Adaptive Neural Dynamic Surface Control With Prespecified Tracking Accuracy of Uncertain Stochastic Nonstrict-Feedback Systems
This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions onl...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 5; pp. 3408 - 3421 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme. |
---|---|
AbstractList | This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme. This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme.This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme. |
Author | Li, Jing Wu, Jian Wu, Zheng-Guang Chen, Xuemiao Zhao, Qianjin |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0001-7398-6147 surname: Wu fullname: Wu, Jian email: jwu2011@126.com organization: University Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing Normal University, Anqing, China – sequence: 2 givenname: Xuemiao surname: Chen fullname: Chen, Xuemiao email: 2537360268@qq.com organization: College of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, China – sequence: 3 givenname: Qianjin surname: Zhao fullname: Zhao, Qianjin email: qjzhao@aust.edu.cn organization: College of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, China – sequence: 4 givenname: Jing orcidid: 0000-0003-3668-1162 surname: Li fullname: Li, Jing email: xidianjing@126.com organization: School of Mathematics and Statistics, Xidian University, Xi'an, China – sequence: 5 givenname: Zheng-Guang orcidid: 0000-0003-4460-9785 surname: Wu fullname: Wu, Zheng-Guang email: nashwzhg@zju.edu.cn organization: National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32809949$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU-LEzEYh4OsuGvdDyCCBLx4mZo_M5Pk2K2uCssqtIt4GpL0HTfrTFKTjNCLn92U1h72YC4J4Xl-Ce_vOTrzwQNCLymZU0rUu_Xy-9WcEUbmnFDWEvEEXTDayoox0Zydzq04R5cpPZCyZLlS8hk650wSpWp1gf4sNnqb3W_AtzBFPeD3O69HZ_Fqir22gJfB5xgG_M3le_w1QtqCdb2DDV5HbX86_wMvrC2q3eHQ4ztvIWbtPF7lYO91yiXrNviUo7O5ugbYmKLh1S5lGNML9LTXQ4LL4z5Dd9cf1stP1c2Xj5-Xi5vK8lrlqtcEjFbUKGNrWitDuRICGONWcNk0goleC6oKZGoiVduaRlLKpYGGCqP4DL095G5j-DVByt3okoVh0B7ClDpW86ZhipC2oG8eoQ9hir78rmNtK0iZYUmeoddHajIjbLptdKOOu-7fZAtAD4CNIaUI_QmhpNsX2O0L7PYFdscCiyMeOdZlnd2-Au2G_5qvDqYDgNNLigoiheR_Actcp3g |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1002_acs_3800 crossref_primary_10_1002_acs_3523 crossref_primary_10_1002_acs_3362 crossref_primary_10_1002_acs_3368 crossref_primary_10_1002_acs_3486 crossref_primary_10_1109_TSMC_2023_3281982 crossref_primary_10_1080_00207721_2024_2329739 crossref_primary_10_1002_acs_3918 crossref_primary_10_1016_j_jfranklin_2021_09_016 crossref_primary_10_1371_journal_pone_0312345 crossref_primary_10_1109_TAI_2023_3318895 crossref_primary_10_1002_asjc_3286 crossref_primary_10_1007_s12555_021_0971_6 crossref_primary_10_1049_cth2_12280 crossref_primary_10_1080_00207721_2025_2468867 crossref_primary_10_1002_acs_3812 crossref_primary_10_1109_TASE_2023_3336976 crossref_primary_10_1016_j_ins_2022_01_009 crossref_primary_10_1007_s11071_024_09574_z crossref_primary_10_1080_00207179_2023_2274058 crossref_primary_10_1080_00207721_2024_2304670 crossref_primary_10_1002_acs_3539 crossref_primary_10_1049_cth2_12285 crossref_primary_10_1016_j_isatra_2025_01_024 crossref_primary_10_1002_acs_3499 crossref_primary_10_1002_rnc_6064 crossref_primary_10_1080_00207721_2023_2272219 crossref_primary_10_1002_rnc_7799 crossref_primary_10_1002_asjc_3204 crossref_primary_10_1016_j_chaos_2024_114814 crossref_primary_10_1002_acs_3426 crossref_primary_10_1002_acs_3306 crossref_primary_10_1002_acs_3941 crossref_primary_10_1002_rnc_6803 crossref_primary_10_1002_acs_3546 crossref_primary_10_1002_acs_3705 crossref_primary_10_1002_acs_3706 crossref_primary_10_1007_s11431_024_2694_x crossref_primary_10_1007_s40815_021_01106_w crossref_primary_10_1109_ACCESS_2024_3459043 crossref_primary_10_1007_s40815_023_01668_x crossref_primary_10_1109_TIE_2024_3436632 crossref_primary_10_1109_TFUZZ_2023_3348271 crossref_primary_10_1002_acs_3542 crossref_primary_10_1007_s11071_021_06779_4 crossref_primary_10_3390_app13179552 crossref_primary_10_1007_s40815_023_01663_2 crossref_primary_10_1109_TIE_2024_3370953 crossref_primary_10_1016_j_jfranklin_2024_106766 crossref_primary_10_1002_acs_3799 crossref_primary_10_1002_rnc_7207 crossref_primary_10_1109_TCSII_2022_3222962 crossref_primary_10_1109_TCYB_2022_3178385 crossref_primary_10_1080_00207721_2025_2467838 crossref_primary_10_1016_j_chaos_2024_115170 crossref_primary_10_1016_j_fraope_2023_100035 crossref_primary_10_1016_j_matcom_2024_02_022 crossref_primary_10_3390_aerospace11110950 crossref_primary_10_1002_rnc_7051 crossref_primary_10_1016_j_chaos_2024_115166 crossref_primary_10_1080_00207721_2022_2135974 crossref_primary_10_1109_TSMC_2025_3525508 crossref_primary_10_1080_00207721_2023_2224520 crossref_primary_10_1002_acs_3828 crossref_primary_10_1109_TCSI_2021_3124485 crossref_primary_10_1002_rnc_7517 crossref_primary_10_1109_ACCESS_2021_3076076 crossref_primary_10_1016_j_nahs_2023_101334 crossref_primary_10_1109_TSMC_2024_3387435 crossref_primary_10_1109_TCYB_2022_3227389 crossref_primary_10_1007_s11071_022_07713_y crossref_primary_10_3390_electronics11152378 crossref_primary_10_1002_acs_3323 crossref_primary_10_1109_TSMC_2023_3245299 crossref_primary_10_1109_TSMC_2022_3143359 crossref_primary_10_1002_rnc_6038 crossref_primary_10_1016_j_chaos_2024_114501 crossref_primary_10_1016_j_neucom_2024_129157 crossref_primary_10_1002_acs_3977 crossref_primary_10_1007_s40815_024_01720_4 crossref_primary_10_1016_j_fss_2025_109321 crossref_primary_10_1080_00207721_2022_2025501 crossref_primary_10_3390_math11122725 crossref_primary_10_1002_acs_3610 crossref_primary_10_1177_14613484211045761 crossref_primary_10_1007_s40815_024_01914_w crossref_primary_10_1049_cth2_12528 crossref_primary_10_1016_j_isatra_2022_12_013 crossref_primary_10_3390_math11122732 crossref_primary_10_3390_math10142419 crossref_primary_10_1016_j_jfranklin_2021_05_026 crossref_primary_10_1080_00207179_2023_2214248 crossref_primary_10_1002_acs_3589 crossref_primary_10_1002_asjc_3350 crossref_primary_10_1007_s11432_022_3561_2 crossref_primary_10_1016_j_ins_2023_120014 crossref_primary_10_1007_s11071_023_08892_y crossref_primary_10_1109_TCYB_2023_3320441 crossref_primary_10_1109_TCYB_2024_3524242 crossref_primary_10_1109_TCYB_2023_3336992 crossref_primary_10_1177_01423312231174944 crossref_primary_10_1002_rnc_6172 crossref_primary_10_1155_2021_3396482 crossref_primary_10_1016_j_jfranklin_2024_107023 crossref_primary_10_1016_j_neucom_2024_129297 crossref_primary_10_1109_TCYB_2024_3453948 crossref_primary_10_1109_TSMC_2024_3444007 crossref_primary_10_1109_TCYB_2024_3502496 crossref_primary_10_1109_ACCESS_2021_3120469 crossref_primary_10_1109_ACCESS_2022_3188655 crossref_primary_10_1007_s00521_021_05689_1 crossref_primary_10_1007_s11071_021_06633_7 crossref_primary_10_1016_j_chaos_2022_112330 crossref_primary_10_1002_acs_3351 crossref_primary_10_1016_j_sysconle_2022_105176 crossref_primary_10_1109_TASE_2023_3334613 crossref_primary_10_1109_TCSII_2021_3075884 crossref_primary_10_1109_TSMC_2023_3294425 crossref_primary_10_1016_j_neucom_2024_128135 crossref_primary_10_1155_2021_1491995 crossref_primary_10_1155_2021_6646716 crossref_primary_10_1109_TFUZZ_2024_3418772 crossref_primary_10_3233_JIFS_238024 crossref_primary_10_1002_rnc_7650 |
Cites_doi | 10.1109/TNNLS.2015.2412121 10.1109/TCYB.2017.2749511 10.1109/TNNLS.2016.2531089 10.1109/TSMCB.2009.2033808 10.1109/TNNLS.2017.2669088 10.1109/TCYB.2014.2383378 10.1016/j.automatica.2017.02.005 10.1109/TFUZZ.2013.2280146 10.1109/TCYB.2017.2715980 10.1049/iet-cta.2013.0949 10.1109/TSMC.2017.2738155 10.1109/TAC.2008.929402 10.1109/TNNLS.2013.2283879 10.1109/TNNLS.2016.2598580 10.1109/TCYB.2018.2809576 10.1109/TCYB.2017.2684131 10.1109/TFUZZ.2017.2750619 10.1109/TFUZZ.2017.2765627 10.1109/TAC.2019.2926167 10.1109/TSMC.2016.2613998 10.1109/TFUZZ.2013.2291554 10.1109/TNNLS.2016.2521425 10.1109/TSMC.2016.2635678 10.1109/TCYB.2014.2363073 10.1109/TNN.2011.2146788 10.1109/TFUZZ.2015.2505088 10.1109/TNNLS.2018.2828140 10.1109/TFUZZ.2018.2798577 10.1109/TCYB.2014.2370645 10.1109/TFUZZ.2016.2540058 10.1002/rnc.4860 10.1109/TIE.2015.2455026 10.1109/TFUZZ.2016.2516587 10.1109/TNNLS.2014.2341242 10.1109/TNNLS.2015.2392946 10.1109/TCYB.2014.2333738 10.1109/TSMCB.2008.2006368 10.1016/j.ins.2017.08.085 10.1109/TNNLS.2014.2312001 10.1016/j.automatica.2014.10.079 10.1109/TCYB.2016.2600263 10.1109/TNNLS.2014.2357451 10.1109/TFUZZ.2016.2566807 10.1109/TFUZZ.2014.2382132 10.1109/TFUZZ.2014.2375917 10.1109/TSMC.2018.2800783 10.1109/TNNLS.2015.2471262 10.1109/TNNLS.2017.2760903 10.1109/TFUZZ.2015.2486811 10.1002/acs.2322 10.1109/TFUZZ.2011.2176732 10.1109/TSMCB.2011.2159264 10.1109/TNNLS.2017.2716947 10.1109/TNNLS.2016.2616906 10.1109/TAC.2011.2175071 10.1109/TNNLS.2014.2330336 10.1109/TCYB.2015.2441292 10.1109/TSMC.2017.2749124 10.1109/TFUZZ.2017.2694799 10.1109/TNN.2011.2146274 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2020.3012607 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 3421 |
ExternalDocumentID | 32809949 10_1109_TCYB_2020_3012607 9170878 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LR16F030001 funderid: 10.13039/501100004731 – fundername: Program for Academic Top-Notch Talents of University Disciplines grantid: gxbjZD21 – fundername: National Natural Science Foundation of China grantid: 61603003; 61673014; 61673339; 61702012 funderid: 10.13039/501100001809 – fundername: Foundation of University Team Program for Innovative Research Platform of Intelligent Perception and Computing of Anhui Province – fundername: Science Fund for Creative Research Groups of National Natural Science Foundation of China grantid: 61621002 funderid: 10.13039/501100001809 – fundername: Program for Innovative Research Team in Anqing Normal University funderid: 10.13039/501100002731 – fundername: Natural Science Foundation of Anhui Province grantid: 1608085QF131; 1908085MA01 funderid: 10.13039/501100003995 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-fa0eba91b9bc4149b13977e223c73855727fa719ebab408966b581138be517b93 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 09:41:14 EDT 2025 Mon Jun 30 06:36:19 EDT 2025 Wed Feb 19 02:25:22 EST 2025 Tue Jul 01 00:53:56 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 27 02:37:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-fa0eba91b9bc4149b13977e223c73855727fa719ebab408966b581138be517b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4460-9785 0000-0001-7398-6147 0000-0003-3668-1162 |
PMID | 32809949 |
PQID | 2667016811 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2020_3012607 pubmed_primary_32809949 ieee_primary_9170878 crossref_citationtrail_10_1109_TCYB_2020_3012607 proquest_journals_2667016811 proquest_miscellaneous_2435529006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 wang (ref2) 2018; 29 ref51 ref50 li (ref47) 2018; 29 ref46 ref45 ref48 ref42 ref41 ref44 ref43 wu (ref31) 2018; 29 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref1 ref39 ref38 ren (ref15) 2009; 39 ref24 ref23 ref26 ref25 ref20 ref21 liu (ref22) 2011; 22 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref28 doi: 10.1109/TNNLS.2015.2412121 – ident: ref55 doi: 10.1109/TCYB.2017.2749511 – ident: ref32 doi: 10.1109/TNNLS.2016.2531089 – ident: ref37 doi: 10.1109/TSMCB.2009.2033808 – ident: ref43 doi: 10.1109/TNNLS.2017.2669088 – ident: ref27 doi: 10.1109/TCYB.2014.2383378 – ident: ref48 doi: 10.1016/j.automatica.2017.02.005 – ident: ref16 doi: 10.1109/TFUZZ.2013.2280146 – ident: ref5 doi: 10.1109/TCYB.2017.2715980 – ident: ref54 doi: 10.1049/iet-cta.2013.0949 – ident: ref40 doi: 10.1109/TSMC.2017.2738155 – ident: ref46 doi: 10.1109/TAC.2008.929402 – ident: ref42 doi: 10.1109/TNNLS.2013.2283879 – ident: ref30 doi: 10.1109/TNNLS.2016.2598580 – ident: ref21 doi: 10.1109/TCYB.2018.2809576 – ident: ref34 doi: 10.1109/TCYB.2017.2684131 – ident: ref9 doi: 10.1109/TFUZZ.2017.2750619 – ident: ref13 doi: 10.1109/TFUZZ.2017.2765627 – ident: ref61 doi: 10.1109/TAC.2019.2926167 – ident: ref50 doi: 10.1109/TSMC.2016.2613998 – ident: ref59 doi: 10.1109/TFUZZ.2013.2291554 – ident: ref12 doi: 10.1109/TNNLS.2016.2521425 – ident: ref45 doi: 10.1109/TSMC.2016.2635678 – ident: ref39 doi: 10.1109/TCYB.2014.2363073 – volume: 22 start-page: 1162 year: 2011 ident: ref22 article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2146788 – ident: ref26 doi: 10.1109/TFUZZ.2015.2505088 – ident: ref17 doi: 10.1109/TNNLS.2018.2828140 – ident: ref6 doi: 10.1109/TFUZZ.2018.2798577 – ident: ref7 doi: 10.1109/TCYB.2014.2370645 – ident: ref35 doi: 10.1109/TFUZZ.2016.2540058 – ident: ref62 doi: 10.1002/rnc.4860 – ident: ref60 doi: 10.1109/TIE.2015.2455026 – ident: ref33 doi: 10.1109/TFUZZ.2016.2516587 – ident: ref3 doi: 10.1109/TNNLS.2014.2341242 – ident: ref49 doi: 10.1109/TNNLS.2015.2392946 – ident: ref18 doi: 10.1109/TCYB.2014.2333738 – volume: 39 start-page: 431 year: 2009 ident: ref15 article-title: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.2006368 – ident: ref38 doi: 10.1016/j.ins.2017.08.085 – ident: ref10 doi: 10.1109/TNNLS.2014.2312001 – ident: ref57 doi: 10.1016/j.automatica.2014.10.079 – ident: ref44 doi: 10.1109/TCYB.2016.2600263 – ident: ref52 doi: 10.1109/TNNLS.2014.2357451 – ident: ref58 doi: 10.1109/TFUZZ.2016.2566807 – ident: ref8 doi: 10.1109/TFUZZ.2014.2382132 – ident: ref41 doi: 10.1109/TFUZZ.2014.2375917 – ident: ref53 doi: 10.1109/TSMC.2018.2800783 – ident: ref25 doi: 10.1109/TNNLS.2015.2471262 – ident: ref4 doi: 10.1109/TNNLS.2017.2760903 – ident: ref11 doi: 10.1109/TFUZZ.2015.2486811 – ident: ref51 doi: 10.1002/acs.2322 – ident: ref23 doi: 10.1109/TFUZZ.2011.2176732 – volume: 29 start-page: 3059 year: 2018 ident: ref47 article-title: Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref36 doi: 10.1109/TSMCB.2011.2159264 – volume: 29 start-page: 3658 year: 2018 ident: ref2 article-title: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2716947 – ident: ref20 doi: 10.1109/TNNLS.2016.2616906 – ident: ref56 doi: 10.1109/TAC.2011.2175071 – volume: 29 start-page: 3022 year: 2018 ident: ref31 article-title: Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref24 doi: 10.1109/TNNLS.2014.2330336 – ident: ref29 doi: 10.1109/TCYB.2015.2441292 – ident: ref14 doi: 10.1109/TSMC.2017.2749124 – ident: ref19 doi: 10.1109/TFUZZ.2017.2694799 – ident: ref1 doi: 10.1109/TNN.2011.2146274 |
SSID | ssj0000816898 |
Score | 2.6190856 |
Snippet | This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3408 |
SubjectTerms | Accuracy Adaptive control Adaptive neural control Adaptive systems Artificial neural networks Continuity (mathematics) Control systems design Controllers dynamic surface technique Feedback Fuzzy control MIMO communication Neural networks Nonlinear filters Nonlinear systems prespecified tracking accuracy Radial basis function stochastic nonstrict-feedback systems Stochastic systems Switches Tracking control Tracking errors |
Title | Adaptive Neural Dynamic Surface Control With Prespecified Tracking Accuracy of Uncertain Stochastic Nonstrict-Feedback Systems |
URI | https://ieeexplore.ieee.org/document/9170878 https://www.ncbi.nlm.nih.gov/pubmed/32809949 https://www.proquest.com/docview/2667016811 https://www.proquest.com/docview/2435529006 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEBSnkECjISB0B46zhPH5ctqwqpvbQryimyHVtFoE3VJgc48NuZcbwRQqXqLVI8eWjGM99nj2cA3pQ6K1qM1Nx77XjelpJrUXiudOFa7VQuajo7fHxSHq3yz-fF-RZ8mM7COOdC8pmb0WXYy287O9BS2QFSC1FX9TZsI3Ebz2pN6ymhgURofSvxgiOqqOImZirUwdni60ckgxI5KnrkUlDvvUzWCI-oiOZfESm0WPk_2gxRZ_kAjjffOyabfJ8NvZnZX_-UcrzrDz2E-xF-svloL7uw5daPYDdO8Gv2NlahfrcHv-etviRfyKh-B8ocjr3r2elw5bV1bDEmubMv3_oLRpkc1MneI6JlGP8srcCzubUoan-yzrMVviBkH7DTvrMXmupDsxNCp-iJe77EKGpQjMUS6o9htfx0tjjisVkDt1mueu61cEar1Chjc6RdJkBLh-jDUsGcAnGS11WqcJBBA0CWZYo6TbPauCKtjMqewM66W7tnwGrphPFOknwuLXI6j7wMqVSJ7ke3VQJio7DGxkrm1FDjRxMYjVANqbshdTdR3Qm8n0QuxzIetw3eI1VNA6OWEtjfWEUTJ_p1g_imQtSMf5LA6-k2TlHad9Fr1w04BiFpIRX6twSejtY0PXtjhM9vfucLuCfpvEXIsNyHnf5qcC8RBfXmVTD_P1pHAIE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAXoBTaQAEjcQBEtonz9HFZWC3Q3Ut3RTlFtmOrqNWmapMDHPjtzDjeCCGouEWKJw_NeOYbe_wNwMtcJlmNkTq0VpowrXMeyiizoZCZqaURaVTS2eH5Ip-t0k-n2ekWvB3OwhhjXPGZGdGl28uvG93RUtkRphZRWZS34DbG_Yz3p7WGFRXXQsI1v-V4ESKuKPw2ZhyJo-Xk6ztMBzlmqeiT84i67yW8RIBENJq_xSTXZOXfeNPFnek9mG--uC83OR91rRrpH3-QOf7vL92Hux6AsnFvMbuwZdYPYNdP8Wv2yvNQv96Dn-NaXpI3ZMTggTLv--717KS7slIbNunL3NmXb-0Zo1oO6mVvEdMyjICa1uDZWGsU1d9ZY9kKX-DqD9hJ2-gzSQzRbEH4FH1xG04xjioUY55E_SGsph-Wk1no2zWEOklFG1oZGSVFrITSKSZeyoFLg_hDE2VOhkjJyiIWOEihCWCepbIyjpNSmSwulEgewfa6WZsDYCU3kbKGk3zKNWZ1FjMzTKZydECyLgKINgqrtOcyp5YaF5XLaSJRkborUnfl1R3Am0HksifyuGnwHqlqGOi1FMDhxioqP9WvK0Q4BeJm_JMAXgy3cZLSzotcm6bDMQhKMy7QwwWw31vT8OyNET7--zufw53Zcn5cHX9cfH4CO5xOX7h6y0PYbq868xQxUaueuanwC-KtA8s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Dynamic+Surface+Control+With+Prespecified+Tracking+Accuracy+of+Uncertain+Stochastic+Nonstrict-Feedback+Systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wu%2C+Jian&rft.au=Chen%2C+Xuemiao&rft.au=Zhao%2C+Qianjin&rft.au=Li%2C+Jing&rft.date=2022-05-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=5&rft.spage=3408&rft.epage=3421&rft_id=info:doi/10.1109%2FTCYB.2020.3012607&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3012607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |