Continuous control of a polymerization system with deep reinforcement learning
•Deep reinforcement learning is a versatile tool for control problems.•A controller is developed based on DDPG framework for a polymerization reactor.•The controller follows the MW trajectory by adjusting the monomer and initiator flow rates.•The resulting MWD from the DRL controller matches with th...
Saved in:
Published in | Journal of process control Vol. 75; pp. 40 - 47 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0959-1524 1873-2771 |
DOI | 10.1016/j.jprocont.2018.11.004 |
Cover
Loading…
Abstract | •Deep reinforcement learning is a versatile tool for control problems.•A controller is developed based on DDPG framework for a polymerization reactor.•The controller follows the MW trajectory by adjusting the monomer and initiator flow rates.•The resulting MWD from the DRL controller matches with the target distribution.
Reinforcement learning is a branch of machine learning, where the machines gradually learn control behaviors via self-exploration of the environment. In this paper, we present a controller using deep reinforcement learning (DRL) with Deep Deterministic Policy Gradient (DDPG) for a non-linear semi-batch polymerization reaction. Several adaptations to apply DRL for chemical process control are addressed in this paper including the Markov state assumption, action boundaries and reward definition. This work illustrates that a DRL controller is capable of handling complicated control tasks for chemical processes with multiple inputs, non-linearity, large time delay and noise tolerance. The application of this AI-based framework, using DRL, is a promising direction in the field of chemical process control towards the goal of smart manufacturing. |
---|---|
AbstractList | •Deep reinforcement learning is a versatile tool for control problems.•A controller is developed based on DDPG framework for a polymerization reactor.•The controller follows the MW trajectory by adjusting the monomer and initiator flow rates.•The resulting MWD from the DRL controller matches with the target distribution.
Reinforcement learning is a branch of machine learning, where the machines gradually learn control behaviors via self-exploration of the environment. In this paper, we present a controller using deep reinforcement learning (DRL) with Deep Deterministic Policy Gradient (DDPG) for a non-linear semi-batch polymerization reaction. Several adaptations to apply DRL for chemical process control are addressed in this paper including the Markov state assumption, action boundaries and reward definition. This work illustrates that a DRL controller is capable of handling complicated control tasks for chemical processes with multiple inputs, non-linearity, large time delay and noise tolerance. The application of this AI-based framework, using DRL, is a promising direction in the field of chemical process control towards the goal of smart manufacturing. |
Author | Benton, Michael G. Romagnoli, José Zhu, Wenbo Ma, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Ma fullname: Ma, Yan – sequence: 2 givenname: Wenbo surname: Zhu fullname: Zhu, Wenbo – sequence: 3 givenname: Michael G. surname: Benton fullname: Benton, Michael G. – sequence: 4 givenname: José surname: Romagnoli fullname: Romagnoli, José email: jose@lsu.edu |
BookMark | eNqFkE9LwzAchoNMcJt-BckXaE2apGnBgzL8B6IXPYcs_VVT2qQkmTI_vZ3Ti5ed3tPzwPss0Mx5BwidU5JTQsuLLu_G4I13KS8IrXJKc0L4EZrTSrKskJLO0JzUos6oKPgJWsTYEUKYLMo5elpNnHUbv4l4pwi-x77FGo--3w4Q7JdO1jsctzHBgD9tescNwIgDWNf6YGAAl3APOjjr3k7Rcav7CGe_u0Svtzcvq_vs8fnuYXX9mBnG65S1ay1bWZK2aDgQLsWaMU1Zw4ypackEYZwLSotaGF4xUnNRlFpARcpaSLbWbInKvdcEH2OAVo3BDjpsFSVqV0V16q-K2lVRlKqpygRe_gONTT8XU9C2P4xf7XGYzn1YCCoaC85AYwOYpBpvDym-Ad9ahjI |
CitedBy_id | crossref_primary_10_1002_asjc_3572 crossref_primary_10_1088_1361_6501_ad21cf crossref_primary_10_1002_bit_28784 crossref_primary_10_1007_s00521_023_08760_1 crossref_primary_10_1016_j_compchemeng_2021_107527 crossref_primary_10_1016_j_conengprac_2022_105271 crossref_primary_10_3390_pr12020254 crossref_primary_10_1016_j_compchemeng_2021_107489 crossref_primary_10_1016_j_jprocont_2021_06_004 crossref_primary_10_1080_00207721_2025_2469821 crossref_primary_10_1007_s43684_021_00013_z crossref_primary_10_1002_amp2_10113 crossref_primary_10_1016_j_asoc_2022_109450 crossref_primary_10_1016_j_compchemeng_2022_107760 crossref_primary_10_1016_j_compind_2023_103938 crossref_primary_10_3390_pr11010123 crossref_primary_10_1002_ceat_202200029 crossref_primary_10_1016_j_ifacol_2021_08_289 crossref_primary_10_1021_acs_iecr_1c02706 crossref_primary_10_1016_j_compchemeng_2024_108979 crossref_primary_10_1016_j_compchemeng_2024_108857 crossref_primary_10_1109_TSM_2023_3336909 crossref_primary_10_1016_j_compchemeng_2024_108739 crossref_primary_10_1007_s12555_019_0120_7 crossref_primary_10_1016_j_compchemeng_2022_107819 crossref_primary_10_1016_j_compchemeng_2020_107016 crossref_primary_10_1016_j_ifacol_2021_08_291 crossref_primary_10_1016_j_jprocont_2022_08_002 crossref_primary_10_1016_j_ifacol_2021_08_292 crossref_primary_10_3390_act13090376 crossref_primary_10_1016_j_ifacol_2024_05_052 crossref_primary_10_1016_j_compchemeng_2024_108864 crossref_primary_10_1016_j_compchemeng_2024_108588 crossref_primary_10_1021_acs_iecr_0c05678 crossref_primary_10_1016_j_conengprac_2021_105046 crossref_primary_10_1016_j_jclepro_2019_119302 crossref_primary_10_1016_j_jprocont_2023_103106 crossref_primary_10_1016_j_jprocont_2022_04_014 crossref_primary_10_1016_j_biortech_2022_128502 crossref_primary_10_1016_j_neucom_2019_11_022 crossref_primary_10_1016_j_neunet_2022_10_016 crossref_primary_10_1016_j_ifacol_2023_10_1369 crossref_primary_10_1016_j_jprocont_2024_103340 crossref_primary_10_3390_pr10112311 crossref_primary_10_1016_j_eswa_2021_114820 crossref_primary_10_1016_j_conengprac_2024_105841 crossref_primary_10_1007_s00170_022_09700_4 crossref_primary_10_1016_j_ces_2024_120762 crossref_primary_10_3390_sym14091883 crossref_primary_10_1007_s40435_023_01227_0 crossref_primary_10_1007_s00170_022_09239_4 crossref_primary_10_1016_j_arabjc_2024_105696 crossref_primary_10_1016_j_compchemeng_2019_106664 crossref_primary_10_3390_e24101394 crossref_primary_10_1021_acs_energyfuels_2c02365 crossref_primary_10_1016_j_dche_2023_100131 crossref_primary_10_1016_j_engappai_2023_107256 crossref_primary_10_1016_j_arcontrol_2021_10_006 crossref_primary_10_1002_cjce_24508 crossref_primary_10_1002_adfm_202309844 crossref_primary_10_1016_j_cogsys_2020_09_006 crossref_primary_10_1002_aic_18356 crossref_primary_10_1016_j_dche_2023_100089 crossref_primary_10_1016_j_dche_2022_100023 crossref_primary_10_1039_D2DD00047D crossref_primary_10_1016_j_chroma_2021_462073 crossref_primary_10_1016_j_jtice_2023_104779 crossref_primary_10_3390_app122312377 crossref_primary_10_1016_j_conengprac_2022_105345 crossref_primary_10_1007_s12555_023_0616_z crossref_primary_10_1007_s43153_023_00422_y crossref_primary_10_1002_aic_17658 crossref_primary_10_1007_s12065_022_00786_z crossref_primary_10_1016_j_ces_2024_119875 crossref_primary_10_1109_TSM_2022_3225480 crossref_primary_10_1002_cjce_24878 crossref_primary_10_1007_s10845_021_01805_z crossref_primary_10_3390_pr9081456 crossref_primary_10_1016_j_gce_2024_06_002 crossref_primary_10_1016_j_energy_2023_128947 crossref_primary_10_1016_j_compchemeng_2023_108310 crossref_primary_10_3934_mbe_2022430 crossref_primary_10_1016_j_compchemeng_2023_108558 crossref_primary_10_1002_aic_17644 crossref_primary_10_3390_pr11113171 crossref_primary_10_1016_j_jclepro_2024_143602 crossref_primary_10_1016_j_conengprac_2023_105462 crossref_primary_10_1016_j_compchemeng_2020_107077 crossref_primary_10_1002_jbio_202200097 crossref_primary_10_1016_j_dche_2022_100049 crossref_primary_10_59277_PRA_SER_A_24_3_05 crossref_primary_10_1002_ente_202400438 crossref_primary_10_1080_00207543_2021_1973138 crossref_primary_10_1016_j_jwpe_2022_102759 crossref_primary_10_1016_j_jprocont_2022_05_004 crossref_primary_10_1016_j_compchemeng_2024_108601 crossref_primary_10_3390_aerospace9110658 |
Cites_doi | 10.1038/nature24270 10.1002/ceat.201000265 10.1038/nature14539 10.1109/MCAS.2009.933854 10.1021/acs.iecr.7b01074 10.1038/nature14236 10.1016/j.jprocont.2005.01.004 10.1021/ma000815s 10.1109/TSMCB.2008.2007630 10.1016/j.jmsy.2018.01.003 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jprocont.2018.11.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1873-2771 |
EndPage | 47 |
ExternalDocumentID | 10_1016_j_jprocont_2018_11_004 S0959152418304876 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 LY7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K UNMZH WUQ XFK ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c349t-fba7f760f2d4e0475b33a13d3cc916350344511295c483094526a5e8069573ba3 |
IEDL.DBID | .~1 |
ISSN | 0959-1524 |
IngestDate | Tue Jul 01 03:17:13 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Fri Feb 23 02:49:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polymerization Deep reinforcement learning Process control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-fba7f760f2d4e0475b33a13d3cc916350344511295c483094526a5e8069573ba3 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_jprocont_2018_11_004 crossref_citationtrail_10_1016_j_jprocont_2018_11_004 elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_11_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of process control |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sutton, McAllester, Singh, Mansour (bib0065) 2000 LeCun, Bengio, Hinton (bib0005) 2015; 521 Giz, Catalgil-Giz, Alb, Brousseau, Reed (bib0085) 2001; 34 Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu (bib0050) 2016 Silver, Lever, Heess, Degris, Wierstra, Riedmiller (bib0070) 2014 Puterman (bib0095) 2014 Spielberg, Gopaluni, Loewen (bib0025) 2017 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib0075) 2015; 518 Ogunnaike, Ray (bib0040) 1994; vol. 1 Ghadipasha, Zhu, Romagnoli, McAfee, Zekoski, Reed (bib0030) 2017; 56 Jaakkola, Singh, Jordan (bib0090) 1995 Flores-Cerrillo, MacGregor (bib0045) 2005; 15 Ernst, Glavic, Capitanescu, Wehenkel (bib0110) 2009; 39 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib0105) 2016 Ioffe, Szegedy (bib0080) 2015 Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (bib0060) 2015 Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton (bib0010) 2017; 550 Frauendorfer, Wolf, Hergeth (bib0035) 2010; 33 Hausknecht, Stone (bib0100) 2015 Wang, Ma, Zhang, Gao, Wu (bib0015) 2018; 48 Hessel, Modayil, Van Hasselt, Schaul, Ostrovski, Dabney, Horgan, Piot, Azar, Silver (bib0115) 2017 Lewis, Vrabie (bib0020) 2009; 9 Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, Riedmiller (bib0055) 2013 Wang (10.1016/j.jprocont.2018.11.004_bib0015) 2018; 48 Frauendorfer (10.1016/j.jprocont.2018.11.004_bib0035) 2010; 33 Mnih (10.1016/j.jprocont.2018.11.004_bib0050) 2016 Ioffe (10.1016/j.jprocont.2018.11.004_bib0080) 2015 Sutton (10.1016/j.jprocont.2018.11.004_bib0065) 2000 Hessel (10.1016/j.jprocont.2018.11.004_bib0115) 2017 Silver (10.1016/j.jprocont.2018.11.004_bib0010) 2017; 550 Hausknecht (10.1016/j.jprocont.2018.11.004_bib0100) 2015 Jaakkola (10.1016/j.jprocont.2018.11.004_bib0090) 1995 Puterman (10.1016/j.jprocont.2018.11.004_bib0095) 2014 Ghadipasha (10.1016/j.jprocont.2018.11.004_bib0030) 2017; 56 Abadi (10.1016/j.jprocont.2018.11.004_bib0105) 2016 LeCun (10.1016/j.jprocont.2018.11.004_bib0005) 2015; 521 Flores-Cerrillo (10.1016/j.jprocont.2018.11.004_bib0045) 2005; 15 Silver (10.1016/j.jprocont.2018.11.004_bib0070) 2014 Ernst (10.1016/j.jprocont.2018.11.004_bib0110) 2009; 39 Lewis (10.1016/j.jprocont.2018.11.004_bib0020) 2009; 9 Spielberg (10.1016/j.jprocont.2018.11.004_bib0025) 2017 Mnih (10.1016/j.jprocont.2018.11.004_bib0075) 2015; 518 Ogunnaike (10.1016/j.jprocont.2018.11.004_bib0040) 1994; vol. 1 Mnih (10.1016/j.jprocont.2018.11.004_bib0055) 2013 Lillicrap (10.1016/j.jprocont.2018.11.004_bib0060) 2015 Giz (10.1016/j.jprocont.2018.11.004_bib0085) 2001; 34 |
References_xml | – volume: 518 start-page: 529 year: 2015 ident: bib0075 article-title: Human-level control through deep reinforcement learning publication-title: Nature – year: 2013 ident: bib0055 article-title: Playing Atari with Deep Reinforcement Learning – start-page: 201 year: 2017 end-page: 206 ident: bib0025 article-title: Deep reinforcement learning approaches for process control publication-title: 2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP) – year: 2015 ident: bib0080 article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift – volume: 9 year: 2009 ident: bib0020 article-title: Reinforcement learning and adaptive dynamic programming for feedback control publication-title: IEEE Circuits Syst. Mag. – year: 2017 ident: bib0115 article-title: Rainbow: Combining Improvements in Deep Reinforcement Learning – volume: 33 start-page: 1767 year: 2010 end-page: 1778 ident: bib0035 article-title: Polymerization online monitoring publication-title: Chem. Eng. Technol. – year: 2014 ident: bib0095 article-title: Markov Decision Processes: Discrete Stochastic Dynamic Programming – volume: vol. 1 year: 1994 ident: bib0040 publication-title: Process Dynamics, Modeling, and Control – volume: 56 start-page: 7322 year: 2017 end-page: 7335 ident: bib0030 article-title: Online optimal feedback control of polymerization reactors: application to polymerization of acrylamide–water–potassium persulfate (KPS) system publication-title: Ind. Eng. Chem. Res. – start-page: 1057 year: 2000 end-page: 1063 ident: bib0065 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Advances in Neural Information Processing Systems – volume: 34 start-page: 1180 year: 2001 end-page: 1191 ident: bib0085 article-title: Kinetics and mechanisms of acrylamide polymerization from absolute, online monitoring of polymerization reaction publication-title: Macromolecules – volume: 550 start-page: 354 year: 2017 ident: bib0010 article-title: Mastering the game of go without human knowledge publication-title: Nature – year: 2015 ident: bib0100 article-title: Deep reinforcement Learning in Parameterized Action Space – start-page: 1928 year: 2016 end-page: 1937 ident: bib0050 article-title: Asynchronous methods for deep reinforcement learning publication-title: International Conference on Machine Learning – start-page: 345 year: 1995 end-page: 352 ident: bib0090 article-title: Reinforcement learning algorithm for partially observable Markov decision problems publication-title: Advances in Neural Information Processing Systems – year: 2015 ident: bib0060 article-title: Continuous Control with Deep Reinforcement Learning – start-page: 265 year: 2016 end-page: 283 ident: bib0105 article-title: Tensorflow: a system for large-scale machine learning publication-title: OSDI, vol. 16 – volume: 15 start-page: 651 year: 2005 end-page: 663 ident: bib0045 article-title: Latent variable MPC for trajectory tracking in batch processes publication-title: J. Process Control – volume: 39 start-page: 517 year: 2009 end-page: 529 ident: bib0110 article-title: Reinforcement learning versus model predictive control: a comparison on a power system problem publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) – year: 2014 ident: bib0070 article-title: Deterministic policy gradient algorithms publication-title: ICML – volume: 48 start-page: 144 year: 2018 end-page: 156 ident: bib0015 article-title: Deep learning for smart manufacturing: methods and applications publication-title: J. Manuf. Syst. – volume: 521 start-page: 436 year: 2015 ident: bib0005 article-title: Deep learning publication-title: Nature – year: 2014 ident: 10.1016/j.jprocont.2018.11.004_bib0095 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 10.1016/j.jprocont.2018.11.004_bib0010 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 33 start-page: 1767 issue: 11 year: 2010 ident: 10.1016/j.jprocont.2018.11.004_bib0035 article-title: Polymerization online monitoring publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201000265 – start-page: 1057 year: 2000 ident: 10.1016/j.jprocont.2018.11.004_bib0065 article-title: Policy gradient methods for reinforcement learning with function approximation – year: 2017 ident: 10.1016/j.jprocont.2018.11.004_bib0115 – year: 2013 ident: 10.1016/j.jprocont.2018.11.004_bib0055 – start-page: 265 year: 2016 ident: 10.1016/j.jprocont.2018.11.004_bib0105 article-title: Tensorflow: a system for large-scale machine learning publication-title: OSDI, vol. 16 – year: 2015 ident: 10.1016/j.jprocont.2018.11.004_bib0080 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.jprocont.2018.11.004_bib0005 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 9 issue: 3 year: 2009 ident: 10.1016/j.jprocont.2018.11.004_bib0020 article-title: Reinforcement learning and adaptive dynamic programming for feedback control publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2009.933854 – volume: 56 start-page: 7322 issue: 25 year: 2017 ident: 10.1016/j.jprocont.2018.11.004_bib0030 article-title: Online optimal feedback control of polymerization reactors: application to polymerization of acrylamide–water–potassium persulfate (KPS) system publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01074 – year: 2015 ident: 10.1016/j.jprocont.2018.11.004_bib0060 – year: 2015 ident: 10.1016/j.jprocont.2018.11.004_bib0100 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.jprocont.2018.11.004_bib0075 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: vol. 1 year: 1994 ident: 10.1016/j.jprocont.2018.11.004_bib0040 – start-page: 345 year: 1995 ident: 10.1016/j.jprocont.2018.11.004_bib0090 article-title: Reinforcement learning algorithm for partially observable Markov decision problems – year: 2014 ident: 10.1016/j.jprocont.2018.11.004_bib0070 article-title: Deterministic policy gradient algorithms publication-title: ICML – start-page: 201 year: 2017 ident: 10.1016/j.jprocont.2018.11.004_bib0025 article-title: Deep reinforcement learning approaches for process control – volume: 15 start-page: 651 issue: 6 year: 2005 ident: 10.1016/j.jprocont.2018.11.004_bib0045 article-title: Latent variable MPC for trajectory tracking in batch processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2005.01.004 – volume: 34 start-page: 1180 issue: 5 year: 2001 ident: 10.1016/j.jprocont.2018.11.004_bib0085 article-title: Kinetics and mechanisms of acrylamide polymerization from absolute, online monitoring of polymerization reaction publication-title: Macromolecules doi: 10.1021/ma000815s – volume: 39 start-page: 517 issue: 2 year: 2009 ident: 10.1016/j.jprocont.2018.11.004_bib0110 article-title: Reinforcement learning versus model predictive control: a comparison on a power system problem publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2008.2007630 – start-page: 1928 year: 2016 ident: 10.1016/j.jprocont.2018.11.004_bib0050 article-title: Asynchronous methods for deep reinforcement learning publication-title: International Conference on Machine Learning – volume: 48 start-page: 144 issue: Part C year: 2018 ident: 10.1016/j.jprocont.2018.11.004_bib0015 article-title: Deep learning for smart manufacturing: methods and applications publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.01.003 |
SSID | ssj0003726 |
Score | 2.5503054 |
Snippet | •Deep reinforcement learning is a versatile tool for control problems.•A controller is developed based on DDPG framework for a polymerization reactor.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 40 |
SubjectTerms | Deep reinforcement learning Polymerization Process control |
Title | Continuous control of a polymerization system with deep reinforcement learning |
URI | https://dx.doi.org/10.1016/j.jprocont.2018.11.004 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADLaqssDAo4Aoj-oG1jRJL68bq4qqgOgClbpFyeUOtaqSqGoHFn47dnKBIoYOjIniKPI5ts9nfx_AvcNVmrmpsrSntUUnSxbmyaGlFB-kSRjIKKDh5JdpMJl5T3N_3oJRMwtDbZXG99c-vfLW5o5ttGmXi4X9ShUsjD4eGiWaYUiw24Rehzbd__xp8-BhRblWlbvo6Z0p4WV_SVGiyKmn0o36hOZpCNv-BKidoDM-hWOTLbJh_UFn0FJ5B04aJgZmfswOHO3ACp7DlCCnFvkWN_XMtKKzQrOElcXqg05o6tFLVqM4MyrFskypkq1VhaMqq5IhM4QS7xcwGz-8jSaW4U2wJPfExtKoZB0Gjh5knnJQJSnnicszLiUmg9wnlL8qz_Klh7oTxDKe-CpyAuGHPE34JbTzIldXwAKeiCR1tQyJzwhXTnJ8URQIrrNEOLoLfqOsWBpQceK2WMVN99gybpQck5JxxxGjkrtgf8uVNazGXgnRrEX8y0Bi9P17ZK__IXsDh3gl6razW2hv1lt1h3nIJu1VhtaDg-Hj82T6BWfD3vI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOfdBWpU8PXUMSnOeIUFEokKUgsUWJY1cglEQIhv77-hIHUXVg6Jroouh8vjuf774P4M2gPEnNhGvCEkLDmyVN5smuxjntJbHrMM_B4eRp6ARz62NhLxowqGdhsK1S-f7Kp5feWj3RlTb1YrnUP7GCJaOPJY1SmqHrnEAL0amsJrT6o3EQ7h0ydUvWtbLihQIHg8Kr7goDRZ5hW6XpdRHQU3G2_YlRB3FneAUXKmEk_eqfrqHBszZc1mQMRO3NNpwfIAveQIioU8tsJ8_1RHWjk1yQmBT5-hsvaarpS1IBOROsxpKU84JseAmlysqqIVGcEl-3MB--zwaBpqgTNEYtf6sJqWfhOobopRY3LNdOKI1NmlLGZD5IbQT6K1Mtm1lSfT4Sjcc29wzHt12axPQOmlme8XsgDo39ODEFc5HSSC4eo_JDnuNTkca-ITpg18qKmMIVR3qLdVQ3kK2iWskRKlkeOiKp5A7oe7miQtY4KuHXaxH9spFIuv8jsg__kH2F02A2nUSTUTh-hDP5xq-60J6gud3s-LNMS7bJizK7HxIb4aM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+control+of+a+polymerization+system+with+deep+reinforcement+learning&rft.jtitle=Journal+of+process+control&rft.au=Ma%2C+Yan&rft.au=Zhu%2C+Wenbo&rft.au=Benton%2C+Michael+G.&rft.au=Romagnoli%2C+Jos%C3%A9&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.eissn=1873-2771&rft.volume=75&rft.spage=40&rft.epage=47&rft_id=info:doi/10.1016%2Fj.jprocont.2018.11.004&rft.externalDocID=S0959152418304876 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon |