Suppressing Electron Back‐Donation for a Highly CO‐tolerant Fuel Cell Anode Catalyst via Cobalt Modulation
Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 42; pp. e202208040 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
17.10.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum‐nickel alloy (MoNi4), termed Co‐MoNi4, which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2, the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm−2, far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron‐deficient Ni sites after Co incorporation that suppresses d→CO 2π* back‐donation.
Incorporating Co into MoNi4 nanocatalyst can suppress the d→CO 2π* back donation, leading to excellent CO tolerance. When feeding with CO (250 ppm)/H2, the fuel cell assembled by this catalyst yields a peak power density of 394 mW cm−2, exceeding that of 209 mW cm−2 for the Pt/C catalyst. |
---|---|
AbstractList | Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active-site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion-exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum-nickel alloy (MoNi4 ), termed Co-MoNi4 , which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2 , the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm-2 , far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron-deficient Ni sites after Co incorporation that suppresses d→CO 2π* back-donation.Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active-site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion-exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum-nickel alloy (MoNi4 ), termed Co-MoNi4 , which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2 , the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm-2 , far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron-deficient Ni sites after Co incorporation that suppresses d→CO 2π* back-donation. Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum‐nickel alloy (MoNi4), termed Co‐MoNi4, which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2, the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm−2, far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron‐deficient Ni sites after Co incorporation that suppresses d→CO 2π* back‐donation. Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum‐nickel alloy (MoNi 4 ), termed Co‐MoNi 4 , which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H 2 , the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm −2 , far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron‐deficient Ni sites after Co incorporation that suppresses d→CO 2π* back‐donation. Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum‐nickel alloy (MoNi4), termed Co‐MoNi4, which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2, the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm−2, far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron‐deficient Ni sites after Co incorporation that suppresses d→CO 2π* back‐donation. Incorporating Co into MoNi4 nanocatalyst can suppress the d→CO 2π* back donation, leading to excellent CO tolerance. When feeding with CO (250 ppm)/H2, the fuel cell assembled by this catalyst yields a peak power density of 394 mW cm−2, exceeding that of 209 mW cm−2 for the Pt/C catalyst. |
Author | Qin, Shuai Gao, Min‐Rui Zheng, Li‐Rong Zhang, Xiao‐Long Liao, Jie Yang, Yu Wang, Ye‐Hua Gao, Fei‐Yue Yang, Qing |
Author_xml | – sequence: 1 givenname: Yu surname: Yang fullname: Yang, Yu organization: University of Science and Technology of China – sequence: 2 givenname: Fei‐Yue surname: Gao fullname: Gao, Fei‐Yue organization: University of Science and Technology of China – sequence: 3 givenname: Xiao‐Long surname: Zhang fullname: Zhang, Xiao‐Long organization: University of Science and Technology of China – sequence: 4 givenname: Shuai surname: Qin fullname: Qin, Shuai organization: University of Science and Technology of China – sequence: 5 givenname: Li‐Rong surname: Zheng fullname: Zheng, Li‐Rong organization: Chinese Academy of Sciences – sequence: 6 givenname: Ye‐Hua surname: Wang fullname: Wang, Ye‐Hua organization: University of Science and Technology of China – sequence: 7 givenname: Jie surname: Liao fullname: Liao, Jie organization: University of Science and Technology of China – sequence: 8 givenname: Qing surname: Yang fullname: Yang, Qing email: qyoung@ustc.edu.cn organization: University of Science and Technology of China – sequence: 9 givenname: Min‐Rui orcidid: 0000-0002-7805-803X surname: Gao fullname: Gao, Min‐Rui email: mgao@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNqFkLtuFDEUhkcokciFltoSDc0sHtvjS7kMGxIpJAVQW15fgoNjL7YnaDsegWfkSXCyiEiRolQ-1vm-c47-w24vpmi77vUAFwOE6J2K3i4QRAhySOCL7mAY0dBjxvBeqwnGPePj8LI7LOW68ZxDetDFz_Nmk20pPl6BVbC65hTBe6W___n1-0OKqvr2dykDBU791bewBdNla9UUbFaxgpPZBjDZEMAyJmPBpKoK21LBrVdgSmsVKviUzBzuJx13-06FYl_9e4-6ryerL9Npf3758WxanvcajxD2xmDHKV07LohTxkFHqLICI7EmFmpNKDEDI0IbO3KoOFNMEGM0HBVzHCN81L3dzd3k9GO2pcobX3S7UkWb5iIR5YJSMWDa0DeP0Os059iuk4ghjNjIhWjUYkfpnErJ1slN9jcqb-UA5V388i5--T_-JpBHgvb1PoOalQ9Pa2Kn_fTBbp9ZIpcXZ6sH9y-kLZ5Y |
CitedBy_id | crossref_primary_10_1021_acsami_4c05906 crossref_primary_10_1039_D2TA05828F crossref_primary_10_1002_aenm_202300881 crossref_primary_10_1002_anie_202311722 crossref_primary_10_1002_ange_202423301 crossref_primary_10_1021_acsami_4c21195 crossref_primary_10_1002_adma_202211854 crossref_primary_10_1007_s40843_023_2804_9 crossref_primary_10_1002_ange_202407613 crossref_primary_10_1038_s41467_024_51562_9 crossref_primary_10_1039_D3EE04251K crossref_primary_10_1002_smll_202411049 crossref_primary_10_1126_sciadv_adt4914 crossref_primary_10_1038_s41467_025_56240_y crossref_primary_10_1021_acs_energyfuels_3c01039 crossref_primary_10_1039_D4SC00043A crossref_primary_10_1002_anie_202311937 crossref_primary_10_1038_s41560_024_01604_9 crossref_primary_10_1016_j_cej_2023_143438 crossref_primary_10_1002_cnl2_152 crossref_primary_10_1021_jacs_4c17605 crossref_primary_10_1002_anie_202407613 crossref_primary_10_1002_adfm_202411206 crossref_primary_10_1002_ange_202415447 crossref_primary_10_1039_D3TA07010G crossref_primary_10_1021_acscatal_4c03588 crossref_primary_10_1016_j_fuel_2024_131253 crossref_primary_10_1039_D4RA03526G crossref_primary_10_1002_smll_202402701 crossref_primary_10_1002_adma_202405763 crossref_primary_10_1002_adma_202301836 crossref_primary_10_1021_acs_nanolett_4c04758 crossref_primary_10_1002_aenm_202405127 crossref_primary_10_1039_D3DT01124K crossref_primary_10_1021_acs_nanolett_4c03863 crossref_primary_10_1039_D3TA08049H crossref_primary_10_1021_acsnano_4c07738 crossref_primary_10_1002_ange_202311937 crossref_primary_10_1039_D4TA06665K crossref_primary_10_1002_smll_202302149 crossref_primary_10_1002_cctc_202300219 crossref_primary_10_1002_ange_202311722 crossref_primary_10_1021_acs_nanolett_4c06621 crossref_primary_10_1002_adfm_202315062 crossref_primary_10_1002_anie_202415447 crossref_primary_10_1002_smll_202303142 crossref_primary_10_1021_acs_nanolett_2c03707 crossref_primary_10_1002_anie_202423301 crossref_primary_10_1021_acs_jpclett_4c00027 crossref_primary_10_1002_adfm_202304125 crossref_primary_10_1007_s12274_023_5792_x crossref_primary_10_1002_cctc_202300056 crossref_primary_10_1039_D3CC03990K |
Cites_doi | 10.1016/0039-6028(96)80007-0 10.1038/s41467-020-18585-4 10.1126/science.abe5757 10.1007/s12678-010-0025-y 10.1002/anie.202110900 10.1002/ange.202013047 10.1016/j.electacta.2013.06.026 10.1016/j.jpowsour.2003.09.031 10.1073/pnas.2119883119 10.1038/s41560-021-00824-7 10.1002/ange.201708484 10.1016/S0022-0728(71)80123-7 10.1021/ja901303d 10.1038/s41560-021-00878-7 10.1021/acs.chemrev.1c00331 10.1021/ja102931d 10.3390/catal11091127 10.1016/j.electacta.2008.07.003 10.1002/adfm.200700216 10.1038/s41565-019-0366-5 10.1021/ja503557x 10.1002/anie.201708484 10.1038/s41929-020-0446-9 10.1002/celc.202100316 10.1021/jacs.1c00384 10.1039/C7RA01980G 10.1016/j.pecs.2020.100842 10.1038/nnano.2016.265 10.1038/ncomms10141 10.1016/j.ijhydene.2007.05.036 10.1016/j.electacta.2006.08.024 10.1038/s41563-022-01221-5 10.1016/j.susc.2007.01.052 10.1016/j.watres.2016.02.004 10.1149/2.F03152if 10.1007/s10008-016-3382-5 10.1021/acscatal.8b00689 10.1038/s41586-021-03482-7 10.1038/s41467-021-22996-2 10.1002/ange.202110900 10.1016/j.jpowsour.2010.07.024 10.1038/s41467-019-09503-4 10.1016/j.nanoen.2017.02.023 10.1002/anie.202013047 10.1038/nenergy.2017.31 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202208040 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202208040 ANIE202208040 |
Genre | article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3500-dd3f866bf894fadf0f46ae9329b4e0cc464d1749cde580a87a794ddc05a7f8323 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:41:24 EDT 2025 Fri Jul 25 10:33:51 EDT 2025 Tue Jul 01 01:18:25 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Wed Jan 22 16:23:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3500-dd3f866bf894fadf0f46ae9329b4e0cc464d1749cde580a87a794ddc05a7f8323 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7805-803X |
PQID | 2723275899 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2689669136 proquest_journals_2723275899 crossref_primary_10_1002_anie_202208040 crossref_citationtrail_10_1002_anie_202208040 wiley_primary_10_1002_anie_202208040_ANIE202208040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 17, 2022 |
PublicationDateYYYYMMDD | 2022-10-17 |
PublicationDate_xml | – month: 10 year: 2022 text: October 17, 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 17 2021; 8 2017; 7 2021; 6 2004; 127 2017; 2 2007; 601 2019; 10 2017; 21 2013; 107 2019; 14 2006; 110 2020; 79 2016; 93 2022; 21 2020; 11 2007; 52 2009; 131 2021; 143 2017 2017; 56 129 2011; 196 2022; 119 2007; 32 2014; 136 2016; 11 2015; 24 2022; 122 1971; 33 2018; 8 2016; 7 2020; 3 2009; 54 2010; 1 2021; 12 2021; 11 2017; 34 2010; 132 2021 2021; 60 133 2021; 371 2021; 595 1995; 343 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 Uchida H. (e_1_2_7_17_2) 2006; 110 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_42_1 e_1_2_7_12_2 e_1_2_7_44_1 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 343 start-page: 211 year: 1995 end-page: 220 publication-title: Surf. Sci. – volume: 196 start-page: 110 year: 2011 end-page: 115 publication-title: J. Power Sources – volume: 3 start-page: 454 year: 2020 end-page: 462 publication-title: Nat. Catal. – volume: 56 129 start-page: 15594 15800 year: 2017 2017 end-page: 15598 15804 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 804 year: 2022 end-page: 810 publication-title: Nat. Mater. – volume: 2 start-page: 17031 year: 2017 publication-title: Nat. Energy – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 133 start-page: 5771 5835 year: 2021 2021 end-page: 5777 5841 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 127 start-page: 341 year: 2004 end-page: 347 publication-title: J. Power Sources – volume: 7 start-page: 19153 year: 2017 end-page: 19161 publication-title: RSC Adv. – volume: 371 start-page: 375 year: 2021 end-page: 379 publication-title: Science – volume: 6 start-page: 475 year: 2021 end-page: 486 publication-title: Nat. Energy – volume: 131 start-page: 6924 year: 2009 end-page: 6925 publication-title: J. Am. Chem. Soc. – volume: 601 start-page: 1747 year: 2007 end-page: 1753 publication-title: Surf. Sci. – volume: 32 start-page: 4365 year: 2007 end-page: 4380 publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 6665 year: 2018 end-page: 6690 publication-title: ACS Catal. – volume: 11 start-page: 1020 year: 2016 end-page: 1025 publication-title: Nat. Nanotechnol. – volume: 33 start-page: 351 year: 1971 end-page: 378 publication-title: J. Electroanal. Chem. – volume: 136 start-page: 8875 year: 2014 end-page: 8878 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 26177 26381 year: 2021 2021 end-page: 26183 26387 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 354 year: 2019 end-page: 361 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 1506 year: 2019 publication-title: Nat. Commun. – volume: 8 start-page: 1817 year: 2021 end-page: 1835 publication-title: ChemElectroChem – volume: 6 start-page: 834 year: 2021 end-page: 843 publication-title: Nat. Energy – volume: 11 start-page: 4789 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 200 year: 2010 end-page: 212 publication-title: Electrocatalysis – volume: 110 start-page: 21921 year: 2006 end-page: 21930 publication-title: J. Phys. Chem. B – volume: 21 start-page: 613 year: 2017 end-page: 639 publication-title: J. Solid State Electrochem. – volume: 79 year: 2020 publication-title: Prog. Energy Combust. Sci. – volume: 54 start-page: 1992 year: 2009 end-page: 1998 publication-title: Electrochim. Acta – volume: 107 start-page: 155 year: 2013 end-page: 163 publication-title: Electrochim. Acta – volume: 132 start-page: 10218 year: 2010 end-page: 10220 publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 30 year: 2016 end-page: 37 publication-title: Water Res. – volume: 12 start-page: 2686 year: 2021 publication-title: Nat. Commun. – volume: 7 start-page: 10141 year: 2016 publication-title: Nat. Commun. – volume: 595 start-page: 361 year: 2021 end-page: 369 publication-title: Nature – volume: 122 start-page: 6117 year: 2022 end-page: 6321 publication-title: Chem. Rev. – volume: 52 start-page: 1958 year: 2007 end-page: 1967 publication-title: Electrochim. Acta – volume: 34 start-page: 224 year: 2017 end-page: 232 publication-title: Nano Energy – volume: 24 start-page: 45 year: 2015 end-page: 49 publication-title: Electrochem. Soc. Interface – volume: 11 start-page: 1127 year: 2021 publication-title: Catalysts – volume: 17 start-page: 3099 year: 2007 end-page: 3104 publication-title: Adv. Funct. Mater. – volume: 143 start-page: 6482 year: 2021 end-page: 6490 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_35_1 doi: 10.1016/0039-6028(96)80007-0 – ident: e_1_2_7_31_1 doi: 10.1038/s41467-020-18585-4 – ident: e_1_2_7_36_1 doi: 10.1126/science.abe5757 – ident: e_1_2_7_20_2 doi: 10.1007/s12678-010-0025-y – ident: e_1_2_7_11_1 – ident: e_1_2_7_8_2 doi: 10.1002/anie.202110900 – ident: e_1_2_7_4_1 – ident: e_1_2_7_47_1 – ident: e_1_2_7_34_2 doi: 10.1002/ange.202013047 – ident: e_1_2_7_9_1 doi: 10.1016/j.electacta.2013.06.026 – ident: e_1_2_7_48_2 doi: 10.1016/j.jpowsour.2003.09.031 – ident: e_1_2_7_26_2 doi: 10.1073/pnas.2119883119 – ident: e_1_2_7_46_1 doi: 10.1038/s41560-021-00824-7 – ident: e_1_2_7_38_1 – ident: e_1_2_7_44_2 doi: 10.1002/ange.201708484 – ident: e_1_2_7_41_1 doi: 10.1016/S0022-0728(71)80123-7 – ident: e_1_2_7_19_2 doi: 10.1021/ja901303d – ident: e_1_2_7_27_2 doi: 10.1038/s41560-021-00878-7 – ident: e_1_2_7_24_2 doi: 10.1021/acs.chemrev.1c00331 – ident: e_1_2_7_18_2 doi: 10.1021/ja102931d – ident: e_1_2_7_10_1 doi: 10.3390/catal11091127 – ident: e_1_2_7_12_2 doi: 10.1016/j.electacta.2008.07.003 – ident: e_1_2_7_16_2 doi: 10.1002/adfm.200700216 – ident: e_1_2_7_13_2 doi: 10.1038/s41565-019-0366-5 – ident: e_1_2_7_43_1 doi: 10.1021/ja503557x – ident: e_1_2_7_44_1 doi: 10.1002/anie.201708484 – ident: e_1_2_7_7_2 doi: 10.1038/s41929-020-0446-9 – volume: 110 start-page: 21921 year: 2006 ident: e_1_2_7_17_2 publication-title: J. Phys. Chem. B – ident: e_1_2_7_39_2 doi: 10.1002/celc.202100316 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.1c00384 – ident: e_1_2_7_22_1 – ident: e_1_2_7_50_1 doi: 10.1039/C7RA01980G – ident: e_1_2_7_1_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.pecs.2020.100842 – ident: e_1_2_7_28_2 doi: 10.1038/nnano.2016.265 – ident: e_1_2_7_30_1 doi: 10.1038/ncomms10141 – ident: e_1_2_7_49_2 doi: 10.1016/j.ijhydene.2007.05.036 – ident: e_1_2_7_15_2 doi: 10.1016/j.electacta.2006.08.024 – ident: e_1_2_7_25_2 doi: 10.1038/s41563-022-01221-5 – ident: e_1_2_7_33_1 doi: 10.1016/j.susc.2007.01.052 – ident: e_1_2_7_40_2 doi: 10.1016/j.watres.2016.02.004 – ident: e_1_2_7_2_2 doi: 10.1149/2.F03152if – ident: e_1_2_7_21_2 doi: 10.1007/s10008-016-3382-5 – ident: e_1_2_7_23_2 doi: 10.1021/acscatal.8b00689 – ident: e_1_2_7_3_2 doi: 10.1038/s41586-021-03482-7 – ident: e_1_2_7_32_1 doi: 10.1038/s41467-021-22996-2 – ident: e_1_2_7_6_1 – ident: e_1_2_7_8_3 doi: 10.1002/ange.202110900 – ident: e_1_2_7_14_2 doi: 10.1016/j.jpowsour.2010.07.024 – ident: e_1_2_7_29_2 doi: 10.1038/s41467-019-09503-4 – ident: e_1_2_7_45_1 doi: 10.1016/j.nanoen.2017.02.023 – ident: e_1_2_7_34_1 doi: 10.1002/anie.202013047 – ident: e_1_2_7_42_1 doi: 10.1038/nenergy.2017.31 |
SSID | ssj0028806 |
Score | 2.634774 |
Snippet | Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In... Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active-site poisoning by carbon monoxide (CO). In... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202208040 |
SubjectTerms | AEMFCs Anion exchanging Carbon monoxide Catalysts Cell anodes Chemisorption CO Tolerance Cobalt Computer applications Fuel cells Fuel technology Hydrogen Oxidation Reaction Molybdenum Nickel Oxidation Platinum Platinum Group Metal-Free Catalysts Poisoning Reaction kinetics |
Title | Suppressing Electron Back‐Donation for a Highly CO‐tolerant Fuel Cell Anode Catalyst via Cobalt Modulation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208040 https://www.proquest.com/docview/2723275899 https://www.proquest.com/docview/2689669136 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEA9yL_VF26p42pYIgk-5y2Wzm81ju9xxClYQC31b8m9FuuwWb09on_wIfkY_iTP7rz1BBH3bkITsZiaZ32QnvyHktVLccWMjlnCnGCiFY0YIxeI4jaxWC-19G-V7nqwv5LvL-PLeLf6OH2I8cMOV0e7XuMCN3czvSEPxBjb4d0IA5pHotGPAFqKijyN_lADl7K4XRRHDLPQDayMX893uu1bpDmreB6ytxVk9JmZ41y7Q5Gq2bezM3f5G4_g_H7NPHvVwlJ52-nNAHoTqkOxlQxa4J6TCtJ9trGz1mS77nDn0zLirn99_4MEyCpYC8qWGYsxIeUOzD1DV1GUAM9jQ1TaUNAslDFLVPtAMz4tuNg399sXQDNlIGvq-9n0WsafkYrX8lK1Zn6OBuSjmnHkfFWmS2CLVsjC-4IVMTABQqK0M3DmZSA9Oj3Y-xCk3qTKwAXjveGxUAbtJ9IxMqroKzwkNtjCALoV3MkgtjBUS0FgKuDpAOZZTwgYZ5a4nMMc8GmXeUS-LHGcxH2dxSt6M7a876o4_tjwaRJ73S3iTCwVgE7wprafk1VgNs49_VEwV6i20SVJwFzVo3pSIVr5_GSk_PX-7HEsv_qXTS_IQn9F-LtQRmTRft-EYgFFjT1rl_wVkaQZB |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXyq_YUsBIIE5uvY7z4wOHku5ql7aLhFqpt-DYDkKNkorNttqeeARehVfhEXgSxvkrRUJISD1wdOzEiT1jfzMZfwPwIgyZZir1aMB0SFEoNFWch9T3Iy-V4VAaU0f5zoLJkXh77B-vwLfuLEzDD9E73Jxm1Ou1U3DnkN6-ZA11R7DRwOMcQY9gbVzlnl2eo9U2fz3dxSl-yfl4dBhPaJtYgGrPZ4wa42VREKRZJEWmTMYyESiLSEamwjKtRSAMInWpjfUjpqJQodQao5mvwgxVwMPn3oCbLo24o-vffd8zVnFUh-ZAk-dRl_e-44lkfPvq-17dBy_B7a8Qud7jxuvwvRudJrTlZGtRpVv64jfiyP9q-O7A7RZxk51GRe7Cii3uwVrcJbq7D4XLbFqHAxcfyahNC0TeKH3y48tX5zt3sksQ3BNFXFhMviTxO6yqytziTl-R8cLmJLY5dlKUxpLYucSW84qcfVIkdoQrFTkoTZso7QEcXcvnPoTVoizsIyA2zRQCaG60sEJylXKBgDNC08Fi2RcDoJ1QJLrlaHepQvKkYZfmiZu1pJ-1Abzq25827CR_bLnZyVjSrlLzhIeIp9FglHIAz_tqHH3300gVtlxgmyBCi1gOvWAAvBaov_SU7Mymo7608S83PYO1yeHBfrI_ne09hlvuuoMLw3ATVqvPC_sEcWCVPq01j8CH65bVn1JGZWo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQI2vBEDBYwEYpXW4zhxvGBRMjPqUBgQolJ3qWM7qGqUVJ0MaFj1E_op_ZX-Al_CdV6lSAgJqQuWjp04se-1j53rcwBeCEE1VanvhVQLD41Ce4ox4QVB5KdSDKUxdZTvLNza4W93g90VOO3OwjT8EP2Gm_OMerx2Dn5oso1z0lB3AhvXd4wh5uG0DavctstvuGibv56OsIdfMjYZf463vFZXwNN-QKlnjJ9FYZhmkeSZMhnNeKgsAhmZcku15iE3CNSlNjaIqIqEQqM1RtNAiQw9wMfnXoGrPKTSiUWMPvWEVQy9oTnP5Puek73vaCIp27j4vhenwXNs-ytCrqe4yS046xqniWw5WF9U6br-_htv5P_UerfhZou3yWbjIHdgxRZ34Xrcydzdg8LpmtbBwMUXMm5FgcgbpQ9-HJ-4nXNnuQShPVHEBcXkSxJ_wKyqzC3O8xWZLGxOYptjJUVpLIndhthyXpGv-4rEjm6lIu9L08qk3YedS_ncB7BalIV9CMSmmUL4zIzmlkumUoYmhKP8MLWYDvgAvM4mEt0ytDuhkDxpuKVZ4not6XttAK_68ocNN8kfS651Jpa0Y9Q8YQLRNC4XpRzA8z4bW9_9MlKFLRdYJoxwPSyHfjgAVtvTX2pKNmfTcZ969C83PYNrH0eT5N10tv0YbrjLDisMxRqsVkcL-wRBYJU-rf2OwN5lm-pPpFZkGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressing+Electron+Back%E2%80%90Donation+for+a+Highly+CO%E2%80%90tolerant+Fuel+Cell+Anode+Catalyst+via+Cobalt+Modulation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yang%2C+Yu&rft.au=Gao%2C+Fei%E2%80%90Yue&rft.au=Zhang%2C+Xiao%E2%80%90Long&rft.au=Qin%2C+Shuai&rft.date=2022-10-17&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202208040&rft.externalDBID=10.1002%252Fanie.202208040&rft.externalDocID=ANIE202208040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |