Continuous control of a polymerization system with deep reinforcement learning

•Deep reinforcement learning is a versatile tool for control problems.•A controller is developed based on DDPG framework for a polymerization reactor.•The controller follows the MW trajectory by adjusting the monomer and initiator flow rates.•The resulting MWD from the DRL controller matches with th...

Full description

Saved in:
Bibliographic Details
Published inJournal of process control Vol. 75; pp. 40 - 47
Main Authors Ma, Yan, Zhu, Wenbo, Benton, Michael G., Romagnoli, José
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2019
Subjects
Online AccessGet full text
ISSN0959-1524
1873-2771
DOI10.1016/j.jprocont.2018.11.004

Cover

Loading…
Abstract •Deep reinforcement learning is a versatile tool for control problems.•A controller is developed based on DDPG framework for a polymerization reactor.•The controller follows the MW trajectory by adjusting the monomer and initiator flow rates.•The resulting MWD from the DRL controller matches with the target distribution. Reinforcement learning is a branch of machine learning, where the machines gradually learn control behaviors via self-exploration of the environment. In this paper, we present a controller using deep reinforcement learning (DRL) with Deep Deterministic Policy Gradient (DDPG) for a non-linear semi-batch polymerization reaction. Several adaptations to apply DRL for chemical process control are addressed in this paper including the Markov state assumption, action boundaries and reward definition. This work illustrates that a DRL controller is capable of handling complicated control tasks for chemical processes with multiple inputs, non-linearity, large time delay and noise tolerance. The application of this AI-based framework, using DRL, is a promising direction in the field of chemical process control towards the goal of smart manufacturing.
AbstractList •Deep reinforcement learning is a versatile tool for control problems.•A controller is developed based on DDPG framework for a polymerization reactor.•The controller follows the MW trajectory by adjusting the monomer and initiator flow rates.•The resulting MWD from the DRL controller matches with the target distribution. Reinforcement learning is a branch of machine learning, where the machines gradually learn control behaviors via self-exploration of the environment. In this paper, we present a controller using deep reinforcement learning (DRL) with Deep Deterministic Policy Gradient (DDPG) for a non-linear semi-batch polymerization reaction. Several adaptations to apply DRL for chemical process control are addressed in this paper including the Markov state assumption, action boundaries and reward definition. This work illustrates that a DRL controller is capable of handling complicated control tasks for chemical processes with multiple inputs, non-linearity, large time delay and noise tolerance. The application of this AI-based framework, using DRL, is a promising direction in the field of chemical process control towards the goal of smart manufacturing.
Author Benton, Michael G.
Romagnoli, José
Zhu, Wenbo
Ma, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
– sequence: 2
  givenname: Wenbo
  surname: Zhu
  fullname: Zhu, Wenbo
– sequence: 3
  givenname: Michael G.
  surname: Benton
  fullname: Benton, Michael G.
– sequence: 4
  givenname: José
  surname: Romagnoli
  fullname: Romagnoli, José
  email: jose@lsu.edu
BookMark eNqFkE9LwzAchoNMcJt-BckXaE2apGnBgzL8B6IXPYcs_VVT2qQkmTI_vZ3Ti5ed3tPzwPss0Mx5BwidU5JTQsuLLu_G4I13KS8IrXJKc0L4EZrTSrKskJLO0JzUos6oKPgJWsTYEUKYLMo5elpNnHUbv4l4pwi-x77FGo--3w4Q7JdO1jsctzHBgD9tescNwIgDWNf6YGAAl3APOjjr3k7Rcav7CGe_u0Svtzcvq_vs8fnuYXX9mBnG65S1ay1bWZK2aDgQLsWaMU1Zw4ypackEYZwLSotaGF4xUnNRlFpARcpaSLbWbInKvdcEH2OAVo3BDjpsFSVqV0V16q-K2lVRlKqpygRe_gONTT8XU9C2P4xf7XGYzn1YCCoaC85AYwOYpBpvDym-Ad9ahjI
CitedBy_id crossref_primary_10_1002_asjc_3572
crossref_primary_10_1088_1361_6501_ad21cf
crossref_primary_10_1002_bit_28784
crossref_primary_10_1007_s00521_023_08760_1
crossref_primary_10_1016_j_compchemeng_2021_107527
crossref_primary_10_1016_j_conengprac_2022_105271
crossref_primary_10_3390_pr12020254
crossref_primary_10_1016_j_compchemeng_2021_107489
crossref_primary_10_1016_j_jprocont_2021_06_004
crossref_primary_10_1080_00207721_2025_2469821
crossref_primary_10_1007_s43684_021_00013_z
crossref_primary_10_1002_amp2_10113
crossref_primary_10_1016_j_asoc_2022_109450
crossref_primary_10_1016_j_compchemeng_2022_107760
crossref_primary_10_1016_j_compind_2023_103938
crossref_primary_10_3390_pr11010123
crossref_primary_10_1002_ceat_202200029
crossref_primary_10_1016_j_ifacol_2021_08_289
crossref_primary_10_1021_acs_iecr_1c02706
crossref_primary_10_1016_j_compchemeng_2024_108979
crossref_primary_10_1016_j_compchemeng_2024_108857
crossref_primary_10_1109_TSM_2023_3336909
crossref_primary_10_1016_j_compchemeng_2024_108739
crossref_primary_10_1007_s12555_019_0120_7
crossref_primary_10_1016_j_compchemeng_2022_107819
crossref_primary_10_1016_j_compchemeng_2020_107016
crossref_primary_10_1016_j_ifacol_2021_08_291
crossref_primary_10_1016_j_jprocont_2022_08_002
crossref_primary_10_1016_j_ifacol_2021_08_292
crossref_primary_10_3390_act13090376
crossref_primary_10_1016_j_ifacol_2024_05_052
crossref_primary_10_1016_j_compchemeng_2024_108864
crossref_primary_10_1016_j_compchemeng_2024_108588
crossref_primary_10_1021_acs_iecr_0c05678
crossref_primary_10_1016_j_conengprac_2021_105046
crossref_primary_10_1016_j_jclepro_2019_119302
crossref_primary_10_1016_j_jprocont_2023_103106
crossref_primary_10_1016_j_jprocont_2022_04_014
crossref_primary_10_1016_j_biortech_2022_128502
crossref_primary_10_1016_j_neucom_2019_11_022
crossref_primary_10_1016_j_neunet_2022_10_016
crossref_primary_10_1016_j_ifacol_2023_10_1369
crossref_primary_10_1016_j_jprocont_2024_103340
crossref_primary_10_3390_pr10112311
crossref_primary_10_1016_j_eswa_2021_114820
crossref_primary_10_1016_j_conengprac_2024_105841
crossref_primary_10_1007_s00170_022_09700_4
crossref_primary_10_1016_j_ces_2024_120762
crossref_primary_10_3390_sym14091883
crossref_primary_10_1007_s40435_023_01227_0
crossref_primary_10_1007_s00170_022_09239_4
crossref_primary_10_1016_j_arabjc_2024_105696
crossref_primary_10_1016_j_compchemeng_2019_106664
crossref_primary_10_3390_e24101394
crossref_primary_10_1021_acs_energyfuels_2c02365
crossref_primary_10_1016_j_dche_2023_100131
crossref_primary_10_1016_j_engappai_2023_107256
crossref_primary_10_1016_j_arcontrol_2021_10_006
crossref_primary_10_1002_cjce_24508
crossref_primary_10_1002_adfm_202309844
crossref_primary_10_1016_j_cogsys_2020_09_006
crossref_primary_10_1002_aic_18356
crossref_primary_10_1016_j_dche_2023_100089
crossref_primary_10_1016_j_dche_2022_100023
crossref_primary_10_1039_D2DD00047D
crossref_primary_10_1016_j_chroma_2021_462073
crossref_primary_10_1016_j_jtice_2023_104779
crossref_primary_10_3390_app122312377
crossref_primary_10_1016_j_conengprac_2022_105345
crossref_primary_10_1007_s12555_023_0616_z
crossref_primary_10_1007_s43153_023_00422_y
crossref_primary_10_1002_aic_17658
crossref_primary_10_1007_s12065_022_00786_z
crossref_primary_10_1016_j_ces_2024_119875
crossref_primary_10_1109_TSM_2022_3225480
crossref_primary_10_1002_cjce_24878
crossref_primary_10_1007_s10845_021_01805_z
crossref_primary_10_3390_pr9081456
crossref_primary_10_1016_j_gce_2024_06_002
crossref_primary_10_1016_j_energy_2023_128947
crossref_primary_10_1016_j_compchemeng_2023_108310
crossref_primary_10_3934_mbe_2022430
crossref_primary_10_1016_j_compchemeng_2023_108558
crossref_primary_10_1002_aic_17644
crossref_primary_10_3390_pr11113171
crossref_primary_10_1016_j_jclepro_2024_143602
crossref_primary_10_1016_j_conengprac_2023_105462
crossref_primary_10_1016_j_compchemeng_2020_107077
crossref_primary_10_1002_jbio_202200097
crossref_primary_10_1016_j_dche_2022_100049
crossref_primary_10_59277_PRA_SER_A_24_3_05
crossref_primary_10_1002_ente_202400438
crossref_primary_10_1080_00207543_2021_1973138
crossref_primary_10_1016_j_jwpe_2022_102759
crossref_primary_10_1016_j_jprocont_2022_05_004
crossref_primary_10_1016_j_compchemeng_2024_108601
crossref_primary_10_3390_aerospace9110658
Cites_doi 10.1038/nature24270
10.1002/ceat.201000265
10.1038/nature14539
10.1109/MCAS.2009.933854
10.1021/acs.iecr.7b01074
10.1038/nature14236
10.1016/j.jprocont.2005.01.004
10.1021/ma000815s
10.1109/TSMCB.2008.2007630
10.1016/j.jmsy.2018.01.003
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2018.11.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 47
ExternalDocumentID 10_1016_j_jprocont_2018_11_004
S0959152418304876
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c349t-fba7f760f2d4e0475b33a13d3cc916350344511295c483094526a5e8069573ba3
IEDL.DBID .~1
ISSN 0959-1524
IngestDate Tue Jul 01 03:17:13 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Fri Feb 23 02:49:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polymerization
Deep reinforcement learning
Process control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-fba7f760f2d4e0475b33a13d3cc916350344511295c483094526a5e8069573ba3
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_jprocont_2018_11_004
crossref_citationtrail_10_1016_j_jprocont_2018_11_004
elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_11_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sutton, McAllester, Singh, Mansour (bib0065) 2000
LeCun, Bengio, Hinton (bib0005) 2015; 521
Giz, Catalgil-Giz, Alb, Brousseau, Reed (bib0085) 2001; 34
Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu (bib0050) 2016
Silver, Lever, Heess, Degris, Wierstra, Riedmiller (bib0070) 2014
Puterman (bib0095) 2014
Spielberg, Gopaluni, Loewen (bib0025) 2017
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib0075) 2015; 518
Ogunnaike, Ray (bib0040) 1994; vol. 1
Ghadipasha, Zhu, Romagnoli, McAfee, Zekoski, Reed (bib0030) 2017; 56
Jaakkola, Singh, Jordan (bib0090) 1995
Flores-Cerrillo, MacGregor (bib0045) 2005; 15
Ernst, Glavic, Capitanescu, Wehenkel (bib0110) 2009; 39
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib0105) 2016
Ioffe, Szegedy (bib0080) 2015
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (bib0060) 2015
Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton (bib0010) 2017; 550
Frauendorfer, Wolf, Hergeth (bib0035) 2010; 33
Hausknecht, Stone (bib0100) 2015
Wang, Ma, Zhang, Gao, Wu (bib0015) 2018; 48
Hessel, Modayil, Van Hasselt, Schaul, Ostrovski, Dabney, Horgan, Piot, Azar, Silver (bib0115) 2017
Lewis, Vrabie (bib0020) 2009; 9
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, Riedmiller (bib0055) 2013
Wang (10.1016/j.jprocont.2018.11.004_bib0015) 2018; 48
Frauendorfer (10.1016/j.jprocont.2018.11.004_bib0035) 2010; 33
Mnih (10.1016/j.jprocont.2018.11.004_bib0050) 2016
Ioffe (10.1016/j.jprocont.2018.11.004_bib0080) 2015
Sutton (10.1016/j.jprocont.2018.11.004_bib0065) 2000
Hessel (10.1016/j.jprocont.2018.11.004_bib0115) 2017
Silver (10.1016/j.jprocont.2018.11.004_bib0010) 2017; 550
Hausknecht (10.1016/j.jprocont.2018.11.004_bib0100) 2015
Jaakkola (10.1016/j.jprocont.2018.11.004_bib0090) 1995
Puterman (10.1016/j.jprocont.2018.11.004_bib0095) 2014
Ghadipasha (10.1016/j.jprocont.2018.11.004_bib0030) 2017; 56
Abadi (10.1016/j.jprocont.2018.11.004_bib0105) 2016
LeCun (10.1016/j.jprocont.2018.11.004_bib0005) 2015; 521
Flores-Cerrillo (10.1016/j.jprocont.2018.11.004_bib0045) 2005; 15
Silver (10.1016/j.jprocont.2018.11.004_bib0070) 2014
Ernst (10.1016/j.jprocont.2018.11.004_bib0110) 2009; 39
Lewis (10.1016/j.jprocont.2018.11.004_bib0020) 2009; 9
Spielberg (10.1016/j.jprocont.2018.11.004_bib0025) 2017
Mnih (10.1016/j.jprocont.2018.11.004_bib0075) 2015; 518
Ogunnaike (10.1016/j.jprocont.2018.11.004_bib0040) 1994; vol. 1
Mnih (10.1016/j.jprocont.2018.11.004_bib0055) 2013
Lillicrap (10.1016/j.jprocont.2018.11.004_bib0060) 2015
Giz (10.1016/j.jprocont.2018.11.004_bib0085) 2001; 34
References_xml – volume: 518
  start-page: 529
  year: 2015
  ident: bib0075
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– year: 2013
  ident: bib0055
  article-title: Playing Atari with Deep Reinforcement Learning
– start-page: 201
  year: 2017
  end-page: 206
  ident: bib0025
  article-title: Deep reinforcement learning approaches for process control
  publication-title: 2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP)
– year: 2015
  ident: bib0080
  article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
– volume: 9
  year: 2009
  ident: bib0020
  article-title: Reinforcement learning and adaptive dynamic programming for feedback control
  publication-title: IEEE Circuits Syst. Mag.
– year: 2017
  ident: bib0115
  article-title: Rainbow: Combining Improvements in Deep Reinforcement Learning
– volume: 33
  start-page: 1767
  year: 2010
  end-page: 1778
  ident: bib0035
  article-title: Polymerization online monitoring
  publication-title: Chem. Eng. Technol.
– year: 2014
  ident: bib0095
  article-title: Markov Decision Processes: Discrete Stochastic Dynamic Programming
– volume: vol. 1
  year: 1994
  ident: bib0040
  publication-title: Process Dynamics, Modeling, and Control
– volume: 56
  start-page: 7322
  year: 2017
  end-page: 7335
  ident: bib0030
  article-title: Online optimal feedback control of polymerization reactors: application to polymerization of acrylamide–water–potassium persulfate (KPS) system
  publication-title: Ind. Eng. Chem. Res.
– start-page: 1057
  year: 2000
  end-page: 1063
  ident: bib0065
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 1180
  year: 2001
  end-page: 1191
  ident: bib0085
  article-title: Kinetics and mechanisms of acrylamide polymerization from absolute, online monitoring of polymerization reaction
  publication-title: Macromolecules
– volume: 550
  start-page: 354
  year: 2017
  ident: bib0010
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
– year: 2015
  ident: bib0100
  article-title: Deep reinforcement Learning in Parameterized Action Space
– start-page: 1928
  year: 2016
  end-page: 1937
  ident: bib0050
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: International Conference on Machine Learning
– start-page: 345
  year: 1995
  end-page: 352
  ident: bib0090
  article-title: Reinforcement learning algorithm for partially observable Markov decision problems
  publication-title: Advances in Neural Information Processing Systems
– year: 2015
  ident: bib0060
  article-title: Continuous Control with Deep Reinforcement Learning
– start-page: 265
  year: 2016
  end-page: 283
  ident: bib0105
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: OSDI, vol. 16
– volume: 15
  start-page: 651
  year: 2005
  end-page: 663
  ident: bib0045
  article-title: Latent variable MPC for trajectory tracking in batch processes
  publication-title: J. Process Control
– volume: 39
  start-page: 517
  year: 2009
  end-page: 529
  ident: bib0110
  article-title: Reinforcement learning versus model predictive control: a comparison on a power system problem
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
– year: 2014
  ident: bib0070
  article-title: Deterministic policy gradient algorithms
  publication-title: ICML
– volume: 48
  start-page: 144
  year: 2018
  end-page: 156
  ident: bib0015
  article-title: Deep learning for smart manufacturing: methods and applications
  publication-title: J. Manuf. Syst.
– volume: 521
  start-page: 436
  year: 2015
  ident: bib0005
  article-title: Deep learning
  publication-title: Nature
– year: 2014
  ident: 10.1016/j.jprocont.2018.11.004_bib0095
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 10.1016/j.jprocont.2018.11.004_bib0010
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 33
  start-page: 1767
  issue: 11
  year: 2010
  ident: 10.1016/j.jprocont.2018.11.004_bib0035
  article-title: Polymerization online monitoring
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201000265
– start-page: 1057
  year: 2000
  ident: 10.1016/j.jprocont.2018.11.004_bib0065
  article-title: Policy gradient methods for reinforcement learning with function approximation
– year: 2017
  ident: 10.1016/j.jprocont.2018.11.004_bib0115
– year: 2013
  ident: 10.1016/j.jprocont.2018.11.004_bib0055
– start-page: 265
  year: 2016
  ident: 10.1016/j.jprocont.2018.11.004_bib0105
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: OSDI, vol. 16
– year: 2015
  ident: 10.1016/j.jprocont.2018.11.004_bib0080
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.jprocont.2018.11.004_bib0005
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 9
  issue: 3
  year: 2009
  ident: 10.1016/j.jprocont.2018.11.004_bib0020
  article-title: Reinforcement learning and adaptive dynamic programming for feedback control
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2009.933854
– volume: 56
  start-page: 7322
  issue: 25
  year: 2017
  ident: 10.1016/j.jprocont.2018.11.004_bib0030
  article-title: Online optimal feedback control of polymerization reactors: application to polymerization of acrylamide–water–potassium persulfate (KPS) system
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01074
– year: 2015
  ident: 10.1016/j.jprocont.2018.11.004_bib0060
– year: 2015
  ident: 10.1016/j.jprocont.2018.11.004_bib0100
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.jprocont.2018.11.004_bib0075
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: vol. 1
  year: 1994
  ident: 10.1016/j.jprocont.2018.11.004_bib0040
– start-page: 345
  year: 1995
  ident: 10.1016/j.jprocont.2018.11.004_bib0090
  article-title: Reinforcement learning algorithm for partially observable Markov decision problems
– year: 2014
  ident: 10.1016/j.jprocont.2018.11.004_bib0070
  article-title: Deterministic policy gradient algorithms
  publication-title: ICML
– start-page: 201
  year: 2017
  ident: 10.1016/j.jprocont.2018.11.004_bib0025
  article-title: Deep reinforcement learning approaches for process control
– volume: 15
  start-page: 651
  issue: 6
  year: 2005
  ident: 10.1016/j.jprocont.2018.11.004_bib0045
  article-title: Latent variable MPC for trajectory tracking in batch processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2005.01.004
– volume: 34
  start-page: 1180
  issue: 5
  year: 2001
  ident: 10.1016/j.jprocont.2018.11.004_bib0085
  article-title: Kinetics and mechanisms of acrylamide polymerization from absolute, online monitoring of polymerization reaction
  publication-title: Macromolecules
  doi: 10.1021/ma000815s
– volume: 39
  start-page: 517
  issue: 2
  year: 2009
  ident: 10.1016/j.jprocont.2018.11.004_bib0110
  article-title: Reinforcement learning versus model predictive control: a comparison on a power system problem
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2008.2007630
– start-page: 1928
  year: 2016
  ident: 10.1016/j.jprocont.2018.11.004_bib0050
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: International Conference on Machine Learning
– volume: 48
  start-page: 144
  issue: Part C
  year: 2018
  ident: 10.1016/j.jprocont.2018.11.004_bib0015
  article-title: Deep learning for smart manufacturing: methods and applications
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.01.003
SSID ssj0003726
Score 2.5503054
Snippet •Deep reinforcement learning is a versatile tool for control problems.•A controller is developed based on DDPG framework for a polymerization reactor.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms Deep reinforcement learning
Polymerization
Process control
Title Continuous control of a polymerization system with deep reinforcement learning
URI https://dx.doi.org/10.1016/j.jprocont.2018.11.004
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADLaqssDAo4Aoj-oG1jRJL68bq4qqgOgClbpFyeUOtaqSqGoHFn47dnKBIoYOjIniKPI5ts9nfx_AvcNVmrmpsrSntUUnSxbmyaGlFB-kSRjIKKDh5JdpMJl5T3N_3oJRMwtDbZXG99c-vfLW5o5ttGmXi4X9ShUsjD4eGiWaYUiw24Rehzbd__xp8-BhRblWlbvo6Z0p4WV_SVGiyKmn0o36hOZpCNv-BKidoDM-hWOTLbJh_UFn0FJ5B04aJgZmfswOHO3ACp7DlCCnFvkWN_XMtKKzQrOElcXqg05o6tFLVqM4MyrFskypkq1VhaMqq5IhM4QS7xcwGz-8jSaW4U2wJPfExtKoZB0Gjh5knnJQJSnnicszLiUmg9wnlL8qz_Klh7oTxDKe-CpyAuGHPE34JbTzIldXwAKeiCR1tQyJzwhXTnJ8URQIrrNEOLoLfqOsWBpQceK2WMVN99gybpQck5JxxxGjkrtgf8uVNazGXgnRrEX8y0Bi9P17ZK__IXsDh3gl6razW2hv1lt1h3nIJu1VhtaDg-Hj82T6BWfD3vI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOfdBWpU8PXUMSnOeIUFEokKUgsUWJY1cglEQIhv77-hIHUXVg6Jroouh8vjuf774P4M2gPEnNhGvCEkLDmyVN5smuxjntJbHrMM_B4eRp6ARz62NhLxowqGdhsK1S-f7Kp5feWj3RlTb1YrnUP7GCJaOPJY1SmqHrnEAL0amsJrT6o3EQ7h0ydUvWtbLihQIHg8Kr7goDRZ5hW6XpdRHQU3G2_YlRB3FneAUXKmEk_eqfrqHBszZc1mQMRO3NNpwfIAveQIioU8tsJ8_1RHWjk1yQmBT5-hsvaarpS1IBOROsxpKU84JseAmlysqqIVGcEl-3MB--zwaBpqgTNEYtf6sJqWfhOobopRY3LNdOKI1NmlLGZD5IbQT6K1Mtm1lSfT4Sjcc29wzHt12axPQOmlme8XsgDo39ODEFc5HSSC4eo_JDnuNTkca-ITpg18qKmMIVR3qLdVQ3kK2iWskRKlkeOiKp5A7oe7miQtY4KuHXaxH9spFIuv8jsg__kH2F02A2nUSTUTh-hDP5xq-60J6gud3s-LNMS7bJizK7HxIb4aM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+control+of+a+polymerization+system+with+deep+reinforcement+learning&rft.jtitle=Journal+of+process+control&rft.au=Ma%2C+Yan&rft.au=Zhu%2C+Wenbo&rft.au=Benton%2C+Michael+G.&rft.au=Romagnoli%2C+Jos%C3%A9&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.eissn=1873-2771&rft.volume=75&rft.spage=40&rft.epage=47&rft_id=info:doi/10.1016%2Fj.jprocont.2018.11.004&rft.externalDocID=S0959152418304876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon