Suppressing Electron Back‐Donation for a Highly CO‐tolerant Fuel Cell Anode Catalyst via Cobalt Modulation

Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 42; pp. e202208040 - n/a
Main Authors Yang, Yu, Gao, Fei‐Yue, Zhang, Xiao‐Long, Qin, Shuai, Zheng, Li‐Rong, Wang, Ye‐Hua, Liao, Jie, Yang, Qing, Gao, Min‐Rui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 17.10.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum‐nickel alloy (MoNi4), termed Co‐MoNi4, which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2, the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm−2, far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron‐deficient Ni sites after Co incorporation that suppresses d→CO 2π* back‐donation. Incorporating Co into MoNi4 nanocatalyst can suppress the d→CO 2π* back donation, leading to excellent CO tolerance. When feeding with CO (250 ppm)/H2, the fuel cell assembled by this catalyst yields a peak power density of 394 mW cm−2, exceeding that of 209 mW cm−2 for the Pt/C catalyst.
AbstractList Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active-site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion-exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum-nickel alloy (MoNi4 ), termed Co-MoNi4 , which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2 , the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm-2 , far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron-deficient Ni sites after Co incorporation that suppresses d→CO 2π* back-donation.Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active-site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion-exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum-nickel alloy (MoNi4 ), termed Co-MoNi4 , which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2 , the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm-2 , far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron-deficient Ni sites after Co incorporation that suppresses d→CO 2π* back-donation.
Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum‐nickel alloy (MoNi4), termed Co‐MoNi4, which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2, the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm−2, far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron‐deficient Ni sites after Co incorporation that suppresses d→CO 2π* back‐donation.
Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum‐nickel alloy (MoNi 4 ), termed Co‐MoNi 4 , which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H 2 , the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm −2 , far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron‐deficient Ni sites after Co incorporation that suppresses d→CO 2π* back‐donation.
Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion‐exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum‐nickel alloy (MoNi4), termed Co‐MoNi4, which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H2, the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm−2, far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron‐deficient Ni sites after Co incorporation that suppresses d→CO 2π* back‐donation. Incorporating Co into MoNi4 nanocatalyst can suppress the d→CO 2π* back donation, leading to excellent CO tolerance. When feeding with CO (250 ppm)/H2, the fuel cell assembled by this catalyst yields a peak power density of 394 mW cm−2, exceeding that of 209 mW cm−2 for the Pt/C catalyst.
Author Qin, Shuai
Gao, Min‐Rui
Zheng, Li‐Rong
Zhang, Xiao‐Long
Liao, Jie
Yang, Yu
Wang, Ye‐Hua
Gao, Fei‐Yue
Yang, Qing
Author_xml – sequence: 1
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Fei‐Yue
  surname: Gao
  fullname: Gao, Fei‐Yue
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Xiao‐Long
  surname: Zhang
  fullname: Zhang, Xiao‐Long
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Shuai
  surname: Qin
  fullname: Qin, Shuai
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Li‐Rong
  surname: Zheng
  fullname: Zheng, Li‐Rong
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Ye‐Hua
  surname: Wang
  fullname: Wang, Ye‐Hua
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Jie
  surname: Liao
  fullname: Liao, Jie
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Qing
  surname: Yang
  fullname: Yang, Qing
  email: qyoung@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Min‐Rui
  orcidid: 0000-0002-7805-803X
  surname: Gao
  fullname: Gao, Min‐Rui
  email: mgao@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNqFkLtuFDEUhkcokciFltoSDc0sHtvjS7kMGxIpJAVQW15fgoNjL7YnaDsegWfkSXCyiEiRolQ-1vm-c47-w24vpmi77vUAFwOE6J2K3i4QRAhySOCL7mAY0dBjxvBeqwnGPePj8LI7LOW68ZxDetDFz_Nmk20pPl6BVbC65hTBe6W___n1-0OKqvr2dykDBU791bewBdNla9UUbFaxgpPZBjDZEMAyJmPBpKoK21LBrVdgSmsVKviUzBzuJx13-06FYl_9e4-6ryerL9Npf3758WxanvcajxD2xmDHKV07LohTxkFHqLICI7EmFmpNKDEDI0IbO3KoOFNMEGM0HBVzHCN81L3dzd3k9GO2pcobX3S7UkWb5iIR5YJSMWDa0DeP0Os059iuk4ghjNjIhWjUYkfpnErJ1slN9jcqb-UA5V388i5--T_-JpBHgvb1PoOalQ9Pa2Kn_fTBbp9ZIpcXZ6sH9y-kLZ5Y
CitedBy_id crossref_primary_10_1021_acsami_4c05906
crossref_primary_10_1039_D2TA05828F
crossref_primary_10_1002_aenm_202300881
crossref_primary_10_1002_anie_202311722
crossref_primary_10_1002_ange_202423301
crossref_primary_10_1021_acsami_4c21195
crossref_primary_10_1002_adma_202211854
crossref_primary_10_1007_s40843_023_2804_9
crossref_primary_10_1002_ange_202407613
crossref_primary_10_1038_s41467_024_51562_9
crossref_primary_10_1039_D3EE04251K
crossref_primary_10_1002_smll_202411049
crossref_primary_10_1126_sciadv_adt4914
crossref_primary_10_1038_s41467_025_56240_y
crossref_primary_10_1021_acs_energyfuels_3c01039
crossref_primary_10_1039_D4SC00043A
crossref_primary_10_1002_anie_202311937
crossref_primary_10_1038_s41560_024_01604_9
crossref_primary_10_1016_j_cej_2023_143438
crossref_primary_10_1002_cnl2_152
crossref_primary_10_1021_jacs_4c17605
crossref_primary_10_1002_anie_202407613
crossref_primary_10_1002_adfm_202411206
crossref_primary_10_1002_ange_202415447
crossref_primary_10_1039_D3TA07010G
crossref_primary_10_1021_acscatal_4c03588
crossref_primary_10_1016_j_fuel_2024_131253
crossref_primary_10_1039_D4RA03526G
crossref_primary_10_1002_smll_202402701
crossref_primary_10_1002_adma_202405763
crossref_primary_10_1002_adma_202301836
crossref_primary_10_1021_acs_nanolett_4c04758
crossref_primary_10_1002_aenm_202405127
crossref_primary_10_1039_D3DT01124K
crossref_primary_10_1021_acs_nanolett_4c03863
crossref_primary_10_1039_D3TA08049H
crossref_primary_10_1021_acsnano_4c07738
crossref_primary_10_1002_ange_202311937
crossref_primary_10_1039_D4TA06665K
crossref_primary_10_1002_smll_202302149
crossref_primary_10_1002_cctc_202300219
crossref_primary_10_1002_ange_202311722
crossref_primary_10_1021_acs_nanolett_4c06621
crossref_primary_10_1002_adfm_202315062
crossref_primary_10_1002_anie_202415447
crossref_primary_10_1002_smll_202303142
crossref_primary_10_1021_acs_nanolett_2c03707
crossref_primary_10_1002_anie_202423301
crossref_primary_10_1021_acs_jpclett_4c00027
crossref_primary_10_1002_adfm_202304125
crossref_primary_10_1007_s12274_023_5792_x
crossref_primary_10_1002_cctc_202300056
crossref_primary_10_1039_D3CC03990K
Cites_doi 10.1016/0039-6028(96)80007-0
10.1038/s41467-020-18585-4
10.1126/science.abe5757
10.1007/s12678-010-0025-y
10.1002/anie.202110900
10.1002/ange.202013047
10.1016/j.electacta.2013.06.026
10.1016/j.jpowsour.2003.09.031
10.1073/pnas.2119883119
10.1038/s41560-021-00824-7
10.1002/ange.201708484
10.1016/S0022-0728(71)80123-7
10.1021/ja901303d
10.1038/s41560-021-00878-7
10.1021/acs.chemrev.1c00331
10.1021/ja102931d
10.3390/catal11091127
10.1016/j.electacta.2008.07.003
10.1002/adfm.200700216
10.1038/s41565-019-0366-5
10.1021/ja503557x
10.1002/anie.201708484
10.1038/s41929-020-0446-9
10.1002/celc.202100316
10.1021/jacs.1c00384
10.1039/C7RA01980G
10.1016/j.pecs.2020.100842
10.1038/nnano.2016.265
10.1038/ncomms10141
10.1016/j.ijhydene.2007.05.036
10.1016/j.electacta.2006.08.024
10.1038/s41563-022-01221-5
10.1016/j.susc.2007.01.052
10.1016/j.watres.2016.02.004
10.1149/2.F03152if
10.1007/s10008-016-3382-5
10.1021/acscatal.8b00689
10.1038/s41586-021-03482-7
10.1038/s41467-021-22996-2
10.1002/ange.202110900
10.1016/j.jpowsour.2010.07.024
10.1038/s41467-019-09503-4
10.1016/j.nanoen.2017.02.023
10.1002/anie.202013047
10.1038/nenergy.2017.31
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202208040
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202208040
ANIE202208040
Genre article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3500-dd3f866bf894fadf0f46ae9329b4e0cc464d1749cde580a87a794ddc05a7f8323
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:41:24 EDT 2025
Fri Jul 25 10:33:51 EDT 2025
Tue Jul 01 01:18:25 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Wed Jan 22 16:23:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3500-dd3f866bf894fadf0f46ae9329b4e0cc464d1749cde580a87a794ddc05a7f8323
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7805-803X
PQID 2723275899
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2689669136
proquest_journals_2723275899
crossref_primary_10_1002_anie_202208040
crossref_citationtrail_10_1002_anie_202208040
wiley_primary_10_1002_anie_202208040_ANIE202208040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 17, 2022
PublicationDateYYYYMMDD 2022-10-17
PublicationDate_xml – month: 10
  year: 2022
  text: October 17, 2022
  day: 17
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2021; 8
2017; 7
2021; 6
2004; 127
2017; 2
2007; 601
2019; 10
2017; 21
2013; 107
2019; 14
2006; 110
2020; 79
2016; 93
2022; 21
2020; 11
2007; 52
2009; 131
2021; 143
2017 2017; 56 129
2011; 196
2022; 119
2007; 32
2014; 136
2016; 11
2015; 24
2022; 122
1971; 33
2018; 8
2016; 7
2020; 3
2009; 54
2010; 1
2021; 12
2021; 11
2017; 34
2010; 132
2021 2021; 60 133
2021; 371
2021; 595
1995; 343
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
Uchida H. (e_1_2_7_17_2) 2006; 110
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_44_1
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 343
  start-page: 211
  year: 1995
  end-page: 220
  publication-title: Surf. Sci.
– volume: 196
  start-page: 110
  year: 2011
  end-page: 115
  publication-title: J. Power Sources
– volume: 3
  start-page: 454
  year: 2020
  end-page: 462
  publication-title: Nat. Catal.
– volume: 56 129
  start-page: 15594 15800
  year: 2017 2017
  end-page: 15598 15804
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 804
  year: 2022
  end-page: 810
  publication-title: Nat. Mater.
– volume: 2
  start-page: 17031
  year: 2017
  publication-title: Nat. Energy
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 60 133
  start-page: 5771 5835
  year: 2021 2021
  end-page: 5777 5841
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 127
  start-page: 341
  year: 2004
  end-page: 347
  publication-title: J. Power Sources
– volume: 7
  start-page: 19153
  year: 2017
  end-page: 19161
  publication-title: RSC Adv.
– volume: 371
  start-page: 375
  year: 2021
  end-page: 379
  publication-title: Science
– volume: 6
  start-page: 475
  year: 2021
  end-page: 486
  publication-title: Nat. Energy
– volume: 131
  start-page: 6924
  year: 2009
  end-page: 6925
  publication-title: J. Am. Chem. Soc.
– volume: 601
  start-page: 1747
  year: 2007
  end-page: 1753
  publication-title: Surf. Sci.
– volume: 32
  start-page: 4365
  year: 2007
  end-page: 4380
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 6665
  year: 2018
  end-page: 6690
  publication-title: ACS Catal.
– volume: 11
  start-page: 1020
  year: 2016
  end-page: 1025
  publication-title: Nat. Nanotechnol.
– volume: 33
  start-page: 351
  year: 1971
  end-page: 378
  publication-title: J. Electroanal. Chem.
– volume: 136
  start-page: 8875
  year: 2014
  end-page: 8878
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 26177 26381
  year: 2021 2021
  end-page: 26183 26387
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 354
  year: 2019
  end-page: 361
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 1506
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1817
  year: 2021
  end-page: 1835
  publication-title: ChemElectroChem
– volume: 6
  start-page: 834
  year: 2021
  end-page: 843
  publication-title: Nat. Energy
– volume: 11
  start-page: 4789
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 200
  year: 2010
  end-page: 212
  publication-title: Electrocatalysis
– volume: 110
  start-page: 21921
  year: 2006
  end-page: 21930
  publication-title: J. Phys. Chem. B
– volume: 21
  start-page: 613
  year: 2017
  end-page: 639
  publication-title: J. Solid State Electrochem.
– volume: 79
  year: 2020
  publication-title: Prog. Energy Combust. Sci.
– volume: 54
  start-page: 1992
  year: 2009
  end-page: 1998
  publication-title: Electrochim. Acta
– volume: 107
  start-page: 155
  year: 2013
  end-page: 163
  publication-title: Electrochim. Acta
– volume: 132
  start-page: 10218
  year: 2010
  end-page: 10220
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 30
  year: 2016
  end-page: 37
  publication-title: Water Res.
– volume: 12
  start-page: 2686
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10141
  year: 2016
  publication-title: Nat. Commun.
– volume: 595
  start-page: 361
  year: 2021
  end-page: 369
  publication-title: Nature
– volume: 122
  start-page: 6117
  year: 2022
  end-page: 6321
  publication-title: Chem. Rev.
– volume: 52
  start-page: 1958
  year: 2007
  end-page: 1967
  publication-title: Electrochim. Acta
– volume: 34
  start-page: 224
  year: 2017
  end-page: 232
  publication-title: Nano Energy
– volume: 24
  start-page: 45
  year: 2015
  end-page: 49
  publication-title: Electrochem. Soc. Interface
– volume: 11
  start-page: 1127
  year: 2021
  publication-title: Catalysts
– volume: 17
  start-page: 3099
  year: 2007
  end-page: 3104
  publication-title: Adv. Funct. Mater.
– volume: 143
  start-page: 6482
  year: 2021
  end-page: 6490
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_35_1
  doi: 10.1016/0039-6028(96)80007-0
– ident: e_1_2_7_31_1
  doi: 10.1038/s41467-020-18585-4
– ident: e_1_2_7_36_1
  doi: 10.1126/science.abe5757
– ident: e_1_2_7_20_2
  doi: 10.1007/s12678-010-0025-y
– ident: e_1_2_7_11_1
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.202110900
– ident: e_1_2_7_4_1
– ident: e_1_2_7_47_1
– ident: e_1_2_7_34_2
  doi: 10.1002/ange.202013047
– ident: e_1_2_7_9_1
  doi: 10.1016/j.electacta.2013.06.026
– ident: e_1_2_7_48_2
  doi: 10.1016/j.jpowsour.2003.09.031
– ident: e_1_2_7_26_2
  doi: 10.1073/pnas.2119883119
– ident: e_1_2_7_46_1
  doi: 10.1038/s41560-021-00824-7
– ident: e_1_2_7_38_1
– ident: e_1_2_7_44_2
  doi: 10.1002/ange.201708484
– ident: e_1_2_7_41_1
  doi: 10.1016/S0022-0728(71)80123-7
– ident: e_1_2_7_19_2
  doi: 10.1021/ja901303d
– ident: e_1_2_7_27_2
  doi: 10.1038/s41560-021-00878-7
– ident: e_1_2_7_24_2
  doi: 10.1021/acs.chemrev.1c00331
– ident: e_1_2_7_18_2
  doi: 10.1021/ja102931d
– ident: e_1_2_7_10_1
  doi: 10.3390/catal11091127
– ident: e_1_2_7_12_2
  doi: 10.1016/j.electacta.2008.07.003
– ident: e_1_2_7_16_2
  doi: 10.1002/adfm.200700216
– ident: e_1_2_7_13_2
  doi: 10.1038/s41565-019-0366-5
– ident: e_1_2_7_43_1
  doi: 10.1021/ja503557x
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201708484
– ident: e_1_2_7_7_2
  doi: 10.1038/s41929-020-0446-9
– volume: 110
  start-page: 21921
  year: 2006
  ident: e_1_2_7_17_2
  publication-title: J. Phys. Chem. B
– ident: e_1_2_7_39_2
  doi: 10.1002/celc.202100316
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.1c00384
– ident: e_1_2_7_22_1
– ident: e_1_2_7_50_1
  doi: 10.1039/C7RA01980G
– ident: e_1_2_7_1_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.pecs.2020.100842
– ident: e_1_2_7_28_2
  doi: 10.1038/nnano.2016.265
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms10141
– ident: e_1_2_7_49_2
  doi: 10.1016/j.ijhydene.2007.05.036
– ident: e_1_2_7_15_2
  doi: 10.1016/j.electacta.2006.08.024
– ident: e_1_2_7_25_2
  doi: 10.1038/s41563-022-01221-5
– ident: e_1_2_7_33_1
  doi: 10.1016/j.susc.2007.01.052
– ident: e_1_2_7_40_2
  doi: 10.1016/j.watres.2016.02.004
– ident: e_1_2_7_2_2
  doi: 10.1149/2.F03152if
– ident: e_1_2_7_21_2
  doi: 10.1007/s10008-016-3382-5
– ident: e_1_2_7_23_2
  doi: 10.1021/acscatal.8b00689
– ident: e_1_2_7_3_2
  doi: 10.1038/s41586-021-03482-7
– ident: e_1_2_7_32_1
  doi: 10.1038/s41467-021-22996-2
– ident: e_1_2_7_6_1
– ident: e_1_2_7_8_3
  doi: 10.1002/ange.202110900
– ident: e_1_2_7_14_2
  doi: 10.1016/j.jpowsour.2010.07.024
– ident: e_1_2_7_29_2
  doi: 10.1038/s41467-019-09503-4
– ident: e_1_2_7_45_1
  doi: 10.1016/j.nanoen.2017.02.023
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.202013047
– ident: e_1_2_7_42_1
  doi: 10.1038/nenergy.2017.31
SSID ssj0028806
Score 2.634774
Snippet Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active‐site poisoning by carbon monoxide (CO). In...
Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active-site poisoning by carbon monoxide (CO). In...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202208040
SubjectTerms AEMFCs
Anion exchanging
Carbon monoxide
Catalysts
Cell anodes
Chemisorption
CO Tolerance
Cobalt
Computer applications
Fuel cells
Fuel technology
Hydrogen Oxidation Reaction
Molybdenum
Nickel
Oxidation
Platinum
Platinum Group Metal-Free Catalysts
Poisoning
Reaction kinetics
Title Suppressing Electron Back‐Donation for a Highly CO‐tolerant Fuel Cell Anode Catalyst via Cobalt Modulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208040
https://www.proquest.com/docview/2723275899
https://www.proquest.com/docview/2689669136
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEA9yL_VF26p42pYIgk-5y2Wzm81ju9xxClYQC31b8m9FuuwWb09on_wIfkY_iTP7rz1BBH3bkITsZiaZ32QnvyHktVLccWMjlnCnGCiFY0YIxeI4jaxWC-19G-V7nqwv5LvL-PLeLf6OH2I8cMOV0e7XuMCN3czvSEPxBjb4d0IA5pHotGPAFqKijyN_lADl7K4XRRHDLPQDayMX893uu1bpDmreB6ytxVk9JmZ41y7Q5Gq2bezM3f5G4_g_H7NPHvVwlJ52-nNAHoTqkOxlQxa4J6TCtJ9trGz1mS77nDn0zLirn99_4MEyCpYC8qWGYsxIeUOzD1DV1GUAM9jQ1TaUNAslDFLVPtAMz4tuNg399sXQDNlIGvq-9n0WsafkYrX8lK1Zn6OBuSjmnHkfFWmS2CLVsjC-4IVMTABQqK0M3DmZSA9Oj3Y-xCk3qTKwAXjveGxUAbtJ9IxMqroKzwkNtjCALoV3MkgtjBUS0FgKuDpAOZZTwgYZ5a4nMMc8GmXeUS-LHGcxH2dxSt6M7a876o4_tjwaRJ73S3iTCwVgE7wprafk1VgNs49_VEwV6i20SVJwFzVo3pSIVr5_GSk_PX-7HEsv_qXTS_IQn9F-LtQRmTRft-EYgFFjT1rl_wVkaQZB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXyq_YUsBIIE5uvY7z4wOHku5ql7aLhFqpt-DYDkKNkorNttqeeARehVfhEXgSxvkrRUJISD1wdOzEiT1jfzMZfwPwIgyZZir1aMB0SFEoNFWch9T3Iy-V4VAaU0f5zoLJkXh77B-vwLfuLEzDD9E73Jxm1Ou1U3DnkN6-ZA11R7DRwOMcQY9gbVzlnl2eo9U2fz3dxSl-yfl4dBhPaJtYgGrPZ4wa42VREKRZJEWmTMYyESiLSEamwjKtRSAMInWpjfUjpqJQodQao5mvwgxVwMPn3oCbLo24o-vffd8zVnFUh-ZAk-dRl_e-44lkfPvq-17dBy_B7a8Qud7jxuvwvRudJrTlZGtRpVv64jfiyP9q-O7A7RZxk51GRe7Cii3uwVrcJbq7D4XLbFqHAxcfyahNC0TeKH3y48tX5zt3sksQ3BNFXFhMviTxO6yqytziTl-R8cLmJLY5dlKUxpLYucSW84qcfVIkdoQrFTkoTZso7QEcXcvnPoTVoizsIyA2zRQCaG60sEJylXKBgDNC08Fi2RcDoJ1QJLrlaHepQvKkYZfmiZu1pJ-1Abzq25827CR_bLnZyVjSrlLzhIeIp9FglHIAz_tqHH3300gVtlxgmyBCi1gOvWAAvBaov_SU7Mymo7608S83PYO1yeHBfrI_ne09hlvuuoMLw3ATVqvPC_sEcWCVPq01j8CH65bVn1JGZWo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQI2vBEDBYwEYpXW4zhxvGBRMjPqUBgQolJ3qWM7qGqUVJ0MaFj1E_op_ZX-Al_CdV6lSAgJqQuWjp04se-1j53rcwBeCEE1VanvhVQLD41Ce4ox4QVB5KdSDKUxdZTvLNza4W93g90VOO3OwjT8EP2Gm_OMerx2Dn5oso1z0lB3AhvXd4wh5uG0DavctstvuGibv56OsIdfMjYZf463vFZXwNN-QKlnjJ9FYZhmkeSZMhnNeKgsAhmZcku15iE3CNSlNjaIqIqEQqM1RtNAiQw9wMfnXoGrPKTSiUWMPvWEVQy9oTnP5Puek73vaCIp27j4vhenwXNs-ytCrqe4yS046xqniWw5WF9U6br-_htv5P_UerfhZou3yWbjIHdgxRZ34Xrcydzdg8LpmtbBwMUXMm5FgcgbpQ9-HJ-4nXNnuQShPVHEBcXkSxJ_wKyqzC3O8xWZLGxOYptjJUVpLIndhthyXpGv-4rEjm6lIu9L08qk3YedS_ncB7BalIV9CMSmmUL4zIzmlkumUoYmhKP8MLWYDvgAvM4mEt0ytDuhkDxpuKVZ4not6XttAK_68ocNN8kfS651Jpa0Y9Q8YQLRNC4XpRzA8z4bW9_9MlKFLRdYJoxwPSyHfjgAVtvTX2pKNmfTcZ969C83PYNrH0eT5N10tv0YbrjLDisMxRqsVkcL-wRBYJU-rf2OwN5lm-pPpFZkGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressing+Electron+Back%E2%80%90Donation+for+a+Highly+CO%E2%80%90tolerant+Fuel+Cell+Anode+Catalyst+via+Cobalt+Modulation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yang%2C+Yu&rft.au=Gao%2C+Fei%E2%80%90Yue&rft.au=Zhang%2C+Xiao%E2%80%90Long&rft.au=Qin%2C+Shuai&rft.date=2022-10-17&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202208040&rft.externalDBID=10.1002%252Fanie.202208040&rft.externalDocID=ANIE202208040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon