Adaptive Neural Dynamic Surface Control With Prespecified Tracking Accuracy of Uncertain Stochastic Nonstrict-Feedback Systems

This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions onl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 5; pp. 3408 - 3421
Main Authors Wu, Jian, Chen, Xuemiao, Zhao, Qianjin, Li, Jing, Wu, Zheng-Guang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme.
AbstractList This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme.
This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme.This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme.
Author Li, Jing
Wu, Jian
Wu, Zheng-Guang
Chen, Xuemiao
Zhao, Qianjin
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0001-7398-6147
  surname: Wu
  fullname: Wu, Jian
  email: jwu2011@126.com
  organization: University Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing Normal University, Anqing, China
– sequence: 2
  givenname: Xuemiao
  surname: Chen
  fullname: Chen, Xuemiao
  email: 2537360268@qq.com
  organization: College of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, China
– sequence: 3
  givenname: Qianjin
  surname: Zhao
  fullname: Zhao, Qianjin
  email: qjzhao@aust.edu.cn
  organization: College of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, China
– sequence: 4
  givenname: Jing
  orcidid: 0000-0003-3668-1162
  surname: Li
  fullname: Li, Jing
  email: xidianjing@126.com
  organization: School of Mathematics and Statistics, Xidian University, Xi'an, China
– sequence: 5
  givenname: Zheng-Guang
  orcidid: 0000-0003-4460-9785
  surname: Wu
  fullname: Wu, Zheng-Guang
  email: nashwzhg@zju.edu.cn
  organization: National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32809949$$D View this record in MEDLINE/PubMed
BookMark eNp9kU-LEzEYh4OsuGvdDyCCBLx4mZo_M5Pk2K2uCssqtIt4GpL0HTfrTFKTjNCLn92U1h72YC4J4Xl-Ce_vOTrzwQNCLymZU0rUu_Xy-9WcEUbmnFDWEvEEXTDayoox0Zydzq04R5cpPZCyZLlS8hk650wSpWp1gf4sNnqb3W_AtzBFPeD3O69HZ_Fqir22gJfB5xgG_M3le_w1QtqCdb2DDV5HbX86_wMvrC2q3eHQ4ztvIWbtPF7lYO91yiXrNviUo7O5ugbYmKLh1S5lGNML9LTXQ4LL4z5Dd9cf1stP1c2Xj5-Xi5vK8lrlqtcEjFbUKGNrWitDuRICGONWcNk0goleC6oKZGoiVduaRlLKpYGGCqP4DL095G5j-DVByt3okoVh0B7ClDpW86ZhipC2oG8eoQ9hir78rmNtK0iZYUmeoddHajIjbLptdKOOu-7fZAtAD4CNIaUI_QmhpNsX2O0L7PYFdscCiyMeOdZlnd2-Au2G_5qvDqYDgNNLigoiheR_Actcp3g
CODEN ITCEB8
CitedBy_id crossref_primary_10_1002_acs_3800
crossref_primary_10_1002_acs_3523
crossref_primary_10_1002_acs_3362
crossref_primary_10_1002_acs_3368
crossref_primary_10_1002_acs_3486
crossref_primary_10_1109_TSMC_2023_3281982
crossref_primary_10_1080_00207721_2024_2329739
crossref_primary_10_1002_acs_3918
crossref_primary_10_1016_j_jfranklin_2021_09_016
crossref_primary_10_1371_journal_pone_0312345
crossref_primary_10_1109_TAI_2023_3318895
crossref_primary_10_1002_asjc_3286
crossref_primary_10_1007_s12555_021_0971_6
crossref_primary_10_1049_cth2_12280
crossref_primary_10_1080_00207721_2025_2468867
crossref_primary_10_1002_acs_3812
crossref_primary_10_1109_TASE_2023_3336976
crossref_primary_10_1016_j_ins_2022_01_009
crossref_primary_10_1007_s11071_024_09574_z
crossref_primary_10_1080_00207179_2023_2274058
crossref_primary_10_1080_00207721_2024_2304670
crossref_primary_10_1002_acs_3539
crossref_primary_10_1049_cth2_12285
crossref_primary_10_1016_j_isatra_2025_01_024
crossref_primary_10_1002_acs_3499
crossref_primary_10_1002_rnc_6064
crossref_primary_10_1080_00207721_2023_2272219
crossref_primary_10_1002_rnc_7799
crossref_primary_10_1002_asjc_3204
crossref_primary_10_1016_j_chaos_2024_114814
crossref_primary_10_1002_acs_3426
crossref_primary_10_1002_acs_3306
crossref_primary_10_1002_acs_3941
crossref_primary_10_1002_rnc_6803
crossref_primary_10_1002_acs_3546
crossref_primary_10_1002_acs_3705
crossref_primary_10_1002_acs_3706
crossref_primary_10_1007_s11431_024_2694_x
crossref_primary_10_1007_s40815_021_01106_w
crossref_primary_10_1109_ACCESS_2024_3459043
crossref_primary_10_1007_s40815_023_01668_x
crossref_primary_10_1109_TIE_2024_3436632
crossref_primary_10_1109_TFUZZ_2023_3348271
crossref_primary_10_1002_acs_3542
crossref_primary_10_1007_s11071_021_06779_4
crossref_primary_10_3390_app13179552
crossref_primary_10_1007_s40815_023_01663_2
crossref_primary_10_1109_TIE_2024_3370953
crossref_primary_10_1016_j_jfranklin_2024_106766
crossref_primary_10_1002_acs_3799
crossref_primary_10_1002_rnc_7207
crossref_primary_10_1109_TCSII_2022_3222962
crossref_primary_10_1109_TCYB_2022_3178385
crossref_primary_10_1080_00207721_2025_2467838
crossref_primary_10_1016_j_chaos_2024_115170
crossref_primary_10_1016_j_fraope_2023_100035
crossref_primary_10_1016_j_matcom_2024_02_022
crossref_primary_10_3390_aerospace11110950
crossref_primary_10_1002_rnc_7051
crossref_primary_10_1016_j_chaos_2024_115166
crossref_primary_10_1080_00207721_2022_2135974
crossref_primary_10_1109_TSMC_2025_3525508
crossref_primary_10_1080_00207721_2023_2224520
crossref_primary_10_1002_acs_3828
crossref_primary_10_1109_TCSI_2021_3124485
crossref_primary_10_1002_rnc_7517
crossref_primary_10_1109_ACCESS_2021_3076076
crossref_primary_10_1016_j_nahs_2023_101334
crossref_primary_10_1109_TSMC_2024_3387435
crossref_primary_10_1109_TCYB_2022_3227389
crossref_primary_10_1007_s11071_022_07713_y
crossref_primary_10_3390_electronics11152378
crossref_primary_10_1002_acs_3323
crossref_primary_10_1109_TSMC_2023_3245299
crossref_primary_10_1109_TSMC_2022_3143359
crossref_primary_10_1002_rnc_6038
crossref_primary_10_1016_j_chaos_2024_114501
crossref_primary_10_1016_j_neucom_2024_129157
crossref_primary_10_1002_acs_3977
crossref_primary_10_1007_s40815_024_01720_4
crossref_primary_10_1016_j_fss_2025_109321
crossref_primary_10_1080_00207721_2022_2025501
crossref_primary_10_3390_math11122725
crossref_primary_10_1002_acs_3610
crossref_primary_10_1177_14613484211045761
crossref_primary_10_1007_s40815_024_01914_w
crossref_primary_10_1049_cth2_12528
crossref_primary_10_1016_j_isatra_2022_12_013
crossref_primary_10_3390_math11122732
crossref_primary_10_3390_math10142419
crossref_primary_10_1016_j_jfranklin_2021_05_026
crossref_primary_10_1080_00207179_2023_2214248
crossref_primary_10_1002_acs_3589
crossref_primary_10_1002_asjc_3350
crossref_primary_10_1007_s11432_022_3561_2
crossref_primary_10_1016_j_ins_2023_120014
crossref_primary_10_1007_s11071_023_08892_y
crossref_primary_10_1109_TCYB_2023_3320441
crossref_primary_10_1109_TCYB_2024_3524242
crossref_primary_10_1109_TCYB_2023_3336992
crossref_primary_10_1177_01423312231174944
crossref_primary_10_1002_rnc_6172
crossref_primary_10_1155_2021_3396482
crossref_primary_10_1016_j_jfranklin_2024_107023
crossref_primary_10_1016_j_neucom_2024_129297
crossref_primary_10_1109_TCYB_2024_3453948
crossref_primary_10_1109_TSMC_2024_3444007
crossref_primary_10_1109_TCYB_2024_3502496
crossref_primary_10_1109_ACCESS_2021_3120469
crossref_primary_10_1109_ACCESS_2022_3188655
crossref_primary_10_1007_s00521_021_05689_1
crossref_primary_10_1007_s11071_021_06633_7
crossref_primary_10_1016_j_chaos_2022_112330
crossref_primary_10_1002_acs_3351
crossref_primary_10_1016_j_sysconle_2022_105176
crossref_primary_10_1109_TASE_2023_3334613
crossref_primary_10_1109_TCSII_2021_3075884
crossref_primary_10_1109_TSMC_2023_3294425
crossref_primary_10_1016_j_neucom_2024_128135
crossref_primary_10_1155_2021_1491995
crossref_primary_10_1155_2021_6646716
crossref_primary_10_1109_TFUZZ_2024_3418772
crossref_primary_10_3233_JIFS_238024
crossref_primary_10_1002_rnc_7650
Cites_doi 10.1109/TNNLS.2015.2412121
10.1109/TCYB.2017.2749511
10.1109/TNNLS.2016.2531089
10.1109/TSMCB.2009.2033808
10.1109/TNNLS.2017.2669088
10.1109/TCYB.2014.2383378
10.1016/j.automatica.2017.02.005
10.1109/TFUZZ.2013.2280146
10.1109/TCYB.2017.2715980
10.1049/iet-cta.2013.0949
10.1109/TSMC.2017.2738155
10.1109/TAC.2008.929402
10.1109/TNNLS.2013.2283879
10.1109/TNNLS.2016.2598580
10.1109/TCYB.2018.2809576
10.1109/TCYB.2017.2684131
10.1109/TFUZZ.2017.2750619
10.1109/TFUZZ.2017.2765627
10.1109/TAC.2019.2926167
10.1109/TSMC.2016.2613998
10.1109/TFUZZ.2013.2291554
10.1109/TNNLS.2016.2521425
10.1109/TSMC.2016.2635678
10.1109/TCYB.2014.2363073
10.1109/TNN.2011.2146788
10.1109/TFUZZ.2015.2505088
10.1109/TNNLS.2018.2828140
10.1109/TFUZZ.2018.2798577
10.1109/TCYB.2014.2370645
10.1109/TFUZZ.2016.2540058
10.1002/rnc.4860
10.1109/TIE.2015.2455026
10.1109/TFUZZ.2016.2516587
10.1109/TNNLS.2014.2341242
10.1109/TNNLS.2015.2392946
10.1109/TCYB.2014.2333738
10.1109/TSMCB.2008.2006368
10.1016/j.ins.2017.08.085
10.1109/TNNLS.2014.2312001
10.1016/j.automatica.2014.10.079
10.1109/TCYB.2016.2600263
10.1109/TNNLS.2014.2357451
10.1109/TFUZZ.2016.2566807
10.1109/TFUZZ.2014.2382132
10.1109/TFUZZ.2014.2375917
10.1109/TSMC.2018.2800783
10.1109/TNNLS.2015.2471262
10.1109/TNNLS.2017.2760903
10.1109/TFUZZ.2015.2486811
10.1002/acs.2322
10.1109/TFUZZ.2011.2176732
10.1109/TSMCB.2011.2159264
10.1109/TNNLS.2017.2716947
10.1109/TNNLS.2016.2616906
10.1109/TAC.2011.2175071
10.1109/TNNLS.2014.2330336
10.1109/TCYB.2015.2441292
10.1109/TSMC.2017.2749124
10.1109/TFUZZ.2017.2694799
10.1109/TNN.2011.2146274
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3012607
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3421
ExternalDocumentID 32809949
10_1109_TCYB_2020_3012607
9170878
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LR16F030001
  funderid: 10.13039/501100004731
– fundername: Program for Academic Top-Notch Talents of University Disciplines
  grantid: gxbjZD21
– fundername: National Natural Science Foundation of China
  grantid: 61603003; 61673014; 61673339; 61702012
  funderid: 10.13039/501100001809
– fundername: Foundation of University Team Program for Innovative Research Platform of Intelligent Perception and Computing of Anhui Province
– fundername: Science Fund for Creative Research Groups of National Natural Science Foundation of China
  grantid: 61621002
  funderid: 10.13039/501100001809
– fundername: Program for Innovative Research Team in Anqing Normal University
  funderid: 10.13039/501100002731
– fundername: Natural Science Foundation of Anhui Province
  grantid: 1608085QF131; 1908085MA01
  funderid: 10.13039/501100003995
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-fa0eba91b9bc4149b13977e223c73855727fa719ebab408966b581138be517b93
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 09:41:14 EDT 2025
Mon Jun 30 06:36:19 EDT 2025
Wed Feb 19 02:25:22 EST 2025
Tue Jul 01 00:53:56 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Aug 27 02:37:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-fa0eba91b9bc4149b13977e223c73855727fa719ebab408966b581138be517b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4460-9785
0000-0001-7398-6147
0000-0003-3668-1162
PMID 32809949
PQID 2667016811
PQPubID 85422
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCYB_2020_3012607
pubmed_primary_32809949
ieee_primary_9170878
crossref_citationtrail_10_1109_TCYB_2020_3012607
proquest_journals_2667016811
proquest_miscellaneous_2435529006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
wang (ref2) 2018; 29
ref51
ref50
li (ref47) 2018; 29
ref46
ref45
ref48
ref42
ref41
ref44
ref43
wu (ref31) 2018; 29
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref1
ref39
ref38
ren (ref15) 2009; 39
ref24
ref23
ref26
ref25
ref20
ref21
liu (ref22) 2011; 22
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref28
  doi: 10.1109/TNNLS.2015.2412121
– ident: ref55
  doi: 10.1109/TCYB.2017.2749511
– ident: ref32
  doi: 10.1109/TNNLS.2016.2531089
– ident: ref37
  doi: 10.1109/TSMCB.2009.2033808
– ident: ref43
  doi: 10.1109/TNNLS.2017.2669088
– ident: ref27
  doi: 10.1109/TCYB.2014.2383378
– ident: ref48
  doi: 10.1016/j.automatica.2017.02.005
– ident: ref16
  doi: 10.1109/TFUZZ.2013.2280146
– ident: ref5
  doi: 10.1109/TCYB.2017.2715980
– ident: ref54
  doi: 10.1049/iet-cta.2013.0949
– ident: ref40
  doi: 10.1109/TSMC.2017.2738155
– ident: ref46
  doi: 10.1109/TAC.2008.929402
– ident: ref42
  doi: 10.1109/TNNLS.2013.2283879
– ident: ref30
  doi: 10.1109/TNNLS.2016.2598580
– ident: ref21
  doi: 10.1109/TCYB.2018.2809576
– ident: ref34
  doi: 10.1109/TCYB.2017.2684131
– ident: ref9
  doi: 10.1109/TFUZZ.2017.2750619
– ident: ref13
  doi: 10.1109/TFUZZ.2017.2765627
– ident: ref61
  doi: 10.1109/TAC.2019.2926167
– ident: ref50
  doi: 10.1109/TSMC.2016.2613998
– ident: ref59
  doi: 10.1109/TFUZZ.2013.2291554
– ident: ref12
  doi: 10.1109/TNNLS.2016.2521425
– ident: ref45
  doi: 10.1109/TSMC.2016.2635678
– ident: ref39
  doi: 10.1109/TCYB.2014.2363073
– volume: 22
  start-page: 1162
  year: 2011
  ident: ref22
  article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2146788
– ident: ref26
  doi: 10.1109/TFUZZ.2015.2505088
– ident: ref17
  doi: 10.1109/TNNLS.2018.2828140
– ident: ref6
  doi: 10.1109/TFUZZ.2018.2798577
– ident: ref7
  doi: 10.1109/TCYB.2014.2370645
– ident: ref35
  doi: 10.1109/TFUZZ.2016.2540058
– ident: ref62
  doi: 10.1002/rnc.4860
– ident: ref60
  doi: 10.1109/TIE.2015.2455026
– ident: ref33
  doi: 10.1109/TFUZZ.2016.2516587
– ident: ref3
  doi: 10.1109/TNNLS.2014.2341242
– ident: ref49
  doi: 10.1109/TNNLS.2015.2392946
– ident: ref18
  doi: 10.1109/TCYB.2014.2333738
– volume: 39
  start-page: 431
  year: 2009
  ident: ref15
  article-title: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2006368
– ident: ref38
  doi: 10.1016/j.ins.2017.08.085
– ident: ref10
  doi: 10.1109/TNNLS.2014.2312001
– ident: ref57
  doi: 10.1016/j.automatica.2014.10.079
– ident: ref44
  doi: 10.1109/TCYB.2016.2600263
– ident: ref52
  doi: 10.1109/TNNLS.2014.2357451
– ident: ref58
  doi: 10.1109/TFUZZ.2016.2566807
– ident: ref8
  doi: 10.1109/TFUZZ.2014.2382132
– ident: ref41
  doi: 10.1109/TFUZZ.2014.2375917
– ident: ref53
  doi: 10.1109/TSMC.2018.2800783
– ident: ref25
  doi: 10.1109/TNNLS.2015.2471262
– ident: ref4
  doi: 10.1109/TNNLS.2017.2760903
– ident: ref11
  doi: 10.1109/TFUZZ.2015.2486811
– ident: ref51
  doi: 10.1002/acs.2322
– ident: ref23
  doi: 10.1109/TFUZZ.2011.2176732
– volume: 29
  start-page: 3059
  year: 2018
  ident: ref47
  article-title: Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref36
  doi: 10.1109/TSMCB.2011.2159264
– volume: 29
  start-page: 3658
  year: 2018
  ident: ref2
  article-title: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2716947
– ident: ref20
  doi: 10.1109/TNNLS.2016.2616906
– ident: ref56
  doi: 10.1109/TAC.2011.2175071
– volume: 29
  start-page: 3022
  year: 2018
  ident: ref31
  article-title: Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref24
  doi: 10.1109/TNNLS.2014.2330336
– ident: ref29
  doi: 10.1109/TCYB.2015.2441292
– ident: ref14
  doi: 10.1109/TSMC.2017.2749124
– ident: ref19
  doi: 10.1109/TFUZZ.2017.2694799
– ident: ref1
  doi: 10.1109/TNN.2011.2146274
SSID ssj0000816898
Score 2.6190856
Snippet This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3408
SubjectTerms Accuracy
Adaptive control
Adaptive neural control
Adaptive systems
Artificial neural networks
Continuity (mathematics)
Control systems design
Controllers
dynamic surface technique
Feedback
Fuzzy control
MIMO communication
Neural networks
Nonlinear filters
Nonlinear systems
prespecified tracking accuracy
Radial basis function
stochastic nonstrict-feedback systems
Stochastic systems
Switches
Tracking control
Tracking errors
Title Adaptive Neural Dynamic Surface Control With Prespecified Tracking Accuracy of Uncertain Stochastic Nonstrict-Feedback Systems
URI https://ieeexplore.ieee.org/document/9170878
https://www.ncbi.nlm.nih.gov/pubmed/32809949
https://www.proquest.com/docview/2667016811
https://www.proquest.com/docview/2435529006
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEBSnkECjISB0B46zhPH5ctqwqpvbQryimyHVtFoE3VJgc48NuZcbwRQqXqLVI8eWjGM99nj2cA3pQ6K1qM1Nx77XjelpJrUXiudOFa7VQuajo7fHxSHq3yz-fF-RZ8mM7COOdC8pmb0WXYy287O9BS2QFSC1FX9TZsI3Ebz2pN6ymhgURofSvxgiOqqOImZirUwdni60ckgxI5KnrkUlDvvUzWCI-oiOZfESm0WPk_2gxRZ_kAjjffOyabfJ8NvZnZX_-UcrzrDz2E-xF-svloL7uw5daPYDdO8Gv2NlahfrcHv-etviRfyKh-B8ocjr3r2elw5bV1bDEmubMv3_oLRpkc1MneI6JlGP8srcCzubUoan-yzrMVviBkH7DTvrMXmupDsxNCp-iJe77EKGpQjMUS6o9htfx0tjjisVkDt1mueu61cEar1Chjc6RdJkBLh-jDUsGcAnGS11WqcJBBA0CWZYo6TbPauCKtjMqewM66W7tnwGrphPFOknwuLXI6j7wMqVSJ7ke3VQJio7DGxkrm1FDjRxMYjVANqbshdTdR3Qm8n0QuxzIetw3eI1VNA6OWEtjfWEUTJ_p1g_imQtSMf5LA6-k2TlHad9Fr1w04BiFpIRX6twSejtY0PXtjhM9vfucLuCfpvEXIsNyHnf5qcC8RBfXmVTD_P1pHAIE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAXoBTaQAEjcQBEtonz9HFZWC3Q3Ut3RTlFtmOrqNWmapMDHPjtzDjeCCGouEWKJw_NeOYbe_wNwMtcJlmNkTq0VpowrXMeyiizoZCZqaURaVTS2eH5Ip-t0k-n2ekWvB3OwhhjXPGZGdGl28uvG93RUtkRphZRWZS34DbG_Yz3p7WGFRXXQsI1v-V4ESKuKPw2ZhyJo-Xk6ztMBzlmqeiT84i67yW8RIBENJq_xSTXZOXfeNPFnek9mG--uC83OR91rRrpH3-QOf7vL92Hux6AsnFvMbuwZdYPYNdP8Wv2yvNQv96Dn-NaXpI3ZMTggTLv--717KS7slIbNunL3NmXb-0Zo1oO6mVvEdMyjICa1uDZWGsU1d9ZY9kKX-DqD9hJ2-gzSQzRbEH4FH1xG04xjioUY55E_SGsph-Wk1no2zWEOklFG1oZGSVFrITSKSZeyoFLg_hDE2VOhkjJyiIWOEihCWCepbIyjpNSmSwulEgewfa6WZsDYCU3kbKGk3zKNWZ1FjMzTKZydECyLgKINgqrtOcyp5YaF5XLaSJRkborUnfl1R3Am0HksifyuGnwHqlqGOi1FMDhxioqP9WvK0Q4BeJm_JMAXgy3cZLSzotcm6bDMQhKMy7QwwWw31vT8OyNET7--zufw53Zcn5cHX9cfH4CO5xOX7h6y0PYbq868xQxUaueuanwC-KtA8s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Dynamic+Surface+Control+With+Prespecified+Tracking+Accuracy+of+Uncertain+Stochastic+Nonstrict-Feedback+Systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wu%2C+Jian&rft.au=Chen%2C+Xuemiao&rft.au=Zhao%2C+Qianjin&rft.au=Li%2C+Jing&rft.date=2022-05-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=5&rft.spage=3408&rft.epage=3421&rft_id=info:doi/10.1109%2FTCYB.2020.3012607&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3012607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon