventing the elimination of 8‐oxo‐2′‐deoxyguanosine triphosphate (8‐oxo‐dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self‐delivery nanoplatforms in photodynamic tumor therapy in clinic. Carrier free photodynamic synergists are developed for oxidative damage amplified tumor therapy by destroying the reactive oxygen species (ROS)‐defensing system without generating excessive ROS, which shed light on the development of self‐delivery nanoplatforms for efficient photodynamic therapy by utilizing the limited oxygen in hypoxic tumors.
Author Liu, Yi‐Bin
Cheng, Hong
Li, Xin‐Yu
Yu, Xi‐Yong
Liu, Ling‐Shan
Chen, A‐Li
Zheng, Rong‐Rong
Deng, Fu‐An
Kong, Ren‐Jiang
Li, Shi‐Ying
Author_xml – sequence: 1
  givenname: Xin‐Yu
  surname: Li
  fullname: Li, Xin‐Yu
  organization: Southern Medical University
– sequence: 2
  givenname: Fu‐An
  surname: Deng
  fullname: Deng, Fu‐An
  organization: Guangzhou Medical University
– sequence: 3
  givenname: Rong‐Rong
  surname: Zheng
  fullname: Zheng, Rong‐Rong
  organization: Guangzhou Medical University
– sequence: 4
  givenname: Ling‐Shan
  surname: Liu
  fullname: Liu, Ling‐Shan
  organization: Southern Medical University
– sequence: 5
  givenname: Yi‐Bin
  surname: Liu
  fullname: Liu, Yi‐Bin
  organization: Guangzhou Medical University
– sequence: 6
  givenname: Ren‐Jiang
  surname: Kong
  fullname: Kong, Ren‐Jiang
  organization: Southern Medical University
– sequence: 7
  givenname: A‐Li
  surname: Chen
  fullname: Chen, A‐Li
  organization: Guangzhou Medical University
– sequence: 8
  givenname: Xi‐Yong
  surname: Yu
  fullname: Yu, Xi‐Yong
  organization: Guangzhou Medical University
– sequence: 9
  givenname: Shi‐Ying
  surname: Li
  fullname: Li, Shi‐Ying
  email: lisy-sci@gzhmu.edu.cn
  organization: Guangzhou Medical University
– sequence: 10
  givenname: Hong
  orcidid: 0000-0002-3560-4432
  surname: Cheng
  fullname: Cheng, Hong
  email: chengh@smu.edu.cn
  organization: Southern Medical University
BookMark eNqFkE1Lw0AQhhdRsK1ePQe8eGndr2Szx1KtCpEqreewSSbtliQbdxM1_96USoWCeJr38DzDzDtEp5WpAKErgicEY3rryqKYUEwJplzgEzQgAWHjIKTy9JAJPkdD57YYM9JTA_Q6U9ZqsN7cAngvG9OYrKtUqVNv2VVg19o1zsuN9RZfOlON_gDvTpVqDd60rAuda8i8VVv2wGoDVtXdBTrLVeHg8meO0Nv8fjV7HEeLh6fZNBqnzMd4nHMOwg8gU4nkMkh4onKfkhyISNKMcAJ-koWKs1AEwGgAAfWVyBICod8nzEboZr-3tua9BdfEpXYpFIWqwLQupn4gmeBE7tDrI3RrWlv11_WUkAwLSXhP8T2VWuOchTxOddN_bKrGKl3EBMe7nuNdz_Gh516bHGm11aWy3d-C3AufuoDuHzpePkfRr_sNfWaSpQ
CitedBy_id crossref_primary_10_1016_j_actbio_2022_12_059
crossref_primary_10_3390_microorganisms13040708
crossref_primary_10_1021_acsnano_1c08978
crossref_primary_10_3389_fbioe_2022_943906
crossref_primary_10_1007_s40242_023_3127_9
crossref_primary_10_1021_acsabm_3c00263
crossref_primary_10_1002_smll_202200330
crossref_primary_10_1002_adfm_202415087
crossref_primary_10_1080_17435889_2025_2456450
crossref_primary_10_1016_j_jphotobiol_2024_112886
crossref_primary_10_1021_acsnano_4c09027
crossref_primary_10_1002_adhm_202102038
crossref_primary_10_1038_s41392_023_01491_8
crossref_primary_10_1021_acsmaterialslett_4c00058
crossref_primary_10_1039_D4BM00316K
crossref_primary_10_1002_smll_202107467
crossref_primary_10_1016_j_jcis_2024_06_153
crossref_primary_10_1016_j_biomaterials_2022_121576
crossref_primary_10_1016_j_cej_2022_141226
crossref_primary_10_1039_D2BM01320G
crossref_primary_10_1016_j_drudis_2023_103598
crossref_primary_10_1071_CH22246
crossref_primary_10_1002_adhm_202301517
crossref_primary_10_1021_acsanm_2c01384
crossref_primary_10_1016_j_jconrel_2024_03_035
crossref_primary_10_1016_j_cej_2022_139729
crossref_primary_10_1016_j_cej_2024_154849
crossref_primary_10_3390_pharmaceutics14051074
crossref_primary_10_1002_agt2_443
crossref_primary_10_1021_acsanm_1c04143
crossref_primary_10_1002_adtp_202200237
crossref_primary_10_1016_j_jcis_2022_04_090
crossref_primary_10_1021_acsmaterialslett_4c01066
crossref_primary_10_1016_j_bioorg_2025_108282
crossref_primary_10_1016_j_jconrel_2023_10_037
crossref_primary_10_1016_j_cej_2022_134783
crossref_primary_10_1021_acs_nanolett_3c01812
crossref_primary_10_1039_D1BM01876K
crossref_primary_10_1002_adhm_202202307
crossref_primary_10_1002_adhm_202301346
crossref_primary_10_1039_D2CC00235C
crossref_primary_10_1002_adhm_202300711
crossref_primary_10_3390_molecules28196972
crossref_primary_10_1016_j_biomaterials_2022_121746
Cites_doi 10.1016/j.biomaterials.2018.10.005
10.1039/C9CS00129H
10.1016/j.jconrel.2019.12.041
10.1002/smll.202004829
10.1021/acsnano.7b02533
10.1021/acs.accounts.8b00214
10.3390/cancers6031597
10.1021/acs.nanolett.9b02112
10.1016/j.dnarep.2007.11.007
10.1038/sj.emboj.7601975
10.1038/s41571-020-0410-2
10.1016/j.biomaterials.2015.08.021
10.1021/ja505212y
10.1126/sciadv.aaz0575
10.1039/C8CC01841C
10.1016/j.jconrel.2021.01.037
10.1021/acsnano.9b08133
10.1038/nature13194
10.1002/adma.201703135
10.1016/j.biomaterials.2020.119827
10.1039/D1BM00119A
10.1002/anie.201805138
10.1038/nature13181
10.1016/j.nantod.2018.02.010
10.1021/jacs.9b12788
10.2174/1381612825666190215121712
10.1021/acs.accounts.9b00569
10.1038/nrc2981
10.1158/0008-5472.CAN-19-0883
10.1016/j.biomaterials.2019.119701
10.1021/acsnano.0c10045
10.1016/j.actbio.2020.04.009
10.1021/acs.chemrev.8b00626
10.1021/acs.chemrev.6b00525
10.1096/fj.09-132621
10.1021/acs.nanolett.0c00047
10.1021/acsnano.0c06765
10.3322/caac.20114
10.1039/C6CS00271D
10.1016/j.redox.2018.101084
10.1089/ars.2009.2917
10.1016/j.biomaterials.2016.10.016
10.1038/nrd4002
10.1016/j.biomaterials.2020.120557
10.1016/j.jconrel.2020.07.010
10.7150/thno.42260
10.3390/ijms150712543
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202102470
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202102470
SMLL202102470
Genre article
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515010418; 2021B1515020043
– fundername: Science and Technology Programs of Guangzhou
  funderid: 202002030178
– fundername: National Natural Science Foundation of China
  funderid: 51803086; 52073140
– fundername: Young Elite Scientist Sponsorship Program
– fundername: CAST
  funderid: 2018QNRC001
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3500-f44e756edab9496b4baf521fe17bcd141e5bd8a43876e326e625a7db1e8525a03
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:23:42 EDT 2025
Fri Jul 25 11:56:58 EDT 2025
Tue Jul 01 02:54:02 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:56:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3500-f44e756edab9496b4baf521fe17bcd141e5bd8a43876e326e625a7db1e8525a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3560-4432
PQID 2579307914
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2569374190
proquest_journals_2579307914
crossref_citationtrail_10_1002_smll_202102470
crossref_primary_10_1002_smll_202102470
wiley_primary_10_1002_smll_202102470_SMLL202102470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2019 2020 2018; 6 19 109 54
2011 2020 2020; 61 17 53
2019 2018 2020; 188 57 319
2014 2020 2021 2021; 136 14 15 331
2020 2020 2018; 237 14 19
2010 2009; 12 23
2016 2019 2020; 45 119 49
2014 2008 2008; 15 27 7
2017 2020 2018 2017; 117 142 51 11
2014 2014 2015 2020; 508 508 69 80
2014 2019; 6 25
2017 2020 2021; 112 232 11
2013 2018 2011; 12 24 11
2021 2020 2020; 9 326 16
2020 2017 2021; 20 29 268
e_1_2_8_9_3
e_1_2_8_8_3
e_1_2_8_9_2
e_1_2_8_9_4
e_1_2_8_1_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_3_3
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_2_3
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_5_3
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_4_3
e_1_2_8_5_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_9_1
e_1_2_8_5_4
e_1_2_8_6_3
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_1_1
e_1_2_8_10_4
e_1_2_8_11_3
e_1_2_8_12_2
e_1_2_8_13_1
e_1_2_8_11_4
e_1_2_8_12_3
e_1_2_8_13_2
e_1_2_8_14_1
e_1_2_8_13_3
e_1_2_8_14_2
e_1_2_8_15_1
e_1_2_8_14_3
e_1_2_8_15_2
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_10_3
e_1_2_8_11_2
e_1_2_8_12_1
References_xml – volume: 6 25
  start-page: 1597
  year: 2014 2019
  publication-title: Cancers Redox Biol.
– volume: 15 27 7
  start-page: 421 418
  year: 2014 2008 2008
  publication-title: Int. J. Mol. Sci. EMBO J. DNA Repair
– volume: 61 17 53
  start-page: 250 657 752
  year: 2011 2020 2020
  publication-title: Ca‐Cancer J. Clin. Nat. Rev. Clin. Oncol. Acc. Chem. Res.
– volume: 508 508 69 80
  start-page: 215 222 212 3530
  year: 2014 2014 2015 2020
  publication-title: Nature Nature Biomaterials Cancer Res.
– volume: 6 19 109 54
  start-page: 5568 229 4310
  year: 2020 2019 2020 2018
  publication-title: Sci. Adv. Nano Lett. Acta Biomater. Chem. Commun.
– volume: 45 119 49
  start-page: 6597 4881 1041
  year: 2016 2019 2020
  publication-title: Chem. Soc. Rev. Chem. Rev. Chem. Soc. Rev.
– volume: 20 29 268
  start-page: 2062
  year: 2020 2017 2021
  publication-title: Nano Lett. Adv. Mater. Biomaterials
– volume: 237 14 19
  start-page: 2585 146
  year: 2020 2020 2018
  publication-title: Biomaterials ACS Nano Nano Today
– volume: 12 23
  start-page: 933 3790
  year: 2010 2009
  publication-title: Antioxid. Redox Signaling FASEB J.
– volume: 9 326 16
  start-page: 3445 276
  year: 2021 2020 2020
  publication-title: Biomater. Sci. J. Controlled Release Small
– volume: 117 142 51 11
  start-page: 6160 3939 2502 7006
  year: 2017 2020 2018 2017
  publication-title: Chem. Rev. J. Am. Chem. Soc. Acc. Chem. Res. ACS Nano
– volume: 12 24 11
  start-page: 931 4771 85
  year: 2013 2018 2011
  publication-title: Nat. Rev. Drug Discovery Curr. Pharm. Des. Nat. Rev. Cancer
– volume: 136 14 15 331
  start-page: 1841 460
  year: 2014 2020 2021 2021
  publication-title: J. Am. Chem. Soc. ACS Nano ACS Nano J. Controlled Release
– volume: 112 232 11
  start-page: 234 4171
  year: 2017 2020 2021
  publication-title: Biomaterials Biomaterials Theranostics
– volume: 188 57 319
  start-page: 1 135
  year: 2019 2018 2020
  publication-title: Biomaterials Angew. Chem., Int. Ed. J. Controlled Release
– ident: e_1_2_8_3_1
  doi: 10.1016/j.biomaterials.2018.10.005
– ident: e_1_2_8_2_3
  doi: 10.1039/C9CS00129H
– ident: e_1_2_8_3_3
  doi: 10.1016/j.jconrel.2019.12.041
– ident: e_1_2_8_12_3
  doi: 10.1002/smll.202004829
– ident: e_1_2_8_5_4
  doi: 10.1021/acsnano.7b02533
– ident: e_1_2_8_5_3
  doi: 10.1021/acs.accounts.8b00214
– ident: e_1_2_8_7_1
  doi: 10.3390/cancers6031597
– ident: e_1_2_8_10_2
  doi: 10.1021/acs.nanolett.9b02112
– ident: e_1_2_8_8_3
  doi: 10.1016/j.dnarep.2007.11.007
– ident: e_1_2_8_8_2
  doi: 10.1038/sj.emboj.7601975
– ident: e_1_2_8_1_2
  doi: 10.1038/s41571-020-0410-2
– ident: e_1_2_8_9_3
  doi: 10.1016/j.biomaterials.2015.08.021
– ident: e_1_2_8_11_1
  doi: 10.1021/ja505212y
– ident: e_1_2_8_10_1
  doi: 10.1126/sciadv.aaz0575
– ident: e_1_2_8_10_4
  doi: 10.1039/C8CC01841C
– ident: e_1_2_8_11_4
  doi: 10.1016/j.jconrel.2021.01.037
– ident: e_1_2_8_4_2
  doi: 10.1021/acsnano.9b08133
– ident: e_1_2_8_9_2
  doi: 10.1038/nature13194
– ident: e_1_2_8_14_2
  doi: 10.1002/adma.201703135
– ident: e_1_2_8_4_1
  doi: 10.1016/j.biomaterials.2020.119827
– ident: e_1_2_8_12_1
  doi: 10.1039/D1BM00119A
– ident: e_1_2_8_3_2
  doi: 10.1002/anie.201805138
– ident: e_1_2_8_9_1
  doi: 10.1038/nature13181
– ident: e_1_2_8_4_3
  doi: 10.1016/j.nantod.2018.02.010
– ident: e_1_2_8_5_2
  doi: 10.1021/jacs.9b12788
– ident: e_1_2_8_6_2
  doi: 10.2174/1381612825666190215121712
– ident: e_1_2_8_1_3
  doi: 10.1021/acs.accounts.9b00569
– ident: e_1_2_8_6_3
  doi: 10.1038/nrc2981
– ident: e_1_2_8_9_4
  doi: 10.1158/0008-5472.CAN-19-0883
– ident: e_1_2_8_13_2
  doi: 10.1016/j.biomaterials.2019.119701
– ident: e_1_2_8_11_3
  doi: 10.1021/acsnano.0c10045
– ident: e_1_2_8_10_3
  doi: 10.1016/j.actbio.2020.04.009
– ident: e_1_2_8_2_2
  doi: 10.1021/acs.chemrev.8b00626
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.chemrev.6b00525
– ident: e_1_2_8_15_2
  doi: 10.1096/fj.09-132621
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.nanolett.0c00047
– ident: e_1_2_8_11_2
  doi: 10.1021/acsnano.0c06765
– ident: e_1_2_8_1_1
  doi: 10.3322/caac.20114
– ident: e_1_2_8_2_1
  doi: 10.1039/C6CS00271D
– ident: e_1_2_8_7_2
  doi: 10.1016/j.redox.2018.101084
– ident: e_1_2_8_15_1
  doi: 10.1089/ars.2009.2917
– ident: e_1_2_8_13_1
  doi: 10.1016/j.biomaterials.2016.10.016
– ident: e_1_2_8_6_1
  doi: 10.1038/nrd4002
– ident: e_1_2_8_14_3
  doi: 10.1016/j.biomaterials.2020.120557
– ident: e_1_2_8_12_2
  doi: 10.1016/j.jconrel.2020.07.010
– ident: e_1_2_8_13_3
  doi: 10.7150/thno.42260
– ident: e_1_2_8_8_1
  doi: 10.3390/ijms150712543
SSID ssj0031247
Score 2.5636733
Snippet Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)‐defensing system, leading to a resistance to oxidation therapy. In...
Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2102470
SubjectTerms Anticancer properties
Chlorine
Hydrophobicity
Lethality
Light irradiation
Loading rate
MTH1 inhibition
nanoplatform
Nanotechnology
Oxidation resistance
oxidative damage
Photodynamic therapy
Radiation damage
self‐delivery
Size distribution
Toxicity
Title Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202102470
https://www.proquest.com/docview/2579307914
https://www.proquest.com/docview/2569374190
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_ikz74LU6nRBB86my7pB-PYzqGzM9t4FtJmiuK2yr7APWv967duk0QQd9SeqFtLnf3S3P5HWNnbmgblSSB5QUSiFTbWMpPwPIDZWLHhtDLdkxvbr1mV1w_yaeFU_w5P0Txw40sI_PXZOBKjy7mpKGjfo-2DmjJInxatFPCFqGix4I_qorBK6uugjHLIuKtGWuj7V4sd1-OSnOouQhYs4jT2GRq9q55oslrZTLWlfjzG43jfz5mi21M4Siv5fNnm63AYIetL5AU7rKHuhpSWTveGALw--d0nJq8jD1vf9DJQZwoI47Yl9-9v5iMR5xfqj76KV6jdPUEQS7vTPoo0MkpDPZYt3HVqTetaSEGK65K27YSIcCXHhilQxF6WmiVYNhPwPF1bBzhgNQmUKKKrhUQDwIuqpRvtAOBxJZd3Werg3QAB4wb4RlXxwHqxhGJkVoaz1YiFEA89q4sMWumiCiespRTsYxelPMruxENVVQMVYmdF_JvOT_Hj5LlmV6jqZ2OInRYIXq50BEldlrcRgujbRM1gHRCMh5iOIHIqcTcTIm_PClq37RaxdXhXzodsTVq51mDZbY6Hk7gGNHPWJ9kM_wLMUD8Bg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9tAEB5V8FB4KJRDpA3tIlXiyWA7uz4eEWmUloRyBIk3a9c7FogcVQ4J-us7Y8cOICEkePMxlu2dnZlvd2e_Afjhx67VWRY5QaSQSbWto8MMnTDSNvVcjIN8xbR7GrSv5O9rVWYT8l6Ygh-imnBjy8j9NRs4T0gfLlhDJ4M-rx3wmEWGNGpf5rLeTJ_fvKgYpBoUvvL6KhS1HKbeKnkbXf_w6fNP49ICbD6GrHnMaa2BKb-2SDW5O5hNzUH67xmR47t-Zx0-zRGpOCq60Gf4gMMNWH3EU7gJ58d6zJXtRGuMKM5uRtORLSrZi8sH3jxIfWUiCP6KP_e3NqcSF009IFcljjhjPSOcK3qzAQn0ChaDLbhq_ewdt515LQYnbSjXdTIpMVQBWm1iGQdGGp1R5M_QC01qPemhMjbSskHeFQkSIo2rdGiNh5GiI7exDUvD0RB3QFgZWN-kESnHk5lVRtnA1TKWyFT2vqqBU2oiSedE5Vwvo58UFMt-wk2VVE1Vg_1K_m9B0fGiZL1UbDI31UlCPismRxd7sgZ71W0yMl450UMczVgmIBgnCTzVwM-1-Mqbkstup1OdfXnLQ9_hY7vX7SSdX6cnX2GFrxdJhHVYmo5nuEtgaGq-5d39P_s_ADE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT-MwEB4hkNDywLWLKBQwEhJPgSS1neSxolQc5VqKxFtkx2OBoC3qIQG_nnHShrLSaqXlLcdYSTyemW9i-xuAvTDxjbI29mQs0JFqG09FFr0oViYLfExkPmN6cSlP7vjZvbif2sVf8EOUP9ycZeT-2hn4i7GHn6Shg86zmzpwKQuPKGmf49JPXPGGxu-SQKpG0Ssvr0JBy3PMWxPaRj88_Nr-a1j6xJrTiDUPOc0lUJOXLVaaPB2Mhvoge_-Dx_E7X7MMi2M8yurFAFqBGeyuwsIUS-FPuDlSfVfXjjX7iOz6oTfsmaKOPbt9c1sHaaQMGIFfdvX6aHIicdZQHXJUrO7Wq1tCuaw96pBAu-Aw-AV3zeP20Yk3rsTgZTXh-57lHCMh0Sid8ERqrpWluG8xiHRmAh6g0CZWvEa-FQkQImVVKjI6wFjQkV9bg9lur4vrwAyXJtRZTLoJuDVCCyN9xROOjsg-FBXwJopIszFNuauW8ZwWBMth6roqLbuqAvul_EtB0PFXyepEr-nYUAcpeayE3FwS8ArslrfJxNy8iepib-RkJIE4TtCpAmGuxH88Kb29aLXKs43_abQD89eNZto6vTzfhB_ucrGCsAqzw_4ItwgJDfV2Ptg_APSR_tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carrier+Free+Photodynamic+Synergists+for+Oxidative+Damage+Amplified+Tumor+Therapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xin%E2%80%90Yu+Li&rft.au=Fu%E2%80%90An+Deng&rft.au=Rong%E2%80%90Rong+Zheng&rft.au=Ling%E2%80%90Shan+Liu&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=40&rft_id=info:doi/10.1002%2Fsmll.202102470&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon