Adaptive Neural Dynamic Surface Control With Prespecified Tracking Accuracy of Uncertain Stochastic Nonstrict-Feedback Systems

This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions onl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 5; pp. 3408 - 3421
Main Authors Wu, Jian, Chen, Xuemiao, Zhao, Qianjin, Li, Jing, Wu, Zheng-Guang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3012607