Exact analytical solution to the 3D Navier-Lame equation for a curved beam of constant curvature subject to arbitrary dynamic loading
This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular cross-section. The solution technique uses vector identities to decouple the governing equations. The decoupled equations are then solved by...
Saved in:
Published in | European journal of mechanics, A, Solids Vol. 75; pp. 216 - 224 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Masson SAS
01.05.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular cross-section. The solution technique uses vector identities to decouple the governing equations. The decoupled equations are then solved by method of separation of variables. The solutions to the decoupled equations can be recombined to form a new equation. Solving this new equation yields the displacement field. To demonstrate the capabilities of the proposed solution technique, a generic case study was modeled and computed. A curved beam is subjected to a longitudinal impulse loading and the transient displacement field is calculated. This solution technique is valid for any curvature so long as the curvature is the same throughout the beam. This includes the limiting case where the inner radius of the beam goes to zero and the curved beam becomes a section of a disk. The presented solution results were compared with an approximate solution from the literature and experimental data from the literature. The solution is also compared with an explicit FEM solution conducted by the Authors. The presented solution agrees with the results from the literature and from the FEM solutions conducted by the Authors. This paper demonstrates that the accuracy and robustness of the proposed solution technique meets the needs of many potential applications.
•The 3D transient response of solids is investigated and an analytical solution is developed.•The displacement field is represented as Fourier series.•A generic case study of a curved beam is conducted and compared with the literature and with numerical results. |
---|---|
AbstractList | This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular cross-section. The solution technique uses vector identities to decouple the governing equations. The decoupled equations are then solved by method of separation of variables. The solutions to the decoupled equations can be recombined to form a new equation. Solving this new equation yields the displacement field. To demonstrate the capabilities of the proposed solution technique, a generic case study was modeled and computed. A curved beam is subjected to a longitudinal impulse loading and the transient displacement field is calculated. This solution technique is valid for any curvature so long as the curvature is the same throughout the beam. This includes the limiting case where the inner radius of the beam goes to zero and the curved beam becomes a section of a disk. The presented solution results were compared with an approximate solution from the literature and experimental data from the literature. The solution is also compared with an explicit FEM solution conducted by the Authors. The presented solution agrees with the results from the literature and from the FEM solutions conducted by the Authors. This paper demonstrates that the accuracy and robustness of the proposed solution technique meets the needs of many potential applications.
•The 3D transient response of solids is investigated and an analytical solution is developed.•The displacement field is represented as Fourier series.•A generic case study of a curved beam is conducted and compared with the literature and with numerical results. This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular cross-section. The solution technique uses vector identities to decouple the governing equations. The decoupled equations are then solved by method of separation of variables. The solutions to the decoupled equations can be recombined to form a new equation. Solving this new equation yields the displacement field. To demonstrate the capabilities of the proposed solution technique, a generic case study was modeled and computed. A curved beam is subjected to a longitudinal impulse loading and the transient displacement field is calculated. This solution technique is valid for any curvature so long as the curvature is the same throughout the beam. This includes the limiting case where the inner radius of the beam goes to zero and the curved beam becomes a section of a disk. The presented solution results were compared with an approximate solution from the literature and experimental data from the literature. The solution is also compared with an explicit FEM solution conducted by the Authors. The presented solution agrees with the results from the literature and from the FEM solutions conducted by the Authors. This paper demonstrates that the accuracy and robustness of the proposed solution technique meets the needs of many potential applications. |
Author | Gau, Jenn-Terng Mitchell, Drew |
Author_xml | – sequence: 1 givenname: Drew surname: Mitchell fullname: Mitchell, Drew email: Mitche2388@gmail.com – sequence: 2 givenname: Jenn-Terng orcidid: 0000-0002-8882-8659 surname: Gau fullname: Gau, Jenn-Terng email: jgau@niu.edu |
BookMark | eNqNkE1vEzEQhi1UJNLCfzDivIs_4_iEUCgfUgQXOFte75h6tWu3trciP4D_jZNwQJx6Gskz84zf5xpdxRQBodeU9JTQ7duphzWnBdxdSXPPCNU9oT1h8hna0J3inWI7eYU2RGvVKcl3L9B1KRMhhBFGN-j37S_rKrbRzscanJ1x46w1pIhrwvUOMP-Av9rHALk72AUwPKz23PYpY4vdmh9hxAPYBSePXYql2ljP77auGXBZhwnaiYazeQg123zE4zHaJTg8JzuG-PMleu7tXODV33qDfny8_b7_3B2-ffqyf3_oHBe6dn7X6iAIEYQPgxqZ2jLFuJROc-qJAhBEj15TBVpo6ke5HZSXnGthQVLGb9CbC_c-p4cVSjVTWnPLXgxjYsuk0Ey0qXeXKZdTKRm8caGeQ7fPh9lQYk7uzWT-cW9O7g2hprlvBP0f4T6HpQV_0u7-sgtNxMm7KS5AdDCG3DyaMYUnUP4A8dGqgw |
CitedBy_id | crossref_primary_10_1088_1402_4896_ac418f crossref_primary_10_1007_s11012_020_01153_x crossref_primary_10_1016_j_tws_2023_110941 crossref_primary_10_1016_j_euromechsol_2020_103953 crossref_primary_10_1177_0892705720930765 |
Cites_doi | 10.1115/1.2789097 10.1006/jsvi.1997.1290 10.1016/j.wavemoti.2011.06.003 10.1016/j.jsv.2008.05.011 10.1016/S0022-460X(74)80116-1 10.1016/j.cma.2010.03.006 10.1093/qjmam/14.2.155 10.1006/jsvi.1996.0504 10.1016/j.euromechsol.2017.07.004 10.1016/0022-460X(72)90953-4 10.1115/1.3423274 10.1098/rspa.1966.0163 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV May/Jun 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV May/Jun 2019 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.euromechsol.2019.01.025 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1873-7285 |
EndPage | 224 |
ExternalDocumentID | 10_1016_j_euromechsol_2019_01_025 S0997753818303978 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSZ T5K VH1 XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c349t-f8c34b400403bb7d276272355c931f07ee409df917e9491fd56b7f53394ae5123 |
IEDL.DBID | .~1 |
ISSN | 0997-7538 |
IngestDate | Fri Jul 25 05:51:03 EDT 2025 Tue Jul 01 01:55:20 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Fri Feb 23 02:28:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Curved beam Elasticity Elastic wave propagation Displacement field Dynamic impact |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-f8c34b400403bb7d276272355c931f07ee409df917e9491fd56b7f53394ae5123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8882-8659 |
PQID | 2246254924 |
PQPubID | 2045479 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2246254924 crossref_citationtrail_10_1016_j_euromechsol_2019_01_025 crossref_primary_10_1016_j_euromechsol_2019_01_025 elsevier_sciencedirect_doi_10_1016_j_euromechsol_2019_01_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May-June 2019 2019-05-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May-June 2019 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | European journal of mechanics, A, Solids |
PublicationYear | 2019 |
Publisher | Elsevier Masson SAS Elsevier BV |
Publisher_xml | – name: Elsevier Masson SAS – name: Elsevier BV |
References | Tüfekçi, Arpaci (bib15) 1998; 209 Morley (bib11) 1961; 14 [Accessed May 22, 2018]. Kang, Riedel (bib6) 2012; 49 Love (bib7) 1927 Huang, Teng, Leissa (bib5) 1996; 196 Phillips, Crowley (bib12) 1972; 24 Eason (bib2) 1974; 36 Green, Laws (bib3) 1966; 293 Mitchell, Gau (bib10) 2017; 66 Shim, Quah (bib13) 1988; 65 Crowley, Phillips, Taylor (bib1) 1974; 41 Svante, Fraggstedt (bib14) 2008; 312 Zhou, Ichchou (bib16) 2010; 199 Lü, Lü (bib8) 2008; 318 Malvern (bib9) 1969 Huang (10.1016/j.euromechsol.2019.01.025_bib5) 1996; 196 Kang (10.1016/j.euromechsol.2019.01.025_bib6) 2012; 49 Morley (10.1016/j.euromechsol.2019.01.025_bib11) 1961; 14 Lü (10.1016/j.euromechsol.2019.01.025_bib8) 2008; 318 Phillips (10.1016/j.euromechsol.2019.01.025_bib12) 1972; 24 Green (10.1016/j.euromechsol.2019.01.025_bib3) 1966; 293 Mitchell (10.1016/j.euromechsol.2019.01.025_bib10) 2017; 66 Shim (10.1016/j.euromechsol.2019.01.025_bib13) 1988; 65 Crowley (10.1016/j.euromechsol.2019.01.025_bib1) 1974; 41 Eason (10.1016/j.euromechsol.2019.01.025_bib2) 1974; 36 Svante (10.1016/j.euromechsol.2019.01.025_bib14) 2008; 312 Tüfekçi (10.1016/j.euromechsol.2019.01.025_bib15) 1998; 209 10.1016/j.euromechsol.2019.01.025_bib4 Love (10.1016/j.euromechsol.2019.01.025_bib7) 1927 Zhou (10.1016/j.euromechsol.2019.01.025_bib16) 2010; 199 Malvern (10.1016/j.euromechsol.2019.01.025_bib9) 1969 |
References_xml | – year: 1927 ident: bib7 article-title: A Treatise on the Mathematical Theory of Elasticity – volume: 199 start-page: 2099 year: 2010 end-page: 2109 ident: bib16 article-title: Wave propagation in mechanical waveguide with curved members using wave finite element solution publication-title: Comput. Methods Appl. Mech. Eng. – volume: 66 start-page: 269 year: 2017 end-page: 278 ident: bib10 article-title: A new model for calculating the transient displacement field within a linear elastic isotropic solid with a through hole under dynamic impact: a 3D model is developed and a 2D case study is examined publication-title: Eur. J. Mech. A Solid. – volume: 318 start-page: 982 year: 2008 end-page: 990 ident: bib8 article-title: Exact two-dimensional solutions for in-plane natural frequencies of laminated circular arches publication-title: J. Sound Vib. – volume: 24 start-page: 247 year: 1972 end-page: 258 ident: bib12 article-title: On the theory of pulse propagation in curved beams publication-title: J. Sound Vib. – volume: 41 start-page: 71 year: 1974 end-page: 76 ident: bib1 article-title: Pulse propagation in straight and curved beams-theory and experiment publication-title: J. Appl. Mech. – year: 1969 ident: bib9 article-title: Introduction to the Mechanics of a Continuous Medium – volume: 209 start-page: 845 year: 1998 end-page: 856 ident: bib15 article-title: Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects publication-title: J. Sound Vib. – reference: [Accessed May 22, 2018]. – volume: 36 start-page: 491 year: 1974 end-page: 511 ident: bib2 article-title: Wave propagation in a naturally curved elastic rod publication-title: J. Sound Vib. – volume: 65 start-page: 569 year: 1988 end-page: 579 ident: bib13 article-title: Solution of impact-induced flexural waves in a circular ring by the method of characteristics publication-title: J. Appl. Mech. – volume: 196 start-page: 595 year: 1996 end-page: 609 ident: bib5 article-title: An accurate solution for the in-plane transient response of a circular arch publication-title: J. Sound Vib. – volume: 49 start-page: 1 year: 2012 end-page: 23 ident: bib6 article-title: On the validity of planar, thick curved beam models derived with respect to centroidal and neutral axes publication-title: Wave Motion – volume: 14 start-page: 155 year: 1961 end-page: 172 ident: bib11 article-title: Elastic waves in a naturally curved rod publication-title: Q. J. Mech. Appl. Math. – volume: 312 start-page: 644 year: 2008 end-page: 671 ident: bib14 article-title: Waveguide finite elements for curved structures publication-title: J. Sound Vib. – volume: 293 start-page: 145 year: 1966 end-page: 155 ident: bib3 article-title: A general theory of rods publication-title: Proc. Royal Soc. London A, Math., Phys. Eng. Sci. – volume: 65 start-page: 569 issue: 3 year: 1988 ident: 10.1016/j.euromechsol.2019.01.025_bib13 article-title: Solution of impact-induced flexural waves in a circular ring by the method of characteristics publication-title: J. Appl. Mech. doi: 10.1115/1.2789097 – volume: 209 start-page: 845 issue: 5 year: 1998 ident: 10.1016/j.euromechsol.2019.01.025_bib15 article-title: Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects publication-title: J. Sound Vib. doi: 10.1006/jsvi.1997.1290 – volume: 49 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.euromechsol.2019.01.025_bib6 article-title: On the validity of planar, thick curved beam models derived with respect to centroidal and neutral axes publication-title: Wave Motion doi: 10.1016/j.wavemoti.2011.06.003 – volume: 318 start-page: 982 issue: 4–5 year: 2008 ident: 10.1016/j.euromechsol.2019.01.025_bib8 article-title: Exact two-dimensional solutions for in-plane natural frequencies of laminated circular arches publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.05.011 – year: 1927 ident: 10.1016/j.euromechsol.2019.01.025_bib7 – volume: 36 start-page: 491 issue: 4 year: 1974 ident: 10.1016/j.euromechsol.2019.01.025_bib2 article-title: Wave propagation in a naturally curved elastic rod publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(74)80116-1 – ident: 10.1016/j.euromechsol.2019.01.025_bib4 – volume: 199 start-page: 2099 issue: 33–36 year: 2010 ident: 10.1016/j.euromechsol.2019.01.025_bib16 article-title: Wave propagation in mechanical waveguide with curved members using wave finite element solution publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.03.006 – volume: 14 start-page: 155 issue: 2 year: 1961 ident: 10.1016/j.euromechsol.2019.01.025_bib11 article-title: Elastic waves in a naturally curved rod publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/14.2.155 – volume: 196 start-page: 595 issue: 5 year: 1996 ident: 10.1016/j.euromechsol.2019.01.025_bib5 article-title: An accurate solution for the in-plane transient response of a circular arch publication-title: J. Sound Vib. doi: 10.1006/jsvi.1996.0504 – volume: 66 start-page: 269 year: 2017 ident: 10.1016/j.euromechsol.2019.01.025_bib10 article-title: A new model for calculating the transient displacement field within a linear elastic isotropic solid with a through hole under dynamic impact: a 3D model is developed and a 2D case study is examined publication-title: Eur. J. Mech. A Solid. doi: 10.1016/j.euromechsol.2017.07.004 – volume: 24 start-page: 247 issue: 2 year: 1972 ident: 10.1016/j.euromechsol.2019.01.025_bib12 article-title: On the theory of pulse propagation in curved beams publication-title: J. Sound Vib. doi: 10.1016/0022-460X(72)90953-4 – volume: 41 start-page: 71 issue: 1 year: 1974 ident: 10.1016/j.euromechsol.2019.01.025_bib1 article-title: Pulse propagation in straight and curved beams-theory and experiment publication-title: J. Appl. Mech. doi: 10.1115/1.3423274 – volume: 293 start-page: 145 issue: 1433 year: 1966 ident: 10.1016/j.euromechsol.2019.01.025_bib3 article-title: A general theory of rods publication-title: Proc. Royal Soc. London A, Math., Phys. Eng. Sci. doi: 10.1098/rspa.1966.0163 – year: 1969 ident: 10.1016/j.euromechsol.2019.01.025_bib9 – volume: 312 start-page: 644 issue: 4–5 year: 2008 ident: 10.1016/j.euromechsol.2019.01.025_bib14 article-title: Waveguide finite elements for curved structures publication-title: J. Sound Vib. |
SSID | ssj0002021 |
Score | 2.2664852 |
Snippet | This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 216 |
SubjectTerms | Curvature Curved beam Curved beams Displacement field Dynamic impact Dynamic loads Economic models Elastic wave propagation Elasticity Exact solutions Identities Impulse loading Lame functions Robustness (mathematics) |
Title | Exact analytical solution to the 3D Navier-Lame equation for a curved beam of constant curvature subject to arbitrary dynamic loading |
URI | https://dx.doi.org/10.1016/j.euromechsol.2019.01.025 https://www.proquest.com/docview/2246254924 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBchhbHL1q0dzZaVN-jVi2MrdgS9hKwl-8qlC-QmJFmiKfla4oydetv_vfdkeekKg8BOxsaSjd6Hfk-893uMXQiFsDzWvUjY2EVcpQJNymDgmitHDeFT7rn0vo6z0YR_mvamDTasa2EorTL4_sqne28dnnTCanbWs1nnhmo-EWzjjoNuGIMhqmDnOWn5-_t9mgcG975rHrGO0ttP2Lt9jhfxXyysuUUxU5aXqBg8e__aox55a78FXR-zZwE7wqD6vResYZcv2fOAIyFY6faE_br6qUwJivhG_FE11AoG5QoQ8UH6AcaKvhZ9UQsL9ntF-A2IYEGB2W1-4ITaqgWsHJgKQpb-uecBhe1O0_kNTac2euZL96GomtvDfOXz8k_Z5Prq23AUhXYLkUm5KCPXx6smm45TrfMiQT-ZJ4hHjEi7Ls6txViwcBjfWcFF1xW9TOcO4aLgyiJuSF-x5nK1tGcMMkQ1BUZWieExdyYTme0rI3hiVe6si1usXy-wNIGLnFpizGWddHYnH8hGkmxk3JUomxZL_gxdV4Qchwy6rKUo_9IuiRvHIcPbteRlMPGtJCY-iq4T_vr_Zn_DntJdlUXZZs1ys7NvEemU-tyr8jk7Gnz8PBr_BrYeAQI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED66FLa9rPvJurXbDfZq4tiyHcFeSteSrmle1kLfhCRLNKNJ2sQp-wf2f-9OlruuMCjsySBzstHp7r4Tp-8APktNsDw1RSJd6hOhc0kmZSlxrbTnhvC5CFx6J5NydCa-nRfnG7Df3YXhssro-1ufHrx1HOnH1exfTaf973znk8A2RRxyw5QMPYJNZqcqerC5d3Q8mtw6ZMrvQ-M8Jh5lgcfw6U-ZF1NgzJy9IE1zoZdsSTyLf4Wpew47RKHD5_Aswkfca__wBWy4-UvYilASo6GuXsGvg5_aNqiZciScVmO3x7BZIIE-zL_iRPPXkrGeOXTXLec3EohFjXa9vKEJjdMzXHi0LYpswnigAsXV2vARDk-nl2Yabu9j3fa3x8tFKM1_DWeHB6f7oyR2XEhsLmST-CE9DZt1mhtT1Rm5yiojSGJlPvBp5Rylg7WnFM9JIQe-LkpTeUKMUmhH0CF_A735Yu7eApYEbGpKrjIrUuFtKUs31FaKzOnKO59uw7BbYGUjHTl3xbhUXd3ZD3VHN4p1o9KBIt1sQ3YretVycjxE6EunRfXXBlMUOx4ivtNpXkUrXykm4-MEOxPv_m_2j_BkdHoyVuOjyfF7eMpv2qLKHeg1y7XbJeDTmA9xY_8GdZkDsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+analytical+solution+to+the+3D+Navier-Lame+equation+for+a+curved+beam+of+constant+curvature+subject+to+arbitrary+dynamic+loading&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Mitchell%2C+Drew&rft.au=Gau%2C+Jenn-Terng&rft.date=2019-05-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=75&rft.spage=216&rft.epage=224&rft_id=info:doi/10.1016%2Fj.euromechsol.2019.01.025&rft.externalDocID=S0997753818303978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon |