Locally Weighted Ensemble Clustering

Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 48; no. 5; pp. 1460 - 1473
Main Authors Huang, Dong, Wang, Chang-Dong, Lai, Jian-Huang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.
AbstractList Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.
Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.
Author Wang, Chang-Dong
Lai, Jian-Huang
Huang, Dong
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0003-3923-8828
  surname: Huang
  fullname: Huang, Dong
  email: huangdonghere@gmail.com
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 2
  givenname: Chang-Dong
  orcidid: 0000-0001-5972-559X
  surname: Wang
  fullname: Wang, Chang-Dong
  email: changdongwang@hotmail.com
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Jian-Huang
  surname: Lai
  fullname: Lai, Jian-Huang
  email: stsljh@mail.sysu.edu.cn
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28541232$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi1UREvpD0BIqBIMLCn22YnjEaLyIVViKUJMluvYxZWblDgZ-u9J1I-hA7fc6fS8p_feS9QrysIgdE3whBAsHufZ9_MEMOET4Bgoo2doACRJIwAe945zwvtoFMIKt5W2K5FeoD6kMSNAYYDuZ6VW3m_HX8Ytf2qTj6dFMOuFN-PMN6E2lSuWV-jcKh_MaN-H6PNlOs_eotnH63v2NIs0ZaKOrFUCU0HSnAtOVZ5Drqm2ccJ0jElsjcgTi8HGQLHVTFmSMKGYAmopS_GCDtHD7u6mKn8bE2q5dkEb71VhyiZIIjCwFBKAFr07QVdlUxWtOwkYADMKjLfU7Z5qFmuTy03l1qraysP_LcB3gK7KECpjpXa1ql1Z1JVyXhIsu7BlF7bswpb7sFslOVEejv-nudlpnDHmyHPReRX0DyXMhnY
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_neucom_2019_02_043
crossref_primary_10_1002_advs_202205442
crossref_primary_10_1109_ACCESS_2020_2977195
crossref_primary_10_1016_j_asoc_2023_111095
crossref_primary_10_1007_s13042_023_01969_5
crossref_primary_10_3390_math11061340
crossref_primary_10_3390_math10091457
crossref_primary_10_1007_s11042_023_15629_x
crossref_primary_10_1109_TCYB_2021_3100521
crossref_primary_10_3390_s22207814
crossref_primary_10_1109_TETCI_2024_3353598
crossref_primary_10_1007_s10489_023_04580_x
crossref_primary_10_1088_1757_899X_1074_1_012020
crossref_primary_10_1109_TNNLS_2023_3249207
crossref_primary_10_1038_s41598_023_49947_9
crossref_primary_10_1109_ACCESS_2020_3003046
crossref_primary_10_1109_ACCESS_2021_3060135
crossref_primary_10_3233_JIFS_191531
crossref_primary_10_1109_TCYB_2018_2836804
crossref_primary_10_1109_TCYB_2021_3049633
crossref_primary_10_1007_s10044_022_01116_w
crossref_primary_10_1109_TNNLS_2022_3146136
crossref_primary_10_1109_TCSVT_2021_3129365
crossref_primary_10_3233_IDA_216240
crossref_primary_10_1109_ACCESS_2021_3056677
crossref_primary_10_1007_s11063_023_11147_x
crossref_primary_10_1109_TNNLS_2022_3201975
crossref_primary_10_1016_j_ins_2023_03_067
crossref_primary_10_1177_2048004020945142
crossref_primary_10_3390_a16050245
crossref_primary_10_1016_j_engappai_2024_107873
crossref_primary_10_1007_s10660_021_09458_z
crossref_primary_10_1109_TBDATA_2023_3325045
crossref_primary_10_1007_s00521_023_08915_0
crossref_primary_10_1016_j_ins_2023_01_135
crossref_primary_10_1016_j_ins_2024_121314
crossref_primary_10_3390_math12131951
crossref_primary_10_14778_3681954_3681970
crossref_primary_10_1007_s10586_024_04801_z
crossref_primary_10_1007_s43684_023_00055_5
crossref_primary_10_3233_JIFS_223897
crossref_primary_10_1016_j_inffus_2024_102587
crossref_primary_10_1109_ACCESS_2021_3066498
crossref_primary_10_1109_ACCESS_2019_2950159
crossref_primary_10_1088_1742_6596_1584_1_012074
crossref_primary_10_1109_TKDE_2021_3082470
crossref_primary_10_1093_comjnl_bxae101
crossref_primary_10_1093_bioinformatics_btac290
crossref_primary_10_4018_IJGCMS_361997
crossref_primary_10_1016_j_eswa_2022_118911
crossref_primary_10_1109_ACCESS_2020_2979915
crossref_primary_10_1016_j_asoc_2025_112844
crossref_primary_10_1016_j_ins_2022_01_065
crossref_primary_10_1109_TKDE_2018_2818729
crossref_primary_10_1007_s12205_023_0234_6
crossref_primary_10_1016_j_knosys_2019_07_027
crossref_primary_10_1007_s13042_022_01651_2
crossref_primary_10_1109_ACCESS_2024_3359299
crossref_primary_10_1109_TCYB_2021_3069434
crossref_primary_10_3390_electronics12224558
crossref_primary_10_1109_TSMC_2021_3112049
crossref_primary_10_3390_math9121423
crossref_primary_10_1007_s11227_023_05290_4
crossref_primary_10_1016_j_knosys_2024_111793
crossref_primary_10_1109_TKDE_2023_3264970
crossref_primary_10_1109_TCYB_2018_2885585
crossref_primary_10_1145_3612923
crossref_primary_10_1007_s11063_021_10563_1
crossref_primary_10_1007_s11227_020_03429_1
crossref_primary_10_1109_TCYB_2020_2969705
crossref_primary_10_1016_j_eswa_2020_113570
crossref_primary_10_1007_s00500_021_05733_1
crossref_primary_10_1109_ACCESS_2024_3497977
crossref_primary_10_1109_ACCESS_2020_2978404
crossref_primary_10_1002_cpe_5359
crossref_primary_10_1109_TCYB_2021_3102510
crossref_primary_10_1007_s11063_023_11287_0
crossref_primary_10_1109_ACCESS_2020_2975377
crossref_primary_10_1109_ACCESS_2022_3167031
crossref_primary_10_1007_s40747_023_01267_1
crossref_primary_10_1016_j_inffus_2023_102099
crossref_primary_10_1109_TMM_2024_3369862
crossref_primary_10_1016_j_inffus_2020_03_009
crossref_primary_10_1016_j_eswa_2024_123313
crossref_primary_10_1109_TCYB_2021_3126727
crossref_primary_10_1007_s11277_021_09083_x
crossref_primary_10_1016_j_knosys_2022_109444
crossref_primary_10_1007_s00500_021_06092_7
crossref_primary_10_1109_TKDE_2023_3271120
crossref_primary_10_1109_TPAMI_2024_3507857
crossref_primary_10_1007_s11036_022_01921_x
crossref_primary_10_1007_s00778_021_00716_y
crossref_primary_10_1007_s11063_018_9926_1
crossref_primary_10_1109_LCOMM_2024_3371968
crossref_primary_10_1093_comjnl_bxab020
crossref_primary_10_1007_s10044_022_01125_9
crossref_primary_10_1109_ACCESS_2020_3027453
crossref_primary_10_1371_journal_pcbi_1011044
crossref_primary_10_1109_TII_2019_2929743
crossref_primary_10_1109_ACCESS_2020_3010475
crossref_primary_10_1109_TVT_2023_3323528
crossref_primary_10_1016_j_patcog_2024_111133
crossref_primary_10_1109_TETCI_2023_3306233
crossref_primary_10_1109_ACCESS_2020_2968150
crossref_primary_10_1049_sfw2_12020
crossref_primary_10_1109_ACCESS_2020_2982439
crossref_primary_10_1109_TKDE_2023_3311409
crossref_primary_10_1016_j_ins_2024_121486
crossref_primary_10_1109_TCSVT_2024_3492814
crossref_primary_10_1016_j_datak_2019_101754
crossref_primary_10_1109_LSP_2023_3298284
crossref_primary_10_1016_j_neucom_2020_02_119
crossref_primary_10_3934_mbe_2023933
crossref_primary_10_1007_s42835_022_01074_7
crossref_primary_10_1016_j_enggeo_2021_106365
crossref_primary_10_1016_j_knosys_2021_107124
crossref_primary_10_1109_TKDE_2023_3236698
crossref_primary_10_1016_j_inffus_2019_10_006
crossref_primary_10_1007_s10462_018_9642_2
crossref_primary_10_1007_s12652_020_02147_z
crossref_primary_10_1016_j_aei_2021_101301
crossref_primary_10_1109_TFUZZ_2023_3247912
crossref_primary_10_1145_3616011
crossref_primary_10_3390_ijgi9010019
crossref_primary_10_1016_j_knosys_2020_106672
crossref_primary_10_1016_j_ins_2021_07_028
crossref_primary_10_1016_j_eswa_2023_121557
crossref_primary_10_3390_rs14051156
crossref_primary_10_1109_TKDE_2023_3321913
crossref_primary_10_1155_2022_4465007
crossref_primary_10_1016_j_eswa_2023_121672
crossref_primary_10_1016_j_knosys_2022_110141
crossref_primary_10_1109_TSMC_2018_2876202
crossref_primary_10_1016_j_patcog_2024_110389
crossref_primary_10_1109_ACCESS_2020_2989689
crossref_primary_10_1016_j_engappai_2023_106535
crossref_primary_10_26117_2079_6641_2022_39_2_136_149
crossref_primary_10_1109_TCSVT_2019_2944009
crossref_primary_10_1007_s10044_022_01062_7
crossref_primary_10_1016_j_ins_2022_03_071
crossref_primary_10_1016_j_asoc_2024_112299
crossref_primary_10_37391_ijeer_110428
crossref_primary_10_1016_j_ins_2024_121187
crossref_primary_10_1007_s11634_024_00588_4
crossref_primary_10_1016_j_engappai_2022_105151
crossref_primary_10_1109_ACCESS_2019_2904554
crossref_primary_10_1364_OE_413164
crossref_primary_10_1016_j_patcog_2022_109282
crossref_primary_10_1016_j_neucom_2018_05_116
crossref_primary_10_1038_s41598_024_59300_3
crossref_primary_10_1080_09540091_2020_1866496
crossref_primary_10_1016_j_inffus_2025_103105
crossref_primary_10_1145_3564701
crossref_primary_10_1007_s10489_020_01926_7
crossref_primary_10_1016_j_asoc_2023_111151
crossref_primary_10_3390_ai1020016
crossref_primary_10_1109_ACCESS_2022_3219854
crossref_primary_10_1109_TCYB_2021_3125320
crossref_primary_10_29252_jsdp_17_2_100
crossref_primary_10_1007_s10489_021_02405_3
crossref_primary_10_1002_cpe_7992
crossref_primary_10_1007_s10462_022_10163_y
crossref_primary_10_1109_TCYB_2021_3081988
crossref_primary_10_1007_s00500_023_07848_z
crossref_primary_10_1029_2020WR028412
crossref_primary_10_1016_j_patcog_2019_03_020
crossref_primary_10_1109_ACCESS_2020_3034623
crossref_primary_10_1016_j_neucom_2019_01_042
crossref_primary_10_1109_TFUZZ_2019_2947231
crossref_primary_10_1109_OJSP_2021_3051453
crossref_primary_10_1111_coin_12267
crossref_primary_10_1016_j_engappai_2021_104388
crossref_primary_10_1016_j_neucom_2020_01_058
crossref_primary_10_1109_ACCESS_2019_2952548
crossref_primary_10_1007_s10489_023_05181_4
crossref_primary_10_1093_bib_bbae203
crossref_primary_10_1007_s13042_019_00989_4
crossref_primary_10_1016_j_sigpro_2021_108301
crossref_primary_10_1016_j_knosys_2019_105126
crossref_primary_10_1109_ACCESS_2021_3050404
crossref_primary_10_1016_j_asoc_2022_109492
crossref_primary_10_1109_ACCESS_2020_3012907
crossref_primary_10_3390_e24101324
crossref_primary_10_1109_TNNLS_2020_2984814
crossref_primary_10_1007_s10489_024_05654_0
crossref_primary_10_1109_TKDE_2023_3267167
crossref_primary_10_1109_TIP_2025_3540297
crossref_primary_10_1007_s10462_020_09862_1
crossref_primary_10_1016_j_knosys_2021_107457
crossref_primary_10_1109_ACCESS_2019_2939581
crossref_primary_10_1109_TII_2019_2939278
crossref_primary_10_3233_JIFS_191739
crossref_primary_10_1109_ACCESS_2020_3022718
crossref_primary_10_1016_j_jksuci_2022_04_010
crossref_primary_10_1016_j_knosys_2019_105018
crossref_primary_10_1007_s10489_024_05368_3
crossref_primary_10_1016_j_eswa_2020_113294
crossref_primary_10_1109_TKDE_2019_2903410
crossref_primary_10_1007_s10489_021_02365_8
crossref_primary_10_1007_s11276_021_02725_9
crossref_primary_10_1007_s13042_022_01742_0
crossref_primary_10_1016_j_dt_2023_11_010
crossref_primary_10_1007_s11276_021_02747_3
crossref_primary_10_1088_1742_6596_2024_1_012045
crossref_primary_10_1109_TKDE_2023_3292573
crossref_primary_10_1155_2022_7990969
crossref_primary_10_1016_j_ins_2019_09_076
crossref_primary_10_3390_app14020719
crossref_primary_10_1109_ACCESS_2019_2963306
crossref_primary_10_1109_ACCESS_2020_2994380
crossref_primary_10_1007_s10586_024_04864_y
crossref_primary_10_1109_TMC_2024_3419021
crossref_primary_10_1016_j_jksuci_2019_09_013
crossref_primary_10_1109_TCYB_2020_3034157
crossref_primary_10_1080_0305215X_2020_1771703
crossref_primary_10_1109_TCSS_2019_2940740
crossref_primary_10_1016_j_procs_2021_10_043
crossref_primary_10_1109_ACCESS_2020_2985425
crossref_primary_10_1007_s11063_024_11618_9
crossref_primary_10_1109_TII_2019_2937514
crossref_primary_10_1007_s11063_018_9918_1
crossref_primary_10_1109_TFUZZ_2024_3491300
crossref_primary_10_1109_TNNLS_2023_3252586
Cites_doi 10.1109/TCYB.2013.2263383
10.1145/2783258.2783287
10.1109/TCYB.2014.2317514
10.1016/j.patcog.2008.09.013
10.1145/2939672.2939813
10.1016/j.patcog.2010.08.005
10.1109/34.667881
10.1016/j.patcog.2010.09.008
10.1016/j.patcog.2014.04.005
10.1109/TSMCB.2012.2183591
10.1109/TSMCB.2010.2086059
10.1016/j.neucom.2016.05.028
10.1109/72.238318
10.1109/TKDE.2014.2316512
10.1109/TCYB.2015.2477416
10.1145/1015330.1015414
10.2307/2284239
10.1201/b12207
10.1126/science.1136800
10.1109/TPAMI.2005.113
10.1109/TCYB.2014.2344015
10.1109/TSMCC.2011.2174633
10.1109/TKDE.2015.2503753
10.1109/TKDE.2015.2453162
10.1137/1.9781611974010.86
10.1002/0471660264
10.1137/1.9781611972788.72
10.1080/0952813X.2013.813974
10.1109/TKDE.2017.2650229
10.1016/j.patrec.2009.09.011
10.1109/TKDE.2011.263
10.1109/ICDM.2012.123
10.1145/1557019.1557115
10.1016/j.patcog.2015.02.014
10.1007/s10994-013-5339-6
10.1109/TPAMI.2013.28
10.1016/j.neucom.2014.05.094
10.1016/j.inffus.2004.04.008
10.1109/TPAMI.2011.84
10.1109/TPAMI.2005.237
10.1016/j.patcog.2010.03.001
10.1016/j.patcog.2015.08.015
10.1109/TKDE.2015.2503743
10.1142/S0218001411008683
10.1016/j.patcog.2013.08.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2017.2702343
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1473
ExternalDocumentID 28541232
10_1109_TCYB_2017_2702343
7932479
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2016YFB1001003
  funderid: 10.13039/501100012166
– fundername: Ph.D. Start-up Fund of Natural Science Foundation of Guangdong Province, China
  grantid: 2016A030310457; 2014A030310180
  funderid: 10.13039/501100003453
– fundername: NSFC
  grantid: 61602189; 61502543; 61573387
  funderid: 10.13039/501100001809
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  grantid: 2016A030306014
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-ffa903918d7973add2dc3cf564c5015fe9d6f02f5230fc4af1649a4a23f3480b3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 08:03:34 EDT 2025
Mon Jun 30 06:44:30 EDT 2025
Thu Jan 02 23:09:43 EST 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Jul 01 04:35:09 EDT 2025
Wed Aug 27 02:38:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-ffa903918d7973add2dc3cf564c5015fe9d6f02f5230fc4af1649a4a23f3480b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5972-559X
0000-0003-3923-8828
PMID 28541232
PQID 2022043247
PQPubID 85422
PageCount 14
ParticipantIDs ieee_primary_7932479
crossref_citationtrail_10_1109_TCYB_2017_2702343
proquest_miscellaneous_1902482622
crossref_primary_10_1109_TCYB_2017_2702343
proquest_journals_2022043247
pubmed_primary_28541232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
cristofor (ref18) 2002; 8
ref15
ref14
ref52
ref11
ref10
ref16
ref19
ng (ref3) 2002
demšar (ref53) 2006; 7
vinh (ref51) 2010; 11
strehl (ref17) 2003; 3
ref45
ref48
ref47
li (ref50) 2012
ref42
ref41
ref44
ref43
ref49
ref8
ref7
liu (ref12) 2015
ref9
ref6
ref5
ref35
ref34
ref37
frey (ref4) 2007; 315
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
zhou (ref40) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
cover (ref46) 2006
ref28
ref27
ref29
References_xml – ident: ref10
  doi: 10.1109/TCYB.2013.2263383
– ident: ref31
  doi: 10.1145/2783258.2783287
– ident: ref14
  doi: 10.1109/TCYB.2014.2317514
– ident: ref22
  doi: 10.1016/j.patcog.2008.09.013
– ident: ref35
  doi: 10.1145/2939672.2939813
– ident: ref6
  doi: 10.1016/j.patcog.2010.08.005
– ident: ref41
  doi: 10.1109/34.667881
– ident: ref49
  doi: 10.1016/j.patcog.2010.09.008
– ident: ref38
  doi: 10.1016/j.patcog.2014.04.005
– ident: ref27
  doi: 10.1109/TSMCB.2012.2183591
– ident: ref24
  doi: 10.1109/TSMCB.2010.2086059
– ident: ref33
  doi: 10.1016/j.neucom.2016.05.028
– start-page: 877
  year: 2015
  ident: ref12
  article-title: Clustering with partition level side information
  publication-title: Proc IEEE Int Conf Data Min (ICDM)
– ident: ref2
  doi: 10.1109/72.238318
– ident: ref26
  doi: 10.1109/TKDE.2014.2316512
– volume: 7
  start-page: 1
  year: 2006
  ident: ref53
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref16
  doi: 10.1109/TCYB.2015.2477416
– ident: ref19
  doi: 10.1145/1015330.1015414
– ident: ref52
  doi: 10.2307/2284239
– year: 2012
  ident: ref40
  publication-title: Ensemble Methods Foundations and Algorithms
  doi: 10.1201/b12207
– volume: 315
  start-page: 972
  year: 2007
  ident: ref4
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– year: 2006
  ident: ref46
  publication-title: Elements of Information Theory
– ident: ref20
  doi: 10.1109/TPAMI.2005.113
– ident: ref13
  doi: 10.1109/TCYB.2014.2344015
– ident: ref7
  doi: 10.1109/TSMCC.2011.2174633
– ident: ref34
  doi: 10.1109/TKDE.2015.2503753
– ident: ref28
  doi: 10.1109/TKDE.2015.2453162
– ident: ref11
  doi: 10.1137/1.9781611974010.86
– volume: 8
  start-page: 153
  year: 2002
  ident: ref18
  article-title: Finding median partitions using information-theoretical-based genetic algorithms
  publication-title: J Universal Comput Sci
– ident: ref42
  doi: 10.1002/0471660264
– start-page: 789
  year: 2012
  ident: ref50
  article-title: Segmentation using superpixels: A bipartite graph partitioning approach
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref37
  doi: 10.1137/1.9781611972788.72
– ident: ref45
  doi: 10.1080/0952813X.2013.813974
– ident: ref36
  doi: 10.1109/TKDE.2017.2650229
– start-page: 849
  year: 2002
  ident: ref3
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref1
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref8
  doi: 10.1109/TKDE.2011.263
– ident: ref47
  doi: 10.1109/ICDM.2012.123
– volume: 11
  start-page: 2837
  year: 2010
  ident: ref51
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1145/1557019.1557115
– ident: ref39
  doi: 10.1016/j.patcog.2015.02.014
– ident: ref29
  doi: 10.1007/s10994-013-5339-6
– ident: ref9
  doi: 10.1109/TPAMI.2013.28
– ident: ref30
  doi: 10.1016/j.neucom.2014.05.094
– ident: ref43
  doi: 10.1016/j.inffus.2004.04.008
– ident: ref23
  doi: 10.1109/TPAMI.2011.84
– ident: ref21
  doi: 10.1109/TPAMI.2005.237
– volume: 3
  start-page: 583
  year: 2003
  ident: ref17
  article-title: Cluster ensembles-A knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– ident: ref48
  doi: 10.1016/j.patcog.2010.03.001
– ident: ref32
  doi: 10.1016/j.patcog.2015.08.015
– ident: ref15
  doi: 10.1109/TKDE.2015.2503743
– ident: ref44
  doi: 10.1142/S0218001411008683
– ident: ref25
  doi: 10.1016/j.patcog.2013.08.019
SSID ssj0000816898
Score 2.5894308
Snippet Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1460
SubjectTerms Cluster uncertainty estimation
Clustering
Clustering algorithms
consensus clustering
ensemble clustering
Estimation
Indexes
local weighting
Partitioning algorithms
Reliability analysis
Robustness
Uncertainty
Title Locally Weighted Ensemble Clustering
URI https://ieeexplore.ieee.org/document/7932479
https://www.ncbi.nlm.nih.gov/pubmed/28541232
https://www.proquest.com/docview/2022043247
https://www.proquest.com/docview/1902482622
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTiy8H-GlIDEAIsWxnaQZoSpCCJhAwBQljr1QUkSbAX49d44bCQSIzVLsPHzn3HdvgIPEFBHTRgWElQMZyjAoirIMlCY_FCsQMdtoi9v48l5ePUaPHThpc2G01jb4TPdoaH355VjVZCo7RV7iMknnYA4VtyZXq7Wn2AYStvUtx0GAqCJxTsyQpad3g6dziuNKepR_JSS1z6HcQQIUXySSbbHyO9q0UudiEW5m79sEmzz36mnRUx_fSjn-94OWYMHBT_-s4Zdl6OhqBZbdAZ_4h64K9dEqHFyTlBu9-w_WeKpLf1hN9Esx0v5gVFN5BRR6a3B_MbwbXAaupUKghEyngTF5SjXh-2WSJgL_bbxUQpkolipCYGB0WsaGcUO2YqNkblCbSnOZc2GERNKJdehW40pvgh-amOcq6ovYoJhnYW5EkTMhEi2Z6vPQAzbb1ky5euPU9mKUWb2DpRkRJSOiZI4oHhy3S16bYht_TV6lDW0nur30YGdGu8wdxwmu49zWHkw82G8v40Ei70he6XE9yRAZcYnKFucebDQ0b-89Y5Wtn5-5DfP4Zv0mDnIHutO3Wu8iVpkWe5ZJPwGgut7Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB7xOMCl5dFHWgpBohKtlMWxnWRz4NBuQQtsOS0qPaWJY19YslWzUQW_hb_S_9YZxxupqO0NiZul2I7lGXu-8bwA9hJTREwbFRBWDmQow6AoyjJQmuxQrEDEbL0tzuPhhTy9jC4X4K6LhdFaW-cz3aOmteWXU9XQU9kB8hKXSepcKM_0zU9U0OrDk09IzbecHx-NB8PA1RAIlJDpLDAmTykJer9M0kTgYealEspEsVQRSkKj0zI2jBt6HDVK5gbVhzSXORdGSFyrwHkXYRlxRsTb6LDuBceWrLDFdjk2AsQxiTObhiw9GA--fiTPsaRHEV9CUsEeilYkCPOHDLRFXf6Nb62cO34Kv-Y71Lq3XPWaWdFTt_eSRz7WLVyDJw5g-x_aE7EOC7ragHV3hdX-vsuz_W4T9kYkxyc3_hf7PKxL_6iq9XUx0f5g0lACCRTrz-DiQVb7HJaqaaVfgh-amOcq6ovYIJBhYW5EkTMhEi2Z6vPQAzYnY6ZcRnUq7DHJrGbF0oyYICMmyBwTePC-G_K9TSfyv86bRMCuo6OdB1tzXsnchVPjOM5tdsXEg93uM14VZP_JKz1t6gyxH5eoTnLuwYuWx7q556z56u__3IGV4fjzKBudnJ-9hlVcZb_1-tyCpdmPRr9BZDYrtu0B8eHbQ7PTbzVSPKs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+Weighted+Ensemble+Clustering&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Huang%2C+Dong&rft.au=Wang%2C+Chang-Dong&rft.au=Lai%2C+Jian-Huang&rft.date=2018-05-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=48&rft.issue=5&rft.spage=1460&rft.epage=1473&rft_id=info:doi/10.1109%2FTCYB.2017.2702343&rft_id=info%3Apmid%2F28541232&rft.externalDocID=7932479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon