Adaptive evolutionary clustering

In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term t...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 28; no. 2; pp. 304 - 336
Main Authors Xu, Kevin S., Kliger, Mark, Hero III, Alfred O.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-012-0302-x

Cover

Loading…
Abstract In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naïve estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.
AbstractList In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naïve estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.
In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naive estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.
In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naïve estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.[PUBLICATION ABSTRACT]
Author Xu, Kevin S.
Kliger, Mark
Hero III, Alfred O.
Author_xml – sequence: 1
  givenname: Kevin S.
  surname: Xu
  fullname: Xu, Kevin S.
  email: xukevin@umich.edu
  organization: EECS Department, University of Michigan
– sequence: 2
  givenname: Mark
  surname: Kliger
  fullname: Kliger, Mark
  organization: Omek Interactive
– sequence: 3
  givenname: Alfred O.
  surname: Hero III
  fullname: Hero III, Alfred O.
  organization: EECS Department, University of Michigan
BookMark eNp9kE9LwzAYh4NMcJt-AG8DL16ib_63xzF0CgMvCt5C2qXS0TU1Scf89qbUgwyUHBLI83v5vc8MTVrXWoSuCdwRAHUfCEiSYSAUAwOKj2doSoRiWAn5PklvlnEsMgIXaBbCDgAEZTBFi-XWdLE-2IU9uKaPtWuN_1qUTR-i9XX7cYnOK9MEe_Vzz9Hb48Pr6glvXtbPq-UGl4znEVcFr2jFhJKQFWWeb4Wlhcy5qWRmOBdCysJyy7dC8IylQ9J_aVI7plihgM3R7Ti38-6ztyHqfR1K2zSmta4PmvCcMyoVFQm9OUF3rvdtapcoxQWVUgwUGanSuxC8rXTn631aThPQgzM9OtPJmR6c6WPKqJNMWUczSIne1M2_STomQzdYs_5Xpz9D3-kXgMA
CitedBy_id crossref_primary_10_1371_journal_pone_0137502
crossref_primary_10_1109_JSTSP_2014_2310294
crossref_primary_10_1016_j_dsp_2021_103192
crossref_primary_10_1007_s00170_023_12251_x
crossref_primary_10_1214_19_EJS1533
crossref_primary_10_1007_s10462_022_10383_2
crossref_primary_10_1016_j_apm_2019_12_004
crossref_primary_10_1038_s41467_024_54280_4
crossref_primary_10_1007_s11336_023_09926_5
crossref_primary_10_1016_j_future_2021_06_028
crossref_primary_10_1016_j_ins_2024_120880
crossref_primary_10_1016_j_patcog_2016_12_003
crossref_primary_10_1109_TKDE_2019_2954869
crossref_primary_10_1016_j_knosys_2016_07_021
crossref_primary_10_1016_j_amc_2019_124919
crossref_primary_10_1016_j_eswa_2021_114807
crossref_primary_10_1016_j_rinp_2018_04_045
crossref_primary_10_1007_s10618_016_0454_1
crossref_primary_10_3390_a15030076
crossref_primary_10_1016_j_comcom_2017_04_009
crossref_primary_10_1109_TSIPN_2021_3052047
crossref_primary_10_3390_en12142668
crossref_primary_10_1038_srep31454
crossref_primary_10_3389_fnins_2019_01448
crossref_primary_10_1016_j_knosys_2021_106961
crossref_primary_10_1016_j_neucom_2021_01_004
crossref_primary_10_1109_TNNLS_2022_3149285
crossref_primary_10_1109_JSTSP_2018_2877478
crossref_primary_10_1109_TCYB_2022_3167711
crossref_primary_10_1016_j_clinph_2017_06_247
crossref_primary_10_1016_j_ins_2016_11_001
crossref_primary_10_1016_j_ecosta_2017_03_004
crossref_primary_10_1007_s00500_017_2708_2
crossref_primary_10_1016_j_patrec_2016_08_012
crossref_primary_10_1016_j_energy_2018_01_175
crossref_primary_10_1155_2023_7493623
crossref_primary_10_1109_TSIPN_2019_2942176
crossref_primary_10_3390_app12083795
crossref_primary_10_1109_COMST_2016_2610963
crossref_primary_10_1007_s11227_017_2063_1
crossref_primary_10_1109_TPAMI_2018_2833467
crossref_primary_10_1016_j_ipm_2015_05_007
crossref_primary_10_1109_TKDE_2014_2373411
crossref_primary_10_1016_j_ins_2015_04_043
crossref_primary_10_1016_j_datak_2018_07_003
crossref_primary_10_1038_s41598_024_74361_0
crossref_primary_10_1109_TBME_2018_2854676
crossref_primary_10_1007_s13042_021_01363_z
crossref_primary_10_1016_j_patcog_2018_05_028
crossref_primary_10_1007_s00500_018_3289_4
crossref_primary_10_1007_s10489_022_04231_7
crossref_primary_10_1007_s10489_016_0838_3
crossref_primary_10_3917_fina_412_0007
crossref_primary_10_1109_TCYB_2022_3168343
crossref_primary_10_1016_j_jpdc_2022_09_013
crossref_primary_10_1002_minf_202000173
crossref_primary_10_1007_s00500_018_3585_z
crossref_primary_10_1089_brain_2014_0300
crossref_primary_10_1016_j_mlwa_2021_100084
Cites_doi 10.1145/1835804.1835880
10.2139/ssrn.1787577
10.1137/1.9781611972788.20
10.1002/nav.3800020109
10.1145/1148170.1148241
10.1080/01621459.1971.10482356
10.1145/1281192.1281269
10.1109/TSP.2010.2053029
10.1145/37401.37406
10.1109/ICASSP.2010.5495655
10.1145/1150402.1150467
10.1007/BF02294245
10.1137/1.9781611972740.14
10.1109/ICDMW.2008.93
10.1002/0471221546
10.1109/ASONAM.2010.17
10.1145/1281192.1281266
10.1145/1401890.1401972
10.1016/S0927-5398(03)00007-0
10.1142/S0219720009004114
10.1007/s13278-012-0058-8
10.1073/pnas.0601602103
10.1016/0377-0427(87)90125-7
10.1016/j.patcog.2009.06.001
10.1073/pnas.0900282106
10.2202/1544-6115.1175
10.1109/WI.2006.118
10.1126/science.1184819
10.1007/s11222-007-9033-z
10.1145/1835804.1835877
10.1007/978-0-387-21606-5
10.1109/34.868688
10.1145/1835804.1835940
10.1145/1014052.1014129
10.1137/S0097539702418498
10.1007/s10994-010-5214-7
10.1137/1.9781611972771.12
10.1093/bioinformatics/btl242
ContentType Journal Article
Copyright The Author(s) 2013
The Author(s) 2014
Copyright_xml – notice: The Author(s) 2013
– notice: The Author(s) 2014
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-012-0302-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 336
ExternalDocumentID 3174173431
10_1007_s10618_012_0302_x
Genre Feature
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c349t-fb4f2f357608bc99d5e2b694af68a445566be4e4d554838381e2bca756373b703
IEDL.DBID 8FG
ISSN 1384-5810
IngestDate Fri Jul 11 05:32:50 EDT 2025
Sat Aug 23 14:39:53 EDT 2025
Tue Jul 01 00:40:29 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Evolutionary clustering
Tracking
Similarity measures
Clustering algorithms
Adaptive filtering
Shrinkage estimation
Data smoothing
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-fb4f2f357608bc99d5e2b694af68a445566be4e4d554838381e2bca756373b703
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1474526655
PQPubID 43030
PageCount 33
ParticipantIDs proquest_miscellaneous_1494326725
proquest_journals_1474526655
crossref_primary_10_1007_s10618_012_0302_x
crossref_citationtrail_10_1007_s10618_012_0302_x
springer_journals_10_1007_s10618_012_0302_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140300
2014-3-00
20140301
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 3
  year: 2014
  text: 20140300
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2014
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HastieTTibshiraniRFriedmanJThe elements of statistical learning: data mining, inference, and prediction2001New YorkSpringer10.1007/978-0-387-21606-5
Reynolds CW (1987) Flocks, herds, and schools: A distributed behavioral model. Proceedings of 14th annual conference on computer graphics and interactive techniques, Anaheim
HaykinSKalman filtering and neural networks2001New YorkWiley-Interscience10.1002/0471221546
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability
Carmi A, Septier F, Godsill SJ (2009) The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. Proceedings of the 12th international conference on information fusion, Seattle
LütkepohlHHandbook of matrices1997New YorkWiley
Infochimps-WWW (2012) NASDAQ Exchange Daily 1970–2010 Open, Close, High, Low and Volume data set. http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume
von LuxburgUA tutorial on spectral clusteringStat Comput200717439541610.1007/s11222-007-9033-z2409803
RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Computat Appl Math1987205365
MIT-WWW (2005) MIT academic calendar 2004–2005. http://web.mit.edu/registrar/www/calendar0405.html
EagleNPentlandALazerDInferring friendship network structure by using mobile phone dataProc Nat Acad Sci200910636152741527810.1073/pnas.0900282106
CharikarMChekuriCFederTMotwaniRIncremental clustering and dynamic information retrievalSIAM J Comput20043361417144010.1137/S00975397024184981101.686052112724
KuhnHWThe Hungarian method for the assignment problemNav Res Logist Quart195521–2839710.1002/nav.3800020109
LinYRChiYZhuSSundaramHTsengBLAnalyzing communities and their evolutions in dynamic social networksACM Trans Knowl Discov Data200932810.1145/1514888.1514891
Wang Y, Liu SX, Feng J, Zhou L (2007) Mining naturally smooth evolution of clusters from dynamic data. Proceedings of SIAM conference on data mining
MuchaPJRichardsonTMaconKPorterMAOnnelaJPCommunity structure in time-dependent, multiscale, and multiplex networksScience2010328598087687810.1126/science.11848191226.910562662590
Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia
NingHXuWChiYGongYHuangTSIncremental spectral clustering by efficiently updating the eigen-systemPattern Recog201043111312710.1016/j.patcog.2009.06.0011176.68186
Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background knowledge. Proceedings of the 18th international conference on machine learning, pp 577–584
Wang X, Davidson I (2010) Flexible constrained spectral clustering. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 563–572
Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. Proceedings of 13th ACM SIGKDD international conference on knowledge discovery and data mining
Gretton A, Borgwardt KM, Rasch M, Schölkopf B, Smola AJ (2007) A kernel approach to comparing distributions. Proceedings of the 22nd AAAI conference on artificial intelligence
HarveyACForecasting, structural time series models and the Kalman filter1989CambridgeCambridge University Press
Bródka P, Saganowski S, Kazienko P (2012) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min. doi: 10.1007/s13278-012-0058-8
Gupta C, Grossman R (2004) GenIc: a single pass generalized incremental algorithm for clustering. Proceedings SIAM conference on data mining, Lake Buena Vista
ChiYSongXZhouDHinoKTsengBLOn evolutionary spectral clusteringACM Trans Knowl Discov Data2009341710.1145/1631162.1631165
Xu KS, Kliger M, Hero AO III (2010) Evolutionary spectral clustering with adaptive forgetting factor. Proceeding of IEEE international conference on acoustics, speech, and signal processing
RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc197166336846850
AndersonTWAn introduction to multivariate statistical analysis20033HobokenWiley1039.62044
NASDAQ-WWW (2012) NASDAQ Companies. http://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ
Rosswog J, Ghose K (2008) Detecting and tracking spatio-temporal clusters with adaptive history filtering. Proceedings of the 8th IEEE international conference on data mining workshops, Pisa
Parker C (2007) Boids pseudocode. http://www.vergenet.net/conrad/boids/pseudocode.html
YangTChiYZhuSGongYJinRDetecting communities and their evolutions in dynamic social networks—a Bayesian approachMach Learn201182215718910.1007/s10994-010-5214-71237.911893108191
Zhang J, Song Y, Chen G, Zhang C (2009) On-line evolutionary exponential family mixture. Proceedings of the 21st international joint conference on artificial intelligence, Pasadena
ShiJMalikJNormalized cuts and image segmentationIEEE Trans Pattern Anal Mach Intell200022888890510.1109/34.868688
Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining
Gavrilov M, Anguelov D, Indyk P, Motwani R (2000) Mining the stock market: Which measure is best? Proceedings of 6th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, New York, pp 487–496
NgAYJordanMIWeissYOn spectral clustering: analysis and an algorithmAdv Neural Inf Process Syst200114849856
Xu T, Zhang Z, Yu PS, Long B (2008a) Dirichlet process based evolutionary clustering. Proceedings of the 8th IEEE international conference on data mining
Ahmed A, Xing EP (2008) Dynamic non-parametric mixture models and the recurrent chinese restaurant process: with applications to evolutionary clustering. Proceedings of the SIAM international conference on data mining, Atlanta
FennDJPorterMAMcDonaldMWilliamsSJohnsonNFJonesNSDynamic communities in multichannel data: an application to the foreign exchange market during the 2007–2008 credit crisisChaos200919033119
NewmanMEJModularity and community structure in networksProc Nat Acad Sci20061032385778582
Yahoo-WWW (2012) IXIC Historical Prices|NASDAQ composite stock—Yahoo! Finance. http://finance.yahoo.com/q/hp?s=IXIC+Historical+Prices
Zhang J, Song Y, Zhang C, Liu S (2010) Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining
LedoitOWolfMImproved estimation of the covariance matrix of stock returns with an application to portfolio selectionJ Empir Financ200310560362110.1016/S0927-5398(03)00007-0
MilliganGWCooperMCAn examination of procedures for determining the number of clusters in a data setPsychometrika198550215917910.1007/BF02294245
Ji X, Xu W (2006) Document clustering with prior knowledge. Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, New York, pp 405–412
SchäferJStrimmerKA shrinkage approach to large-scale covariance matrix estimation and implications for functional genomicsStat Appl Genet Mol Biol200541322183942
Sun J, Papadimitriou S, Yu PS, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-evolving graphs. Proceedings of 13th ACM SIGKDD conference on knowledge discovery and data mining
Falkowski T, Bartelheimer J, Spiliopoulou M (2006) Mining and visualizing the evolution of subgroups in social networks. Proceedings of the IEEE/WIC/ACM international conference on web intelligence, Hong Kong
Chung FRK (1997) Spectral graph theory. American Mathematical Society, Providence
ChenYWieselAEldarYCShrinkage algorithms for MMSE covariance estimationIEEE Trans Signal Process201058105016502910.1109/TSP.2010.20530292722661
Li Y, Han J, Yang J (2004) Clustering moving objects. Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining
Hossain MS, Tadepalli S, Watson LT, Davidson I, Helm RF, Ramakrishnan N (2010) Unifying dependent clustering and disparate clustering for non-homogeneous data. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 593–602
Mankad S, Michailidis G, Kirilenko A (2011) Smooth plaid models: a dynamic clustering algorithm with application to electronic financial markets. Tech Rep. http://ssrn.com/abstract=1787577
Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. Proceedings of international conference on advanced social network analysis and mining, pp 176–183
Xu T, Zhang Z, Yu PS, Long B (2008b) Evolutionary clustering by hierarchical Dirichlet process with hidden Markov state. Proceedings of the 8th IEEE international conference on data mining
TadepalliSRamakrishnanNWatsonLTMishraBHelmRFGene expression time courses by analyzing cluster dynamicsJ Bioinforma Comput Biol20097233935610.1142/S0219720009004114
PJ Mucha (302_CR32) 2010; 328
302_CR41
302_CR40
302_CR46
H Lütkepohl (302_CR27) 1997
302_CR44
AC Harvey (302_CR17) 1989
302_CR49
302_CR47
GW Milligan (302_CR30) 1985; 50
TW Anderson (302_CR2) 2003
HW Kuhn (302_CR23) 1955; 2
S Tadepalli (302_CR45) 2009; 7
YR Lin (302_CR26) 2009; 3
O Ledoit (302_CR24) 2003; 10
302_CR31
302_CR35
302_CR34
T Hastie (302_CR18) 2001
302_CR33
DJ Fenn (302_CR12) 2009; 19
302_CR39
302_CR38
302_CR37
302_CR29
M Charikar (302_CR6) 2004; 33
Y Chen (302_CR7) 2010; 58
N Eagle (302_CR10) 2009; 106
302_CR20
S Haykin (302_CR19) 2001
302_CR22
302_CR21
T Yang (302_CR56) 2011; 82
302_CR28
302_CR25
U Luxburg von (302_CR48) 2007; 17
302_CR9
J Shi (302_CR43) 2000; 22
Y Chi (302_CR8) 2009; 3
302_CR53
302_CR52
302_CR51
302_CR50
302_CR4
302_CR13
302_CR57
302_CR3
302_CR11
H Ning (302_CR36) 2010; 43
302_CR55
302_CR1
302_CR54
302_CR16
302_CR15
302_CR5
302_CR14
302_CR58
J Schäfer (302_CR42) 2005; 4
References_xml – reference: Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. Proceedings of international conference on advanced social network analysis and mining, pp 176–183
– reference: Ji X, Xu W (2006) Document clustering with prior knowledge. Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, New York, pp 405–412
– reference: Mankad S, Michailidis G, Kirilenko A (2011) Smooth plaid models: a dynamic clustering algorithm with application to electronic financial markets. Tech Rep. http://ssrn.com/abstract=1787577
– reference: Gretton A, Borgwardt KM, Rasch M, Schölkopf B, Smola AJ (2007) A kernel approach to comparing distributions. Proceedings of the 22nd AAAI conference on artificial intelligence
– reference: Bródka P, Saganowski S, Kazienko P (2012) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min. doi: 10.1007/s13278-012-0058-8
– reference: HarveyACForecasting, structural time series models and the Kalman filter1989CambridgeCambridge University Press
– reference: NingHXuWChiYGongYHuangTSIncremental spectral clustering by efficiently updating the eigen-systemPattern Recog201043111312710.1016/j.patcog.2009.06.0011176.68186
– reference: AndersonTWAn introduction to multivariate statistical analysis20033HobokenWiley1039.62044
– reference: Wang X, Davidson I (2010) Flexible constrained spectral clustering. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 563–572
– reference: NgAYJordanMIWeissYOn spectral clustering: analysis and an algorithmAdv Neural Inf Process Syst200114849856
– reference: Xu KS, Kliger M, Hero AO III (2010) Evolutionary spectral clustering with adaptive forgetting factor. Proceeding of IEEE international conference on acoustics, speech, and signal processing
– reference: Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia
– reference: RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Computat Appl Math1987205365
– reference: HaykinSKalman filtering and neural networks2001New YorkWiley-Interscience10.1002/0471221546
– reference: Carmi A, Septier F, Godsill SJ (2009) The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. Proceedings of the 12th international conference on information fusion, Seattle
– reference: ShiJMalikJNormalized cuts and image segmentationIEEE Trans Pattern Anal Mach Intell200022888890510.1109/34.868688
– reference: Parker C (2007) Boids pseudocode. http://www.vergenet.net/conrad/boids/pseudocode.html
– reference: NASDAQ-WWW (2012) NASDAQ Companies. http://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ
– reference: LedoitOWolfMImproved estimation of the covariance matrix of stock returns with an application to portfolio selectionJ Empir Financ200310560362110.1016/S0927-5398(03)00007-0
– reference: Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. Proceedings of 13th ACM SIGKDD international conference on knowledge discovery and data mining
– reference: Yahoo-WWW (2012) IXIC Historical Prices|NASDAQ composite stock—Yahoo! Finance. http://finance.yahoo.com/q/hp?s=IXIC+Historical+Prices
– reference: Gavrilov M, Anguelov D, Indyk P, Motwani R (2000) Mining the stock market: Which measure is best? Proceedings of 6th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, New York, pp 487–496
– reference: MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability
– reference: Xu T, Zhang Z, Yu PS, Long B (2008a) Dirichlet process based evolutionary clustering. Proceedings of the 8th IEEE international conference on data mining
– reference: MuchaPJRichardsonTMaconKPorterMAOnnelaJPCommunity structure in time-dependent, multiscale, and multiplex networksScience2010328598087687810.1126/science.11848191226.910562662590
– reference: Wang Y, Liu SX, Feng J, Zhou L (2007) Mining naturally smooth evolution of clusters from dynamic data. Proceedings of SIAM conference on data mining
– reference: Zhang J, Song Y, Chen G, Zhang C (2009) On-line evolutionary exponential family mixture. Proceedings of the 21st international joint conference on artificial intelligence, Pasadena
– reference: MIT-WWW (2005) MIT academic calendar 2004–2005. http://web.mit.edu/registrar/www/calendar0405.html
– reference: Reynolds CW (1987) Flocks, herds, and schools: A distributed behavioral model. Proceedings of 14th annual conference on computer graphics and interactive techniques, Anaheim
– reference: LinYRChiYZhuSSundaramHTsengBLAnalyzing communities and their evolutions in dynamic social networksACM Trans Knowl Discov Data200932810.1145/1514888.1514891
– reference: CharikarMChekuriCFederTMotwaniRIncremental clustering and dynamic information retrievalSIAM J Comput20043361417144010.1137/S00975397024184981101.686052112724
– reference: Zhang J, Song Y, Zhang C, Liu S (2010) Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining
– reference: Hossain MS, Tadepalli S, Watson LT, Davidson I, Helm RF, Ramakrishnan N (2010) Unifying dependent clustering and disparate clustering for non-homogeneous data. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 593–602
– reference: HastieTTibshiraniRFriedmanJThe elements of statistical learning: data mining, inference, and prediction2001New YorkSpringer10.1007/978-0-387-21606-5
– reference: SchäferJStrimmerKA shrinkage approach to large-scale covariance matrix estimation and implications for functional genomicsStat Appl Genet Mol Biol200541322183942
– reference: YangTChiYZhuSGongYJinRDetecting communities and their evolutions in dynamic social networks—a Bayesian approachMach Learn201182215718910.1007/s10994-010-5214-71237.911893108191
– reference: Falkowski T, Bartelheimer J, Spiliopoulou M (2006) Mining and visualizing the evolution of subgroups in social networks. Proceedings of the IEEE/WIC/ACM international conference on web intelligence, Hong Kong
– reference: NewmanMEJModularity and community structure in networksProc Nat Acad Sci20061032385778582
– reference: von LuxburgUA tutorial on spectral clusteringStat Comput200717439541610.1007/s11222-007-9033-z2409803
– reference: ChenYWieselAEldarYCShrinkage algorithms for MMSE covariance estimationIEEE Trans Signal Process201058105016502910.1109/TSP.2010.20530292722661
– reference: Rosswog J, Ghose K (2008) Detecting and tracking spatio-temporal clusters with adaptive history filtering. Proceedings of the 8th IEEE international conference on data mining workshops, Pisa
– reference: Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background knowledge. Proceedings of the 18th international conference on machine learning, pp 577–584
– reference: FennDJPorterMAMcDonaldMWilliamsSJohnsonNFJonesNSDynamic communities in multichannel data: an application to the foreign exchange market during the 2007–2008 credit crisisChaos200919033119
– reference: KuhnHWThe Hungarian method for the assignment problemNav Res Logist Quart195521–2839710.1002/nav.3800020109
– reference: EagleNPentlandALazerDInferring friendship network structure by using mobile phone dataProc Nat Acad Sci200910636152741527810.1073/pnas.0900282106
– reference: MilliganGWCooperMCAn examination of procedures for determining the number of clusters in a data setPsychometrika198550215917910.1007/BF02294245
– reference: Sun J, Papadimitriou S, Yu PS, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-evolving graphs. Proceedings of 13th ACM SIGKDD conference on knowledge discovery and data mining
– reference: LütkepohlHHandbook of matrices1997New YorkWiley
– reference: Gupta C, Grossman R (2004) GenIc: a single pass generalized incremental algorithm for clustering. Proceedings SIAM conference on data mining, Lake Buena Vista
– reference: Li Y, Han J, Yang J (2004) Clustering moving objects. Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining
– reference: Xu T, Zhang Z, Yu PS, Long B (2008b) Evolutionary clustering by hierarchical Dirichlet process with hidden Markov state. Proceedings of the 8th IEEE international conference on data mining
– reference: RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc197166336846850
– reference: Chung FRK (1997) Spectral graph theory. American Mathematical Society, Providence
– reference: TadepalliSRamakrishnanNWatsonLTMishraBHelmRFGene expression time courses by analyzing cluster dynamicsJ Bioinforma Comput Biol20097233935610.1142/S0219720009004114
– reference: Ahmed A, Xing EP (2008) Dynamic non-parametric mixture models and the recurrent chinese restaurant process: with applications to evolutionary clustering. Proceedings of the SIAM international conference on data mining, Atlanta
– reference: Infochimps-WWW (2012) NASDAQ Exchange Daily 1970–2010 Open, Close, High, Low and Volume data set. http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume
– reference: ChiYSongXZhouDHinoKTsengBLOn evolutionary spectral clusteringACM Trans Knowl Discov Data2009341710.1145/1631162.1631165
– reference: Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining
– ident: 302_CR20
  doi: 10.1145/1835804.1835880
– ident: 302_CR29
  doi: 10.2139/ssrn.1787577
– volume: 3
  start-page: 8
  issue: 2
  year: 2009
  ident: 302_CR26
  publication-title: ACM Trans Knowl Discov Data
– ident: 302_CR55
– ident: 302_CR1
  doi: 10.1137/1.9781611972788.20
– ident: 302_CR4
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 302_CR23
  publication-title: Nav Res Logist Quart
  doi: 10.1002/nav.3800020109
– ident: 302_CR22
  doi: 10.1145/1148170.1148241
– ident: 302_CR35
– ident: 302_CR38
  doi: 10.1080/01621459.1971.10482356
– ident: 302_CR47
  doi: 10.1145/1281192.1281269
– volume: 58
  start-page: 5016
  issue: 10
  year: 2010
  ident: 302_CR7
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2010.2053029
– ident: 302_CR39
  doi: 10.1145/37401.37406
– ident: 302_CR31
– ident: 302_CR52
  doi: 10.1109/ICASSP.2010.5495655
– ident: 302_CR5
  doi: 10.1145/1150402.1150467
– volume: 50
  start-page: 159
  issue: 2
  year: 1985
  ident: 302_CR30
  publication-title: Psychometrika
  doi: 10.1007/BF02294245
– volume: 3
  start-page: 17
  issue: 4
  year: 2009
  ident: 302_CR8
  publication-title: ACM Trans Knowl Discov Data
– ident: 302_CR16
  doi: 10.1137/1.9781611972740.14
– ident: 302_CR49
– ident: 302_CR40
  doi: 10.1109/ICDMW.2008.93
– volume-title: Handbook of matrices
  year: 1997
  ident: 302_CR27
– volume-title: Kalman filtering and neural networks
  year: 2001
  ident: 302_CR19
  doi: 10.1002/0471221546
– ident: 302_CR21
– ident: 302_CR9
– ident: 302_CR14
  doi: 10.1109/ASONAM.2010.17
– ident: 302_CR44
  doi: 10.1145/1281192.1281266
– ident: 302_CR46
  doi: 10.1145/1401890.1401972
– volume: 19
  start-page: 119
  issue: 033
  year: 2009
  ident: 302_CR12
  publication-title: Chaos
– volume: 10
  start-page: 603
  issue: 5
  year: 2003
  ident: 302_CR24
  publication-title: J Empir Financ
  doi: 10.1016/S0927-5398(03)00007-0
– volume: 7
  start-page: 339
  issue: 2
  year: 2009
  ident: 302_CR45
  publication-title: J Bioinforma Comput Biol
  doi: 10.1142/S0219720009004114
– ident: 302_CR3
  doi: 10.1007/s13278-012-0058-8
– ident: 302_CR34
  doi: 10.1073/pnas.0601602103
– volume-title: Forecasting, structural time series models and the Kalman filter
  year: 1989
  ident: 302_CR17
– ident: 302_CR41
  doi: 10.1016/0377-0427(87)90125-7
– ident: 302_CR53
– volume-title: An introduction to multivariate statistical analysis
  year: 2003
  ident: 302_CR2
– ident: 302_CR57
– volume: 43
  start-page: 113
  issue: 1
  year: 2010
  ident: 302_CR36
  publication-title: Pattern Recog
  doi: 10.1016/j.patcog.2009.06.001
– ident: 302_CR37
– ident: 302_CR33
– volume: 106
  start-page: 15274
  issue: 36
  year: 2009
  ident: 302_CR10
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.0900282106
– ident: 302_CR28
– volume: 4
  start-page: 32
  issue: 1
  year: 2005
  ident: 302_CR42
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1175
– ident: 302_CR11
  doi: 10.1109/WI.2006.118
– volume: 328
  start-page: 876
  issue: 5980
  year: 2010
  ident: 302_CR32
  publication-title: Science
  doi: 10.1126/science.1184819
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 302_CR48
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9033-z
– ident: 302_CR50
  doi: 10.1145/1835804.1835877
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2001
  ident: 302_CR18
  doi: 10.1007/978-0-387-21606-5
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 302_CR43
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– ident: 302_CR58
  doi: 10.1145/1835804.1835940
– ident: 302_CR25
  doi: 10.1145/1014052.1014129
– ident: 302_CR54
– volume: 33
  start-page: 1417
  issue: 6
  year: 2004
  ident: 302_CR6
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539702418498
– volume: 82
  start-page: 157
  issue: 2
  year: 2011
  ident: 302_CR56
  publication-title: Mach Learn
  doi: 10.1007/s10994-010-5214-7
– ident: 302_CR51
  doi: 10.1137/1.9781611972771.12
– ident: 302_CR13
– ident: 302_CR15
  doi: 10.1093/bioinformatics/btl242
SSID ssj0005230
Score 2.4096143
Snippet In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 304
SubjectTerms Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Clustering
Computer Science
Data Mining and Knowledge Discovery
Data smoothing
Datasets
Estimates
Experiments
Information Storage and Retrieval
Noise
Physics
Signal processing
Statistics for Engineering
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iCF58VMVqlRU8KYHdzWOTYxFL8eDJQm9LnqeyLX2I_nsnu9m2igqeM0lgMpN8w3yZQehOKs69pRaDM3FMuWEYwmaLXZF5JhRJraoJsi98OKLPYzaO_7gXLdu9TUnWN_XWZzeeBeJVjsEwcwzAcY9B6B7MepT3t3gdpPkaLChmIlunMn9a4utjtEGY35Ki9VszOEaHESQm_eZUT9COqzroqG3AkER_7KD9mr9pFqco6Vs1CzdX4t6iMan5R2Imq1AIATY5Q6PB0-vjEMfmB9gQKpfYa-pzTyAcSIU2Ulrmcs0lVZ4LRSkDGKYdddQCHhAQZooMxo0qGCcF0eDH52i3mlbuAiWhXo9LvZKEOaoF15xlHqCWzYTURJguSlstlCZWBg8NKiblpqZxUFwJiiuD4sr3LrpfT5k1ZTH-Eu61qi2jhywg5ChCd3POWBfdrofBtkPCQlVuugoykgK8LHKQeWiPZGuJ3za8_Jf0FToAFEQbYlkP7S7nK3cNSGOpb2rL-gSf5Me7
  priority: 102
  providerName: Springer Nature
Title Adaptive evolutionary clustering
URI https://link.springer.com/article/10.1007/s10618-012-0302-x
https://www.proquest.com/docview/1474526655
https://www.proquest.com/docview/1494326725
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66vfjiXZzOUcEnJdhLkqZPUmUXFIaIg_lUkiZ9Gt3cRea_96RNtym4p0KTJvTc8iXn5ByEbiLBWKaIwqBMDBOWUgzbZoV16GWUi8BVogiQ7bPegDwP6dAeuM1sWGVlEwtDrcapOSO_90hoqmEzSh8mn9hUjTLeVVtCYxfVPWgzEs473Y0Qj6C8JcwJptxbeTXLq3PMM2FcPgYx9_Hy97q0Bpt__KPFstM5RPsWLzpxyeAjtKPzY3RQ1WJwrGqeICdWYmJMl6O_rDSJ6beTjhYmEwIMfYoGnfb7Uw_b6gc4DUg0x5kkmZ8FsB9wuUyjSFHtSxYRkTEuCKGAw6QmmigABBz2mdyD9lSElAVhIEGRz1AtH-f6HDkmYY92MxEFVBPJmWTUywBrKY9HMuBpA7nVvyepTQ1uKlSMknVSY0OuBMiVGHIlywa6XX0yKfNibOvcrAiaWBWZJWuGNtD1qhmE23gsRK7HC9MnIoAvQx_63FWM2Bjivwkvtk94ifYA95AylKyJavPpQl8BtpjLViFALVSPux8vbXg-tvuvb_B24Mc_-_vL7A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjihrkOACsmjiJfYBIQSUAqUnkLgFO3ZOVVtKy_JTfCPjJmkBCW6cPbHl8SzPmfEMwJ7SQmSWWYLKJAgTKSd4bbbExWHGpaZVq4cJsk1Rv2fXD_xhAj7KtzA-rbK0iUNDbTup_0d-FLLYd8MWnJ90n4jvGuWjq2ULjVwsbtz7K17Zno-vzvF896OodnF3VidFVwGSUqb6JDMsizKKOLsqTaqU5S4yQjGdCakZ44hvjGOOWXS0Eu9vMsTxVMdc0JgaVBCcdxKmGaXKpxDK2uWXlBKav0qWjHAZjqKo-VM9Efq0sYigWkXk7bsfHIPbH_HYoZurLcBcgU-D01ygFmHCtZdgvuz9EBSmYBmCU6u73lQG7qWQXt17D9LWwFdewKlX4P5f-LIKU-1O261B4AsEuWqmFeWOGSmM4GGG2M6GUhkq0wpUy70naVGK3HfEaCXjIsqeXQmyK_HsSt4qcDD6pJvX4fiLeLNkaFKo5HMyFqAK7I6GUZl8hES3XWfgaRRDPBtHSHNYHsSXKX5bcP3vBXdgpn5320gaV82bDZhFzMXyNLZNmOr3Bm4LcU3fbA-FKYDH_5beT8ZMA7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSIgLb8R4FgkuoIi2eTQ9IISA8RTiABK3kjTJadoGbDD-Gr8OZ203QIIb56SJ4nx2vtSODbCdKiGcYYagMgnCRM4JXpsNsUnkuFQ0NGoQIHsjzu_Z5QN_GIOP6i2MD6usbOLAUJt27v-R70cs8dWwBef7rgyLuD1pHHaeiK8g5T2tVTmNAiJX9v0Nr28vBxcnuNc7cdw4vTs-J2WFAZJTlnaJ08zFjiLnDqXO09RwG2uRMuWEVIxx5DraMssMHroS73IywvZcJVzQhGpUFhx3HCYSKkNfPUE2zr6El9DihbJkhMto6FEtnu2JyIeQxQRVLCb972fiiOj-8M0OjrzGLEyXXDU4KsA1B2O2NQ8zVR2IoDQLCxAcGdXxZjOwryWS1fN7kDd7PgsDDr0I9_8ilyWotdotuwyBTxZkQ6dSyi3TUmjBI4c8z0Qy1VTmdQirtWd5mZbcV8doZqOEyl5cGYor8-LK-nXYHX7SKXJy_NV5rRJoVqrnSzYCUx22hs2oWN5bolq23fN9UobcNomxz161EV-G-G3Clb8n3IRJxG12fXFztQpTSL9YEdG2BrXuc8-uI8Xp6o0BlgJ4_G_wfgLgCQfd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+evolutionary+clustering&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Xu%2C+Kevin+S&rft.au=Kliger%2C+Mark&rft.au=Hero%2C+Alfred+O&rft.date=2014-03-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=28&rft.issue=2&rft.spage=304&rft.epage=336&rft_id=info:doi/10.1007%2Fs10618-012-0302-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon