Adaptive evolutionary clustering
In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term t...
Saved in:
Published in | Data mining and knowledge discovery Vol. 28; no. 2; pp. 304 - 336 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.03.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-012-0302-x |
Cover
Loading…
Abstract | In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naïve estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios. |
---|---|
AbstractList | In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naïve estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios. In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naive estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios. In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naïve estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.[PUBLICATION ABSTRACT] |
Author | Xu, Kevin S. Kliger, Mark Hero III, Alfred O. |
Author_xml | – sequence: 1 givenname: Kevin S. surname: Xu fullname: Xu, Kevin S. email: xukevin@umich.edu organization: EECS Department, University of Michigan – sequence: 2 givenname: Mark surname: Kliger fullname: Kliger, Mark organization: Omek Interactive – sequence: 3 givenname: Alfred O. surname: Hero III fullname: Hero III, Alfred O. organization: EECS Department, University of Michigan |
BookMark | eNp9kE9LwzAYh4NMcJt-AG8DL16ib_63xzF0CgMvCt5C2qXS0TU1Scf89qbUgwyUHBLI83v5vc8MTVrXWoSuCdwRAHUfCEiSYSAUAwOKj2doSoRiWAn5PklvlnEsMgIXaBbCDgAEZTBFi-XWdLE-2IU9uKaPtWuN_1qUTR-i9XX7cYnOK9MEe_Vzz9Hb48Pr6glvXtbPq-UGl4znEVcFr2jFhJKQFWWeb4Wlhcy5qWRmOBdCysJyy7dC8IylQ9J_aVI7plihgM3R7Ti38-6ztyHqfR1K2zSmta4PmvCcMyoVFQm9OUF3rvdtapcoxQWVUgwUGanSuxC8rXTn631aThPQgzM9OtPJmR6c6WPKqJNMWUczSIne1M2_STomQzdYs_5Xpz9D3-kXgMA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0137502 crossref_primary_10_1109_JSTSP_2014_2310294 crossref_primary_10_1016_j_dsp_2021_103192 crossref_primary_10_1007_s00170_023_12251_x crossref_primary_10_1214_19_EJS1533 crossref_primary_10_1007_s10462_022_10383_2 crossref_primary_10_1016_j_apm_2019_12_004 crossref_primary_10_1038_s41467_024_54280_4 crossref_primary_10_1007_s11336_023_09926_5 crossref_primary_10_1016_j_future_2021_06_028 crossref_primary_10_1016_j_ins_2024_120880 crossref_primary_10_1016_j_patcog_2016_12_003 crossref_primary_10_1109_TKDE_2019_2954869 crossref_primary_10_1016_j_knosys_2016_07_021 crossref_primary_10_1016_j_amc_2019_124919 crossref_primary_10_1016_j_eswa_2021_114807 crossref_primary_10_1016_j_rinp_2018_04_045 crossref_primary_10_1007_s10618_016_0454_1 crossref_primary_10_3390_a15030076 crossref_primary_10_1016_j_comcom_2017_04_009 crossref_primary_10_1109_TSIPN_2021_3052047 crossref_primary_10_3390_en12142668 crossref_primary_10_1038_srep31454 crossref_primary_10_3389_fnins_2019_01448 crossref_primary_10_1016_j_knosys_2021_106961 crossref_primary_10_1016_j_neucom_2021_01_004 crossref_primary_10_1109_TNNLS_2022_3149285 crossref_primary_10_1109_JSTSP_2018_2877478 crossref_primary_10_1109_TCYB_2022_3167711 crossref_primary_10_1016_j_clinph_2017_06_247 crossref_primary_10_1016_j_ins_2016_11_001 crossref_primary_10_1016_j_ecosta_2017_03_004 crossref_primary_10_1007_s00500_017_2708_2 crossref_primary_10_1016_j_patrec_2016_08_012 crossref_primary_10_1016_j_energy_2018_01_175 crossref_primary_10_1155_2023_7493623 crossref_primary_10_1109_TSIPN_2019_2942176 crossref_primary_10_3390_app12083795 crossref_primary_10_1109_COMST_2016_2610963 crossref_primary_10_1007_s11227_017_2063_1 crossref_primary_10_1109_TPAMI_2018_2833467 crossref_primary_10_1016_j_ipm_2015_05_007 crossref_primary_10_1109_TKDE_2014_2373411 crossref_primary_10_1016_j_ins_2015_04_043 crossref_primary_10_1016_j_datak_2018_07_003 crossref_primary_10_1038_s41598_024_74361_0 crossref_primary_10_1109_TBME_2018_2854676 crossref_primary_10_1007_s13042_021_01363_z crossref_primary_10_1016_j_patcog_2018_05_028 crossref_primary_10_1007_s00500_018_3289_4 crossref_primary_10_1007_s10489_022_04231_7 crossref_primary_10_1007_s10489_016_0838_3 crossref_primary_10_3917_fina_412_0007 crossref_primary_10_1109_TCYB_2022_3168343 crossref_primary_10_1016_j_jpdc_2022_09_013 crossref_primary_10_1002_minf_202000173 crossref_primary_10_1007_s00500_018_3585_z crossref_primary_10_1089_brain_2014_0300 crossref_primary_10_1016_j_mlwa_2021_100084 |
Cites_doi | 10.1145/1835804.1835880 10.2139/ssrn.1787577 10.1137/1.9781611972788.20 10.1002/nav.3800020109 10.1145/1148170.1148241 10.1080/01621459.1971.10482356 10.1145/1281192.1281269 10.1109/TSP.2010.2053029 10.1145/37401.37406 10.1109/ICASSP.2010.5495655 10.1145/1150402.1150467 10.1007/BF02294245 10.1137/1.9781611972740.14 10.1109/ICDMW.2008.93 10.1002/0471221546 10.1109/ASONAM.2010.17 10.1145/1281192.1281266 10.1145/1401890.1401972 10.1016/S0927-5398(03)00007-0 10.1142/S0219720009004114 10.1007/s13278-012-0058-8 10.1073/pnas.0601602103 10.1016/0377-0427(87)90125-7 10.1016/j.patcog.2009.06.001 10.1073/pnas.0900282106 10.2202/1544-6115.1175 10.1109/WI.2006.118 10.1126/science.1184819 10.1007/s11222-007-9033-z 10.1145/1835804.1835877 10.1007/978-0-387-21606-5 10.1109/34.868688 10.1145/1835804.1835940 10.1145/1014052.1014129 10.1137/S0097539702418498 10.1007/s10994-010-5214-7 10.1137/1.9781611972771.12 10.1093/bioinformatics/btl242 |
ContentType | Journal Article |
Copyright | The Author(s) 2013 The Author(s) 2014 |
Copyright_xml | – notice: The Author(s) 2013 – notice: The Author(s) 2014 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-012-0302-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 336 |
ExternalDocumentID | 3174173431 10_1007_s10618_012_0302_x |
Genre | Feature |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c349t-fb4f2f357608bc99d5e2b694af68a445566be4e4d554838381e2bca756373b703 |
IEDL.DBID | 8FG |
ISSN | 1384-5810 |
IngestDate | Fri Jul 11 05:32:50 EDT 2025 Sat Aug 23 14:39:53 EDT 2025 Tue Jul 01 00:40:29 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Evolutionary clustering Tracking Similarity measures Clustering algorithms Adaptive filtering Shrinkage estimation Data smoothing |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-fb4f2f357608bc99d5e2b694af68a445566be4e4d554838381e2bca756373b703 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1474526655 |
PQPubID | 43030 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_1494326725 proquest_journals_1474526655 crossref_primary_10_1007_s10618_012_0302_x crossref_citationtrail_10_1007_s10618_012_0302_x springer_journals_10_1007_s10618_012_0302_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140300 2014-3-00 20140301 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 3 year: 2014 text: 20140300 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2014 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | HastieTTibshiraniRFriedmanJThe elements of statistical learning: data mining, inference, and prediction2001New YorkSpringer10.1007/978-0-387-21606-5 Reynolds CW (1987) Flocks, herds, and schools: A distributed behavioral model. Proceedings of 14th annual conference on computer graphics and interactive techniques, Anaheim HaykinSKalman filtering and neural networks2001New YorkWiley-Interscience10.1002/0471221546 MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability Carmi A, Septier F, Godsill SJ (2009) The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. Proceedings of the 12th international conference on information fusion, Seattle LütkepohlHHandbook of matrices1997New YorkWiley Infochimps-WWW (2012) NASDAQ Exchange Daily 1970–2010 Open, Close, High, Low and Volume data set. http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume von LuxburgUA tutorial on spectral clusteringStat Comput200717439541610.1007/s11222-007-9033-z2409803 RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Computat Appl Math1987205365 MIT-WWW (2005) MIT academic calendar 2004–2005. http://web.mit.edu/registrar/www/calendar0405.html EagleNPentlandALazerDInferring friendship network structure by using mobile phone dataProc Nat Acad Sci200910636152741527810.1073/pnas.0900282106 CharikarMChekuriCFederTMotwaniRIncremental clustering and dynamic information retrievalSIAM J Comput20043361417144010.1137/S00975397024184981101.686052112724 KuhnHWThe Hungarian method for the assignment problemNav Res Logist Quart195521–2839710.1002/nav.3800020109 LinYRChiYZhuSSundaramHTsengBLAnalyzing communities and their evolutions in dynamic social networksACM Trans Knowl Discov Data200932810.1145/1514888.1514891 Wang Y, Liu SX, Feng J, Zhou L (2007) Mining naturally smooth evolution of clusters from dynamic data. Proceedings of SIAM conference on data mining MuchaPJRichardsonTMaconKPorterMAOnnelaJPCommunity structure in time-dependent, multiscale, and multiplex networksScience2010328598087687810.1126/science.11848191226.910562662590 Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia NingHXuWChiYGongYHuangTSIncremental spectral clustering by efficiently updating the eigen-systemPattern Recog201043111312710.1016/j.patcog.2009.06.0011176.68186 Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background knowledge. Proceedings of the 18th international conference on machine learning, pp 577–584 Wang X, Davidson I (2010) Flexible constrained spectral clustering. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 563–572 Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. Proceedings of 13th ACM SIGKDD international conference on knowledge discovery and data mining Gretton A, Borgwardt KM, Rasch M, Schölkopf B, Smola AJ (2007) A kernel approach to comparing distributions. Proceedings of the 22nd AAAI conference on artificial intelligence HarveyACForecasting, structural time series models and the Kalman filter1989CambridgeCambridge University Press Bródka P, Saganowski S, Kazienko P (2012) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min. doi: 10.1007/s13278-012-0058-8 Gupta C, Grossman R (2004) GenIc: a single pass generalized incremental algorithm for clustering. Proceedings SIAM conference on data mining, Lake Buena Vista ChiYSongXZhouDHinoKTsengBLOn evolutionary spectral clusteringACM Trans Knowl Discov Data2009341710.1145/1631162.1631165 Xu KS, Kliger M, Hero AO III (2010) Evolutionary spectral clustering with adaptive forgetting factor. Proceeding of IEEE international conference on acoustics, speech, and signal processing RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc197166336846850 AndersonTWAn introduction to multivariate statistical analysis20033HobokenWiley1039.62044 NASDAQ-WWW (2012) NASDAQ Companies. http://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ Rosswog J, Ghose K (2008) Detecting and tracking spatio-temporal clusters with adaptive history filtering. Proceedings of the 8th IEEE international conference on data mining workshops, Pisa Parker C (2007) Boids pseudocode. http://www.vergenet.net/conrad/boids/pseudocode.html YangTChiYZhuSGongYJinRDetecting communities and their evolutions in dynamic social networks—a Bayesian approachMach Learn201182215718910.1007/s10994-010-5214-71237.911893108191 Zhang J, Song Y, Chen G, Zhang C (2009) On-line evolutionary exponential family mixture. Proceedings of the 21st international joint conference on artificial intelligence, Pasadena ShiJMalikJNormalized cuts and image segmentationIEEE Trans Pattern Anal Mach Intell200022888890510.1109/34.868688 Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining Gavrilov M, Anguelov D, Indyk P, Motwani R (2000) Mining the stock market: Which measure is best? Proceedings of 6th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, New York, pp 487–496 NgAYJordanMIWeissYOn spectral clustering: analysis and an algorithmAdv Neural Inf Process Syst200114849856 Xu T, Zhang Z, Yu PS, Long B (2008a) Dirichlet process based evolutionary clustering. Proceedings of the 8th IEEE international conference on data mining Ahmed A, Xing EP (2008) Dynamic non-parametric mixture models and the recurrent chinese restaurant process: with applications to evolutionary clustering. Proceedings of the SIAM international conference on data mining, Atlanta FennDJPorterMAMcDonaldMWilliamsSJohnsonNFJonesNSDynamic communities in multichannel data: an application to the foreign exchange market during the 2007–2008 credit crisisChaos200919033119 NewmanMEJModularity and community structure in networksProc Nat Acad Sci20061032385778582 Yahoo-WWW (2012) IXIC Historical Prices|NASDAQ composite stock—Yahoo! Finance. http://finance.yahoo.com/q/hp?s=IXIC+Historical+Prices Zhang J, Song Y, Zhang C, Liu S (2010) Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining LedoitOWolfMImproved estimation of the covariance matrix of stock returns with an application to portfolio selectionJ Empir Financ200310560362110.1016/S0927-5398(03)00007-0 MilliganGWCooperMCAn examination of procedures for determining the number of clusters in a data setPsychometrika198550215917910.1007/BF02294245 Ji X, Xu W (2006) Document clustering with prior knowledge. Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, New York, pp 405–412 SchäferJStrimmerKA shrinkage approach to large-scale covariance matrix estimation and implications for functional genomicsStat Appl Genet Mol Biol200541322183942 Sun J, Papadimitriou S, Yu PS, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-evolving graphs. Proceedings of 13th ACM SIGKDD conference on knowledge discovery and data mining Falkowski T, Bartelheimer J, Spiliopoulou M (2006) Mining and visualizing the evolution of subgroups in social networks. Proceedings of the IEEE/WIC/ACM international conference on web intelligence, Hong Kong Chung FRK (1997) Spectral graph theory. American Mathematical Society, Providence ChenYWieselAEldarYCShrinkage algorithms for MMSE covariance estimationIEEE Trans Signal Process201058105016502910.1109/TSP.2010.20530292722661 Li Y, Han J, Yang J (2004) Clustering moving objects. Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining Hossain MS, Tadepalli S, Watson LT, Davidson I, Helm RF, Ramakrishnan N (2010) Unifying dependent clustering and disparate clustering for non-homogeneous data. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 593–602 Mankad S, Michailidis G, Kirilenko A (2011) Smooth plaid models: a dynamic clustering algorithm with application to electronic financial markets. Tech Rep. http://ssrn.com/abstract=1787577 Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. Proceedings of international conference on advanced social network analysis and mining, pp 176–183 Xu T, Zhang Z, Yu PS, Long B (2008b) Evolutionary clustering by hierarchical Dirichlet process with hidden Markov state. Proceedings of the 8th IEEE international conference on data mining TadepalliSRamakrishnanNWatsonLTMishraBHelmRFGene expression time courses by analyzing cluster dynamicsJ Bioinforma Comput Biol20097233935610.1142/S0219720009004114 PJ Mucha (302_CR32) 2010; 328 302_CR41 302_CR40 302_CR46 H Lütkepohl (302_CR27) 1997 302_CR44 AC Harvey (302_CR17) 1989 302_CR49 302_CR47 GW Milligan (302_CR30) 1985; 50 TW Anderson (302_CR2) 2003 HW Kuhn (302_CR23) 1955; 2 S Tadepalli (302_CR45) 2009; 7 YR Lin (302_CR26) 2009; 3 O Ledoit (302_CR24) 2003; 10 302_CR31 302_CR35 302_CR34 T Hastie (302_CR18) 2001 302_CR33 DJ Fenn (302_CR12) 2009; 19 302_CR39 302_CR38 302_CR37 302_CR29 M Charikar (302_CR6) 2004; 33 Y Chen (302_CR7) 2010; 58 N Eagle (302_CR10) 2009; 106 302_CR20 S Haykin (302_CR19) 2001 302_CR22 302_CR21 T Yang (302_CR56) 2011; 82 302_CR28 302_CR25 U Luxburg von (302_CR48) 2007; 17 302_CR9 J Shi (302_CR43) 2000; 22 Y Chi (302_CR8) 2009; 3 302_CR53 302_CR52 302_CR51 302_CR50 302_CR4 302_CR13 302_CR57 302_CR3 302_CR11 H Ning (302_CR36) 2010; 43 302_CR55 302_CR1 302_CR54 302_CR16 302_CR15 302_CR5 302_CR14 302_CR58 J Schäfer (302_CR42) 2005; 4 |
References_xml | – reference: Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. Proceedings of international conference on advanced social network analysis and mining, pp 176–183 – reference: Ji X, Xu W (2006) Document clustering with prior knowledge. Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, New York, pp 405–412 – reference: Mankad S, Michailidis G, Kirilenko A (2011) Smooth plaid models: a dynamic clustering algorithm with application to electronic financial markets. Tech Rep. http://ssrn.com/abstract=1787577 – reference: Gretton A, Borgwardt KM, Rasch M, Schölkopf B, Smola AJ (2007) A kernel approach to comparing distributions. Proceedings of the 22nd AAAI conference on artificial intelligence – reference: Bródka P, Saganowski S, Kazienko P (2012) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min. doi: 10.1007/s13278-012-0058-8 – reference: HarveyACForecasting, structural time series models and the Kalman filter1989CambridgeCambridge University Press – reference: NingHXuWChiYGongYHuangTSIncremental spectral clustering by efficiently updating the eigen-systemPattern Recog201043111312710.1016/j.patcog.2009.06.0011176.68186 – reference: AndersonTWAn introduction to multivariate statistical analysis20033HobokenWiley1039.62044 – reference: Wang X, Davidson I (2010) Flexible constrained spectral clustering. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 563–572 – reference: NgAYJordanMIWeissYOn spectral clustering: analysis and an algorithmAdv Neural Inf Process Syst200114849856 – reference: Xu KS, Kliger M, Hero AO III (2010) Evolutionary spectral clustering with adaptive forgetting factor. Proceeding of IEEE international conference on acoustics, speech, and signal processing – reference: Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia – reference: RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Computat Appl Math1987205365 – reference: HaykinSKalman filtering and neural networks2001New YorkWiley-Interscience10.1002/0471221546 – reference: Carmi A, Septier F, Godsill SJ (2009) The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. Proceedings of the 12th international conference on information fusion, Seattle – reference: ShiJMalikJNormalized cuts and image segmentationIEEE Trans Pattern Anal Mach Intell200022888890510.1109/34.868688 – reference: Parker C (2007) Boids pseudocode. http://www.vergenet.net/conrad/boids/pseudocode.html – reference: NASDAQ-WWW (2012) NASDAQ Companies. http://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ – reference: LedoitOWolfMImproved estimation of the covariance matrix of stock returns with an application to portfolio selectionJ Empir Financ200310560362110.1016/S0927-5398(03)00007-0 – reference: Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. Proceedings of 13th ACM SIGKDD international conference on knowledge discovery and data mining – reference: Yahoo-WWW (2012) IXIC Historical Prices|NASDAQ composite stock—Yahoo! Finance. http://finance.yahoo.com/q/hp?s=IXIC+Historical+Prices – reference: Gavrilov M, Anguelov D, Indyk P, Motwani R (2000) Mining the stock market: Which measure is best? Proceedings of 6th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, New York, pp 487–496 – reference: MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability – reference: Xu T, Zhang Z, Yu PS, Long B (2008a) Dirichlet process based evolutionary clustering. Proceedings of the 8th IEEE international conference on data mining – reference: MuchaPJRichardsonTMaconKPorterMAOnnelaJPCommunity structure in time-dependent, multiscale, and multiplex networksScience2010328598087687810.1126/science.11848191226.910562662590 – reference: Wang Y, Liu SX, Feng J, Zhou L (2007) Mining naturally smooth evolution of clusters from dynamic data. Proceedings of SIAM conference on data mining – reference: Zhang J, Song Y, Chen G, Zhang C (2009) On-line evolutionary exponential family mixture. Proceedings of the 21st international joint conference on artificial intelligence, Pasadena – reference: MIT-WWW (2005) MIT academic calendar 2004–2005. http://web.mit.edu/registrar/www/calendar0405.html – reference: Reynolds CW (1987) Flocks, herds, and schools: A distributed behavioral model. Proceedings of 14th annual conference on computer graphics and interactive techniques, Anaheim – reference: LinYRChiYZhuSSundaramHTsengBLAnalyzing communities and their evolutions in dynamic social networksACM Trans Knowl Discov Data200932810.1145/1514888.1514891 – reference: CharikarMChekuriCFederTMotwaniRIncremental clustering and dynamic information retrievalSIAM J Comput20043361417144010.1137/S00975397024184981101.686052112724 – reference: Zhang J, Song Y, Zhang C, Liu S (2010) Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining – reference: Hossain MS, Tadepalli S, Watson LT, Davidson I, Helm RF, Ramakrishnan N (2010) Unifying dependent clustering and disparate clustering for non-homogeneous data. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 593–602 – reference: HastieTTibshiraniRFriedmanJThe elements of statistical learning: data mining, inference, and prediction2001New YorkSpringer10.1007/978-0-387-21606-5 – reference: SchäferJStrimmerKA shrinkage approach to large-scale covariance matrix estimation and implications for functional genomicsStat Appl Genet Mol Biol200541322183942 – reference: YangTChiYZhuSGongYJinRDetecting communities and their evolutions in dynamic social networks—a Bayesian approachMach Learn201182215718910.1007/s10994-010-5214-71237.911893108191 – reference: Falkowski T, Bartelheimer J, Spiliopoulou M (2006) Mining and visualizing the evolution of subgroups in social networks. Proceedings of the IEEE/WIC/ACM international conference on web intelligence, Hong Kong – reference: NewmanMEJModularity and community structure in networksProc Nat Acad Sci20061032385778582 – reference: von LuxburgUA tutorial on spectral clusteringStat Comput200717439541610.1007/s11222-007-9033-z2409803 – reference: ChenYWieselAEldarYCShrinkage algorithms for MMSE covariance estimationIEEE Trans Signal Process201058105016502910.1109/TSP.2010.20530292722661 – reference: Rosswog J, Ghose K (2008) Detecting and tracking spatio-temporal clusters with adaptive history filtering. Proceedings of the 8th IEEE international conference on data mining workshops, Pisa – reference: Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background knowledge. Proceedings of the 18th international conference on machine learning, pp 577–584 – reference: FennDJPorterMAMcDonaldMWilliamsSJohnsonNFJonesNSDynamic communities in multichannel data: an application to the foreign exchange market during the 2007–2008 credit crisisChaos200919033119 – reference: KuhnHWThe Hungarian method for the assignment problemNav Res Logist Quart195521–2839710.1002/nav.3800020109 – reference: EagleNPentlandALazerDInferring friendship network structure by using mobile phone dataProc Nat Acad Sci200910636152741527810.1073/pnas.0900282106 – reference: MilliganGWCooperMCAn examination of procedures for determining the number of clusters in a data setPsychometrika198550215917910.1007/BF02294245 – reference: Sun J, Papadimitriou S, Yu PS, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-evolving graphs. Proceedings of 13th ACM SIGKDD conference on knowledge discovery and data mining – reference: LütkepohlHHandbook of matrices1997New YorkWiley – reference: Gupta C, Grossman R (2004) GenIc: a single pass generalized incremental algorithm for clustering. Proceedings SIAM conference on data mining, Lake Buena Vista – reference: Li Y, Han J, Yang J (2004) Clustering moving objects. Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining – reference: Xu T, Zhang Z, Yu PS, Long B (2008b) Evolutionary clustering by hierarchical Dirichlet process with hidden Markov state. Proceedings of the 8th IEEE international conference on data mining – reference: RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc197166336846850 – reference: Chung FRK (1997) Spectral graph theory. American Mathematical Society, Providence – reference: TadepalliSRamakrishnanNWatsonLTMishraBHelmRFGene expression time courses by analyzing cluster dynamicsJ Bioinforma Comput Biol20097233935610.1142/S0219720009004114 – reference: Ahmed A, Xing EP (2008) Dynamic non-parametric mixture models and the recurrent chinese restaurant process: with applications to evolutionary clustering. Proceedings of the SIAM international conference on data mining, Atlanta – reference: Infochimps-WWW (2012) NASDAQ Exchange Daily 1970–2010 Open, Close, High, Low and Volume data set. http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume – reference: ChiYSongXZhouDHinoKTsengBLOn evolutionary spectral clusteringACM Trans Knowl Discov Data2009341710.1145/1631162.1631165 – reference: Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining – ident: 302_CR20 doi: 10.1145/1835804.1835880 – ident: 302_CR29 doi: 10.2139/ssrn.1787577 – volume: 3 start-page: 8 issue: 2 year: 2009 ident: 302_CR26 publication-title: ACM Trans Knowl Discov Data – ident: 302_CR55 – ident: 302_CR1 doi: 10.1137/1.9781611972788.20 – ident: 302_CR4 – volume: 2 start-page: 83 issue: 1–2 year: 1955 ident: 302_CR23 publication-title: Nav Res Logist Quart doi: 10.1002/nav.3800020109 – ident: 302_CR22 doi: 10.1145/1148170.1148241 – ident: 302_CR35 – ident: 302_CR38 doi: 10.1080/01621459.1971.10482356 – ident: 302_CR47 doi: 10.1145/1281192.1281269 – volume: 58 start-page: 5016 issue: 10 year: 2010 ident: 302_CR7 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2010.2053029 – ident: 302_CR39 doi: 10.1145/37401.37406 – ident: 302_CR31 – ident: 302_CR52 doi: 10.1109/ICASSP.2010.5495655 – ident: 302_CR5 doi: 10.1145/1150402.1150467 – volume: 50 start-page: 159 issue: 2 year: 1985 ident: 302_CR30 publication-title: Psychometrika doi: 10.1007/BF02294245 – volume: 3 start-page: 17 issue: 4 year: 2009 ident: 302_CR8 publication-title: ACM Trans Knowl Discov Data – ident: 302_CR16 doi: 10.1137/1.9781611972740.14 – ident: 302_CR49 – ident: 302_CR40 doi: 10.1109/ICDMW.2008.93 – volume-title: Handbook of matrices year: 1997 ident: 302_CR27 – volume-title: Kalman filtering and neural networks year: 2001 ident: 302_CR19 doi: 10.1002/0471221546 – ident: 302_CR21 – ident: 302_CR9 – ident: 302_CR14 doi: 10.1109/ASONAM.2010.17 – ident: 302_CR44 doi: 10.1145/1281192.1281266 – ident: 302_CR46 doi: 10.1145/1401890.1401972 – volume: 19 start-page: 119 issue: 033 year: 2009 ident: 302_CR12 publication-title: Chaos – volume: 10 start-page: 603 issue: 5 year: 2003 ident: 302_CR24 publication-title: J Empir Financ doi: 10.1016/S0927-5398(03)00007-0 – volume: 7 start-page: 339 issue: 2 year: 2009 ident: 302_CR45 publication-title: J Bioinforma Comput Biol doi: 10.1142/S0219720009004114 – ident: 302_CR3 doi: 10.1007/s13278-012-0058-8 – ident: 302_CR34 doi: 10.1073/pnas.0601602103 – volume-title: Forecasting, structural time series models and the Kalman filter year: 1989 ident: 302_CR17 – ident: 302_CR41 doi: 10.1016/0377-0427(87)90125-7 – ident: 302_CR53 – volume-title: An introduction to multivariate statistical analysis year: 2003 ident: 302_CR2 – ident: 302_CR57 – volume: 43 start-page: 113 issue: 1 year: 2010 ident: 302_CR36 publication-title: Pattern Recog doi: 10.1016/j.patcog.2009.06.001 – ident: 302_CR37 – ident: 302_CR33 – volume: 106 start-page: 15274 issue: 36 year: 2009 ident: 302_CR10 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.0900282106 – ident: 302_CR28 – volume: 4 start-page: 32 issue: 1 year: 2005 ident: 302_CR42 publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1175 – ident: 302_CR11 doi: 10.1109/WI.2006.118 – volume: 328 start-page: 876 issue: 5980 year: 2010 ident: 302_CR32 publication-title: Science doi: 10.1126/science.1184819 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 302_CR48 publication-title: Stat Comput doi: 10.1007/s11222-007-9033-z – ident: 302_CR50 doi: 10.1145/1835804.1835877 – volume-title: The elements of statistical learning: data mining, inference, and prediction year: 2001 ident: 302_CR18 doi: 10.1007/978-0-387-21606-5 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 302_CR43 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – ident: 302_CR58 doi: 10.1145/1835804.1835940 – ident: 302_CR25 doi: 10.1145/1014052.1014129 – ident: 302_CR54 – volume: 33 start-page: 1417 issue: 6 year: 2004 ident: 302_CR6 publication-title: SIAM J Comput doi: 10.1137/S0097539702418498 – volume: 82 start-page: 157 issue: 2 year: 2011 ident: 302_CR56 publication-title: Mach Learn doi: 10.1007/s10994-010-5214-7 – ident: 302_CR51 doi: 10.1137/1.9781611972771.12 – ident: 302_CR13 – ident: 302_CR15 doi: 10.1093/bioinformatics/btl242 |
SSID | ssj0005230 |
Score | 2.4096143 |
Snippet | In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 304 |
SubjectTerms | Algorithms Artificial Intelligence Chemistry and Earth Sciences Clustering Computer Science Data Mining and Knowledge Discovery Data smoothing Datasets Estimates Experiments Information Storage and Retrieval Noise Physics Signal processing Statistics for Engineering |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iCF58VMVqlRU8KYHdzWOTYxFL8eDJQm9LnqeyLX2I_nsnu9m2igqeM0lgMpN8w3yZQehOKs69pRaDM3FMuWEYwmaLXZF5JhRJraoJsi98OKLPYzaO_7gXLdu9TUnWN_XWZzeeBeJVjsEwcwzAcY9B6B7MepT3t3gdpPkaLChmIlunMn9a4utjtEGY35Ki9VszOEaHESQm_eZUT9COqzroqG3AkER_7KD9mr9pFqco6Vs1CzdX4t6iMan5R2Imq1AIATY5Q6PB0-vjEMfmB9gQKpfYa-pzTyAcSIU2Ulrmcs0lVZ4LRSkDGKYdddQCHhAQZooMxo0qGCcF0eDH52i3mlbuAiWhXo9LvZKEOaoF15xlHqCWzYTURJguSlstlCZWBg8NKiblpqZxUFwJiiuD4sr3LrpfT5k1ZTH-Eu61qi2jhywg5ChCd3POWBfdrofBtkPCQlVuugoykgK8LHKQeWiPZGuJ3za8_Jf0FToAFEQbYlkP7S7nK3cNSGOpb2rL-gSf5Me7 priority: 102 providerName: Springer Nature |
Title | Adaptive evolutionary clustering |
URI | https://link.springer.com/article/10.1007/s10618-012-0302-x https://www.proquest.com/docview/1474526655 https://www.proquest.com/docview/1494326725 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66vfjiXZzOUcEnJdhLkqZPUmUXFIaIg_lUkiZ9Gt3cRea_96RNtym4p0KTJvTc8iXn5ByEbiLBWKaIwqBMDBOWUgzbZoV16GWUi8BVogiQ7bPegDwP6dAeuM1sWGVlEwtDrcapOSO_90hoqmEzSh8mn9hUjTLeVVtCYxfVPWgzEs473Y0Qj6C8JcwJptxbeTXLq3PMM2FcPgYx9_Hy97q0Bpt__KPFstM5RPsWLzpxyeAjtKPzY3RQ1WJwrGqeICdWYmJMl6O_rDSJ6beTjhYmEwIMfYoGnfb7Uw_b6gc4DUg0x5kkmZ8FsB9wuUyjSFHtSxYRkTEuCKGAw6QmmigABBz2mdyD9lSElAVhIEGRz1AtH-f6HDkmYY92MxEFVBPJmWTUywBrKY9HMuBpA7nVvyepTQ1uKlSMknVSY0OuBMiVGHIlywa6XX0yKfNibOvcrAiaWBWZJWuGNtD1qhmE23gsRK7HC9MnIoAvQx_63FWM2Bjivwkvtk94ifYA95AylKyJavPpQl8BtpjLViFALVSPux8vbXg-tvuvb_B24Mc_-_vL7A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjihrkOACsmjiJfYBIQSUAqUnkLgFO3ZOVVtKy_JTfCPjJmkBCW6cPbHl8SzPmfEMwJ7SQmSWWYLKJAgTKSd4bbbExWHGpaZVq4cJsk1Rv2fXD_xhAj7KtzA-rbK0iUNDbTup_0d-FLLYd8MWnJ90n4jvGuWjq2ULjVwsbtz7K17Zno-vzvF896OodnF3VidFVwGSUqb6JDMsizKKOLsqTaqU5S4yQjGdCakZ44hvjGOOWXS0Eu9vMsTxVMdc0JgaVBCcdxKmGaXKpxDK2uWXlBKav0qWjHAZjqKo-VM9Efq0sYigWkXk7bsfHIPbH_HYoZurLcBcgU-D01ygFmHCtZdgvuz9EBSmYBmCU6u73lQG7qWQXt17D9LWwFdewKlX4P5f-LIKU-1O261B4AsEuWqmFeWOGSmM4GGG2M6GUhkq0wpUy70naVGK3HfEaCXjIsqeXQmyK_HsSt4qcDD6pJvX4fiLeLNkaFKo5HMyFqAK7I6GUZl8hES3XWfgaRRDPBtHSHNYHsSXKX5bcP3vBXdgpn5320gaV82bDZhFzMXyNLZNmOr3Bm4LcU3fbA-FKYDH_5beT8ZMA7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSIgLb8R4FgkuoIi2eTQ9IISA8RTiABK3kjTJadoGbDD-Gr8OZ203QIIb56SJ4nx2vtSODbCdKiGcYYagMgnCRM4JXpsNsUnkuFQ0NGoQIHsjzu_Z5QN_GIOP6i2MD6usbOLAUJt27v-R70cs8dWwBef7rgyLuD1pHHaeiK8g5T2tVTmNAiJX9v0Nr28vBxcnuNc7cdw4vTs-J2WFAZJTlnaJ08zFjiLnDqXO09RwG2uRMuWEVIxx5DraMssMHroS73IywvZcJVzQhGpUFhx3HCYSKkNfPUE2zr6El9DihbJkhMto6FEtnu2JyIeQxQRVLCb972fiiOj-8M0OjrzGLEyXXDU4KsA1B2O2NQ8zVR2IoDQLCxAcGdXxZjOwryWS1fN7kDd7PgsDDr0I9_8ilyWotdotuwyBTxZkQ6dSyi3TUmjBI4c8z0Qy1VTmdQirtWd5mZbcV8doZqOEyl5cGYor8-LK-nXYHX7SKXJy_NV5rRJoVqrnSzYCUx22hs2oWN5bolq23fN9UobcNomxz161EV-G-G3Clb8n3IRJxG12fXFztQpTSL9YEdG2BrXuc8-uI8Xp6o0BlgJ4_G_wfgLgCQfd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+evolutionary+clustering&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Xu%2C+Kevin+S&rft.au=Kliger%2C+Mark&rft.au=Hero%2C+Alfred+O&rft.date=2014-03-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=28&rft.issue=2&rft.spage=304&rft.epage=336&rft_id=info:doi/10.1007%2Fs10618-012-0302-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |