Locally Weighted Ensemble Clustering
Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods i...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 48; no. 5; pp. 1460 - 1473 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art. |
---|---|
AbstractList | Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art. Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art. |
Author | Wang, Chang-Dong Lai, Jian-Huang Huang, Dong |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0003-3923-8828 surname: Huang fullname: Huang, Dong email: huangdonghere@gmail.com organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China – sequence: 2 givenname: Chang-Dong orcidid: 0000-0001-5972-559X surname: Wang fullname: Wang, Chang-Dong email: changdongwang@hotmail.com organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Jian-Huang surname: Lai fullname: Lai, Jian-Huang email: stsljh@mail.sysu.edu.cn organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28541232$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi1UREvpD0BIqBIMLCn22YnjEaLyIVViKUJMluvYxZWblDgZ-u9J1I-hA7fc6fS8p_feS9QrysIgdE3whBAsHufZ9_MEMOET4Bgoo2doACRJIwAe945zwvtoFMIKt5W2K5FeoD6kMSNAYYDuZ6VW3m_HX8Ytf2qTj6dFMOuFN-PMN6E2lSuWV-jcKh_MaN-H6PNlOs_eotnH63v2NIs0ZaKOrFUCU0HSnAtOVZ5Drqm2ccJ0jElsjcgTi8HGQLHVTFmSMKGYAmopS_GCDtHD7u6mKn8bE2q5dkEb71VhyiZIIjCwFBKAFr07QVdlUxWtOwkYADMKjLfU7Z5qFmuTy03l1qraysP_LcB3gK7KECpjpXa1ql1Z1JVyXhIsu7BlF7bswpb7sFslOVEejv-nudlpnDHmyHPReRX0DyXMhnY |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_neucom_2019_02_043 crossref_primary_10_1002_advs_202205442 crossref_primary_10_1109_ACCESS_2020_2977195 crossref_primary_10_1016_j_asoc_2023_111095 crossref_primary_10_1007_s13042_023_01969_5 crossref_primary_10_3390_math11061340 crossref_primary_10_3390_math10091457 crossref_primary_10_1007_s11042_023_15629_x crossref_primary_10_1109_TCYB_2021_3100521 crossref_primary_10_3390_s22207814 crossref_primary_10_1109_TETCI_2024_3353598 crossref_primary_10_1007_s10489_023_04580_x crossref_primary_10_1088_1757_899X_1074_1_012020 crossref_primary_10_1109_TNNLS_2023_3249207 crossref_primary_10_1038_s41598_023_49947_9 crossref_primary_10_1109_ACCESS_2020_3003046 crossref_primary_10_1109_ACCESS_2021_3060135 crossref_primary_10_3233_JIFS_191531 crossref_primary_10_1109_TCYB_2018_2836804 crossref_primary_10_1109_TCYB_2021_3049633 crossref_primary_10_1007_s10044_022_01116_w crossref_primary_10_1109_TNNLS_2022_3146136 crossref_primary_10_1109_TCSVT_2021_3129365 crossref_primary_10_3233_IDA_216240 crossref_primary_10_1109_ACCESS_2021_3056677 crossref_primary_10_1007_s11063_023_11147_x crossref_primary_10_1109_TNNLS_2022_3201975 crossref_primary_10_1016_j_ins_2023_03_067 crossref_primary_10_1177_2048004020945142 crossref_primary_10_3390_a16050245 crossref_primary_10_1016_j_engappai_2024_107873 crossref_primary_10_1007_s10660_021_09458_z crossref_primary_10_1109_TBDATA_2023_3325045 crossref_primary_10_1007_s00521_023_08915_0 crossref_primary_10_1016_j_ins_2023_01_135 crossref_primary_10_1016_j_ins_2024_121314 crossref_primary_10_3390_math12131951 crossref_primary_10_14778_3681954_3681970 crossref_primary_10_1007_s10586_024_04801_z crossref_primary_10_1007_s43684_023_00055_5 crossref_primary_10_3233_JIFS_223897 crossref_primary_10_1016_j_inffus_2024_102587 crossref_primary_10_1109_ACCESS_2021_3066498 crossref_primary_10_1109_ACCESS_2019_2950159 crossref_primary_10_1088_1742_6596_1584_1_012074 crossref_primary_10_1109_TKDE_2021_3082470 crossref_primary_10_1093_comjnl_bxae101 crossref_primary_10_1093_bioinformatics_btac290 crossref_primary_10_4018_IJGCMS_361997 crossref_primary_10_1016_j_eswa_2022_118911 crossref_primary_10_1109_ACCESS_2020_2979915 crossref_primary_10_1016_j_asoc_2025_112844 crossref_primary_10_1016_j_ins_2022_01_065 crossref_primary_10_1109_TKDE_2018_2818729 crossref_primary_10_1007_s12205_023_0234_6 crossref_primary_10_1016_j_knosys_2019_07_027 crossref_primary_10_1007_s13042_022_01651_2 crossref_primary_10_1109_ACCESS_2024_3359299 crossref_primary_10_1109_TCYB_2021_3069434 crossref_primary_10_3390_electronics12224558 crossref_primary_10_1109_TSMC_2021_3112049 crossref_primary_10_3390_math9121423 crossref_primary_10_1007_s11227_023_05290_4 crossref_primary_10_1016_j_knosys_2024_111793 crossref_primary_10_1109_TKDE_2023_3264970 crossref_primary_10_1109_TCYB_2018_2885585 crossref_primary_10_1145_3612923 crossref_primary_10_1007_s11063_021_10563_1 crossref_primary_10_1007_s11227_020_03429_1 crossref_primary_10_1109_TCYB_2020_2969705 crossref_primary_10_1016_j_eswa_2020_113570 crossref_primary_10_1007_s00500_021_05733_1 crossref_primary_10_1109_ACCESS_2024_3497977 crossref_primary_10_1109_ACCESS_2020_2978404 crossref_primary_10_1002_cpe_5359 crossref_primary_10_1109_TCYB_2021_3102510 crossref_primary_10_1007_s11063_023_11287_0 crossref_primary_10_1109_ACCESS_2020_2975377 crossref_primary_10_1109_ACCESS_2022_3167031 crossref_primary_10_1007_s40747_023_01267_1 crossref_primary_10_1016_j_inffus_2023_102099 crossref_primary_10_1109_TMM_2024_3369862 crossref_primary_10_1016_j_inffus_2020_03_009 crossref_primary_10_1016_j_eswa_2024_123313 crossref_primary_10_1109_TCYB_2021_3126727 crossref_primary_10_1007_s11277_021_09083_x crossref_primary_10_1016_j_knosys_2022_109444 crossref_primary_10_1007_s00500_021_06092_7 crossref_primary_10_1109_TKDE_2023_3271120 crossref_primary_10_1109_TPAMI_2024_3507857 crossref_primary_10_1007_s11036_022_01921_x crossref_primary_10_1007_s00778_021_00716_y crossref_primary_10_1007_s11063_018_9926_1 crossref_primary_10_1109_LCOMM_2024_3371968 crossref_primary_10_1093_comjnl_bxab020 crossref_primary_10_1007_s10044_022_01125_9 crossref_primary_10_1109_ACCESS_2020_3027453 crossref_primary_10_1371_journal_pcbi_1011044 crossref_primary_10_1109_TII_2019_2929743 crossref_primary_10_1109_ACCESS_2020_3010475 crossref_primary_10_1109_TVT_2023_3323528 crossref_primary_10_1016_j_patcog_2024_111133 crossref_primary_10_1109_TETCI_2023_3306233 crossref_primary_10_1109_ACCESS_2020_2968150 crossref_primary_10_1049_sfw2_12020 crossref_primary_10_1109_ACCESS_2020_2982439 crossref_primary_10_1109_TKDE_2023_3311409 crossref_primary_10_1016_j_ins_2024_121486 crossref_primary_10_1109_TCSVT_2024_3492814 crossref_primary_10_1016_j_datak_2019_101754 crossref_primary_10_1109_LSP_2023_3298284 crossref_primary_10_1016_j_neucom_2020_02_119 crossref_primary_10_3934_mbe_2023933 crossref_primary_10_1007_s42835_022_01074_7 crossref_primary_10_1016_j_enggeo_2021_106365 crossref_primary_10_1016_j_knosys_2021_107124 crossref_primary_10_1109_TKDE_2023_3236698 crossref_primary_10_1016_j_inffus_2019_10_006 crossref_primary_10_1007_s10462_018_9642_2 crossref_primary_10_1007_s12652_020_02147_z crossref_primary_10_1016_j_aei_2021_101301 crossref_primary_10_1109_TFUZZ_2023_3247912 crossref_primary_10_1145_3616011 crossref_primary_10_3390_ijgi9010019 crossref_primary_10_1016_j_knosys_2020_106672 crossref_primary_10_1016_j_ins_2021_07_028 crossref_primary_10_1016_j_eswa_2023_121557 crossref_primary_10_3390_rs14051156 crossref_primary_10_1109_TKDE_2023_3321913 crossref_primary_10_1155_2022_4465007 crossref_primary_10_1016_j_eswa_2023_121672 crossref_primary_10_1016_j_knosys_2022_110141 crossref_primary_10_1109_TSMC_2018_2876202 crossref_primary_10_1016_j_patcog_2024_110389 crossref_primary_10_1109_ACCESS_2020_2989689 crossref_primary_10_1016_j_engappai_2023_106535 crossref_primary_10_26117_2079_6641_2022_39_2_136_149 crossref_primary_10_1109_TCSVT_2019_2944009 crossref_primary_10_1007_s10044_022_01062_7 crossref_primary_10_1016_j_ins_2022_03_071 crossref_primary_10_1016_j_asoc_2024_112299 crossref_primary_10_37391_ijeer_110428 crossref_primary_10_1016_j_ins_2024_121187 crossref_primary_10_1007_s11634_024_00588_4 crossref_primary_10_1016_j_engappai_2022_105151 crossref_primary_10_1109_ACCESS_2019_2904554 crossref_primary_10_1364_OE_413164 crossref_primary_10_1016_j_patcog_2022_109282 crossref_primary_10_1016_j_neucom_2018_05_116 crossref_primary_10_1038_s41598_024_59300_3 crossref_primary_10_1080_09540091_2020_1866496 crossref_primary_10_1016_j_inffus_2025_103105 crossref_primary_10_1145_3564701 crossref_primary_10_1007_s10489_020_01926_7 crossref_primary_10_1016_j_asoc_2023_111151 crossref_primary_10_3390_ai1020016 crossref_primary_10_1109_ACCESS_2022_3219854 crossref_primary_10_1109_TCYB_2021_3125320 crossref_primary_10_29252_jsdp_17_2_100 crossref_primary_10_1007_s10489_021_02405_3 crossref_primary_10_1002_cpe_7992 crossref_primary_10_1007_s10462_022_10163_y crossref_primary_10_1109_TCYB_2021_3081988 crossref_primary_10_1007_s00500_023_07848_z crossref_primary_10_1029_2020WR028412 crossref_primary_10_1016_j_patcog_2019_03_020 crossref_primary_10_1109_ACCESS_2020_3034623 crossref_primary_10_1016_j_neucom_2019_01_042 crossref_primary_10_1109_TFUZZ_2019_2947231 crossref_primary_10_1109_OJSP_2021_3051453 crossref_primary_10_1111_coin_12267 crossref_primary_10_1016_j_engappai_2021_104388 crossref_primary_10_1016_j_neucom_2020_01_058 crossref_primary_10_1109_ACCESS_2019_2952548 crossref_primary_10_1007_s10489_023_05181_4 crossref_primary_10_1093_bib_bbae203 crossref_primary_10_1007_s13042_019_00989_4 crossref_primary_10_1016_j_sigpro_2021_108301 crossref_primary_10_1016_j_knosys_2019_105126 crossref_primary_10_1109_ACCESS_2021_3050404 crossref_primary_10_1016_j_asoc_2022_109492 crossref_primary_10_1109_ACCESS_2020_3012907 crossref_primary_10_3390_e24101324 crossref_primary_10_1109_TNNLS_2020_2984814 crossref_primary_10_1007_s10489_024_05654_0 crossref_primary_10_1109_TKDE_2023_3267167 crossref_primary_10_1109_TIP_2025_3540297 crossref_primary_10_1007_s10462_020_09862_1 crossref_primary_10_1016_j_knosys_2021_107457 crossref_primary_10_1109_ACCESS_2019_2939581 crossref_primary_10_1109_TII_2019_2939278 crossref_primary_10_3233_JIFS_191739 crossref_primary_10_1109_ACCESS_2020_3022718 crossref_primary_10_1016_j_jksuci_2022_04_010 crossref_primary_10_1016_j_knosys_2019_105018 crossref_primary_10_1007_s10489_024_05368_3 crossref_primary_10_1016_j_eswa_2020_113294 crossref_primary_10_1109_TKDE_2019_2903410 crossref_primary_10_1007_s10489_021_02365_8 crossref_primary_10_1007_s11276_021_02725_9 crossref_primary_10_1007_s13042_022_01742_0 crossref_primary_10_1016_j_dt_2023_11_010 crossref_primary_10_1007_s11276_021_02747_3 crossref_primary_10_1088_1742_6596_2024_1_012045 crossref_primary_10_1109_TKDE_2023_3292573 crossref_primary_10_1155_2022_7990969 crossref_primary_10_1016_j_ins_2019_09_076 crossref_primary_10_3390_app14020719 crossref_primary_10_1109_ACCESS_2019_2963306 crossref_primary_10_1109_ACCESS_2020_2994380 crossref_primary_10_1007_s10586_024_04864_y crossref_primary_10_1109_TMC_2024_3419021 crossref_primary_10_1016_j_jksuci_2019_09_013 crossref_primary_10_1109_TCYB_2020_3034157 crossref_primary_10_1080_0305215X_2020_1771703 crossref_primary_10_1109_TCSS_2019_2940740 crossref_primary_10_1016_j_procs_2021_10_043 crossref_primary_10_1109_ACCESS_2020_2985425 crossref_primary_10_1007_s11063_024_11618_9 crossref_primary_10_1109_TII_2019_2937514 crossref_primary_10_1007_s11063_018_9918_1 crossref_primary_10_1109_TFUZZ_2024_3491300 crossref_primary_10_1109_TNNLS_2023_3252586 |
Cites_doi | 10.1109/TCYB.2013.2263383 10.1145/2783258.2783287 10.1109/TCYB.2014.2317514 10.1016/j.patcog.2008.09.013 10.1145/2939672.2939813 10.1016/j.patcog.2010.08.005 10.1109/34.667881 10.1016/j.patcog.2010.09.008 10.1016/j.patcog.2014.04.005 10.1109/TSMCB.2012.2183591 10.1109/TSMCB.2010.2086059 10.1016/j.neucom.2016.05.028 10.1109/72.238318 10.1109/TKDE.2014.2316512 10.1109/TCYB.2015.2477416 10.1145/1015330.1015414 10.2307/2284239 10.1201/b12207 10.1126/science.1136800 10.1109/TPAMI.2005.113 10.1109/TCYB.2014.2344015 10.1109/TSMCC.2011.2174633 10.1109/TKDE.2015.2503753 10.1109/TKDE.2015.2453162 10.1137/1.9781611974010.86 10.1002/0471660264 10.1137/1.9781611972788.72 10.1080/0952813X.2013.813974 10.1109/TKDE.2017.2650229 10.1016/j.patrec.2009.09.011 10.1109/TKDE.2011.263 10.1109/ICDM.2012.123 10.1145/1557019.1557115 10.1016/j.patcog.2015.02.014 10.1007/s10994-013-5339-6 10.1109/TPAMI.2013.28 10.1016/j.neucom.2014.05.094 10.1016/j.inffus.2004.04.008 10.1109/TPAMI.2011.84 10.1109/TPAMI.2005.237 10.1016/j.patcog.2010.03.001 10.1016/j.patcog.2015.08.015 10.1109/TKDE.2015.2503743 10.1142/S0218001411008683 10.1016/j.patcog.2013.08.019 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2017.2702343 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 1473 |
ExternalDocumentID | 28541232 10_1109_TCYB_2017_2702343 7932479 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2016YFB1001003 funderid: 10.13039/501100012166 – fundername: Ph.D. Start-up Fund of Natural Science Foundation of Guangdong Province, China grantid: 2016A030310457; 2014A030310180 funderid: 10.13039/501100003453 – fundername: NSFC grantid: 61602189; 61502543; 61573387 funderid: 10.13039/501100001809 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar grantid: 2016A030306014 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-ffa903918d7973add2dc3cf564c5015fe9d6f02f5230fc4af1649a4a23f3480b3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 08:03:34 EDT 2025 Mon Jun 30 06:44:30 EDT 2025 Thu Jan 02 23:09:43 EST 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Jul 01 04:35:09 EDT 2025 Wed Aug 27 02:38:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-ffa903918d7973add2dc3cf564c5015fe9d6f02f5230fc4af1649a4a23f3480b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5972-559X 0000-0003-3923-8828 |
PMID | 28541232 |
PQID | 2022043247 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | ieee_primary_7932479 crossref_citationtrail_10_1109_TCYB_2017_2702343 proquest_miscellaneous_1902482622 crossref_primary_10_1109_TCYB_2017_2702343 proquest_journals_2022043247 pubmed_primary_28541232 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 cristofor (ref18) 2002; 8 ref15 ref14 ref52 ref11 ref10 ref16 ref19 ng (ref3) 2002 demšar (ref53) 2006; 7 vinh (ref51) 2010; 11 strehl (ref17) 2003; 3 ref45 ref48 ref47 li (ref50) 2012 ref42 ref41 ref44 ref43 ref49 ref8 ref7 liu (ref12) 2015 ref9 ref6 ref5 ref35 ref34 ref37 frey (ref4) 2007; 315 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 zhou (ref40) 2012 ref24 ref23 ref26 ref25 ref20 ref22 ref21 cover (ref46) 2006 ref28 ref27 ref29 |
References_xml | – ident: ref10 doi: 10.1109/TCYB.2013.2263383 – ident: ref31 doi: 10.1145/2783258.2783287 – ident: ref14 doi: 10.1109/TCYB.2014.2317514 – ident: ref22 doi: 10.1016/j.patcog.2008.09.013 – ident: ref35 doi: 10.1145/2939672.2939813 – ident: ref6 doi: 10.1016/j.patcog.2010.08.005 – ident: ref41 doi: 10.1109/34.667881 – ident: ref49 doi: 10.1016/j.patcog.2010.09.008 – ident: ref38 doi: 10.1016/j.patcog.2014.04.005 – ident: ref27 doi: 10.1109/TSMCB.2012.2183591 – ident: ref24 doi: 10.1109/TSMCB.2010.2086059 – ident: ref33 doi: 10.1016/j.neucom.2016.05.028 – start-page: 877 year: 2015 ident: ref12 article-title: Clustering with partition level side information publication-title: Proc IEEE Int Conf Data Min (ICDM) – ident: ref2 doi: 10.1109/72.238318 – ident: ref26 doi: 10.1109/TKDE.2014.2316512 – volume: 7 start-page: 1 year: 2006 ident: ref53 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref16 doi: 10.1109/TCYB.2015.2477416 – ident: ref19 doi: 10.1145/1015330.1015414 – ident: ref52 doi: 10.2307/2284239 – year: 2012 ident: ref40 publication-title: Ensemble Methods Foundations and Algorithms doi: 10.1201/b12207 – volume: 315 start-page: 972 year: 2007 ident: ref4 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – year: 2006 ident: ref46 publication-title: Elements of Information Theory – ident: ref20 doi: 10.1109/TPAMI.2005.113 – ident: ref13 doi: 10.1109/TCYB.2014.2344015 – ident: ref7 doi: 10.1109/TSMCC.2011.2174633 – ident: ref34 doi: 10.1109/TKDE.2015.2503753 – ident: ref28 doi: 10.1109/TKDE.2015.2453162 – ident: ref11 doi: 10.1137/1.9781611974010.86 – volume: 8 start-page: 153 year: 2002 ident: ref18 article-title: Finding median partitions using information-theoretical-based genetic algorithms publication-title: J Universal Comput Sci – ident: ref42 doi: 10.1002/0471660264 – start-page: 789 year: 2012 ident: ref50 article-title: Segmentation using superpixels: A bipartite graph partitioning approach publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref37 doi: 10.1137/1.9781611972788.72 – ident: ref45 doi: 10.1080/0952813X.2013.813974 – ident: ref36 doi: 10.1109/TKDE.2017.2650229 – start-page: 849 year: 2002 ident: ref3 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref1 doi: 10.1016/j.patrec.2009.09.011 – ident: ref8 doi: 10.1109/TKDE.2011.263 – ident: ref47 doi: 10.1109/ICDM.2012.123 – volume: 11 start-page: 2837 year: 2010 ident: ref51 article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance publication-title: J Mach Learn Res – ident: ref5 doi: 10.1145/1557019.1557115 – ident: ref39 doi: 10.1016/j.patcog.2015.02.014 – ident: ref29 doi: 10.1007/s10994-013-5339-6 – ident: ref9 doi: 10.1109/TPAMI.2013.28 – ident: ref30 doi: 10.1016/j.neucom.2014.05.094 – ident: ref43 doi: 10.1016/j.inffus.2004.04.008 – ident: ref23 doi: 10.1109/TPAMI.2011.84 – ident: ref21 doi: 10.1109/TPAMI.2005.237 – volume: 3 start-page: 583 year: 2003 ident: ref17 article-title: Cluster ensembles-A knowledge reuse framework for combining multiple partitions publication-title: J Mach Learn Res – ident: ref48 doi: 10.1016/j.patcog.2010.03.001 – ident: ref32 doi: 10.1016/j.patcog.2015.08.015 – ident: ref15 doi: 10.1109/TKDE.2015.2503743 – ident: ref44 doi: 10.1142/S0218001411008683 – ident: ref25 doi: 10.1016/j.patcog.2013.08.019 |
SSID | ssj0000816898 |
Score | 2.5894308 |
Snippet | Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1460 |
SubjectTerms | Cluster uncertainty estimation Clustering Clustering algorithms consensus clustering ensemble clustering Estimation Indexes local weighting Partitioning algorithms Reliability analysis Robustness Uncertainty |
Title | Locally Weighted Ensemble Clustering |
URI | https://ieeexplore.ieee.org/document/7932479 https://www.ncbi.nlm.nih.gov/pubmed/28541232 https://www.proquest.com/docview/2022043247 https://www.proquest.com/docview/1902482622 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTiy8H-GlIDEAIsWxnaQZoSpCCJhAwBQljr1QUkSbAX49d44bCQSIzVLsPHzn3HdvgIPEFBHTRgWElQMZyjAoirIMlCY_FCsQMdtoi9v48l5ePUaPHThpc2G01jb4TPdoaH355VjVZCo7RV7iMknnYA4VtyZXq7Wn2AYStvUtx0GAqCJxTsyQpad3g6dziuNKepR_JSS1z6HcQQIUXySSbbHyO9q0UudiEW5m79sEmzz36mnRUx_fSjn-94OWYMHBT_-s4Zdl6OhqBZbdAZ_4h64K9dEqHFyTlBu9-w_WeKpLf1hN9Esx0v5gVFN5BRR6a3B_MbwbXAaupUKghEyngTF5SjXh-2WSJgL_bbxUQpkolipCYGB0WsaGcUO2YqNkblCbSnOZc2GERNKJdehW40pvgh-amOcq6ovYoJhnYW5EkTMhEi2Z6vPQAzbb1ky5euPU9mKUWb2DpRkRJSOiZI4oHhy3S16bYht_TV6lDW0nur30YGdGu8wdxwmu49zWHkw82G8v40Ei70he6XE9yRAZcYnKFucebDQ0b-89Y5Wtn5-5DfP4Zv0mDnIHutO3Wu8iVpkWe5ZJPwGgut7Y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB7xOMCl5dFHWgpBohKtlMWxnWRz4NBuQQtsOS0qPaWJY19YslWzUQW_hb_S_9YZxxupqO0NiZul2I7lGXu-8bwA9hJTREwbFRBWDmQow6AoyjJQmuxQrEDEbL0tzuPhhTy9jC4X4K6LhdFaW-cz3aOmteWXU9XQU9kB8hKXSepcKM_0zU9U0OrDk09IzbecHx-NB8PA1RAIlJDpLDAmTykJer9M0kTgYealEspEsVQRSkKj0zI2jBt6HDVK5gbVhzSXORdGSFyrwHkXYRlxRsTb6LDuBceWrLDFdjk2AsQxiTObhiw9GA--fiTPsaRHEV9CUsEeilYkCPOHDLRFXf6Nb62cO34Kv-Y71Lq3XPWaWdFTt_eSRz7WLVyDJw5g-x_aE7EOC7ragHV3hdX-vsuz_W4T9kYkxyc3_hf7PKxL_6iq9XUx0f5g0lACCRTrz-DiQVb7HJaqaaVfgh-amOcq6ovYIJBhYW5EkTMhEi2Z6vPQAzYnY6ZcRnUq7DHJrGbF0oyYICMmyBwTePC-G_K9TSfyv86bRMCuo6OdB1tzXsnchVPjOM5tdsXEg93uM14VZP_JKz1t6gyxH5eoTnLuwYuWx7q556z56u__3IGV4fjzKBudnJ-9hlVcZb_1-tyCpdmPRr9BZDYrtu0B8eHbQ7PTbzVSPKs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+Weighted+Ensemble+Clustering&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Huang%2C+Dong&rft.au=Wang%2C+Chang-Dong&rft.au=Lai%2C+Jian-Huang&rft.date=2018-05-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=48&rft.issue=5&rft.spage=1460&rft.epage=1473&rft_id=info:doi/10.1109%2FTCYB.2017.2702343&rft_id=info%3Apmid%2F28541232&rft.externalDocID=7932479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |