Exact analytical solution to the 3D Navier-Lame equation for a curved beam of constant curvature subject to arbitrary dynamic loading

This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular cross-section. The solution technique uses vector identities to decouple the governing equations. The decoupled equations are then solved by...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of mechanics, A, Solids Vol. 75; pp. 216 - 224
Main Authors Mitchell, Drew, Gau, Jenn-Terng
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Masson SAS 01.05.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular cross-section. The solution technique uses vector identities to decouple the governing equations. The decoupled equations are then solved by method of separation of variables. The solutions to the decoupled equations can be recombined to form a new equation. Solving this new equation yields the displacement field. To demonstrate the capabilities of the proposed solution technique, a generic case study was modeled and computed. A curved beam is subjected to a longitudinal impulse loading and the transient displacement field is calculated. This solution technique is valid for any curvature so long as the curvature is the same throughout the beam. This includes the limiting case where the inner radius of the beam goes to zero and the curved beam becomes a section of a disk. The presented solution results were compared with an approximate solution from the literature and experimental data from the literature. The solution is also compared with an explicit FEM solution conducted by the Authors. The presented solution agrees with the results from the literature and from the FEM solutions conducted by the Authors. This paper demonstrates that the accuracy and robustness of the proposed solution technique meets the needs of many potential applications. •The 3D transient response of solids is investigated and an analytical solution is developed.•The displacement field is represented as Fourier series.•A generic case study of a curved beam is conducted and compared with the literature and with numerical results.
AbstractList This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular cross-section. The solution technique uses vector identities to decouple the governing equations. The decoupled equations are then solved by method of separation of variables. The solutions to the decoupled equations can be recombined to form a new equation. Solving this new equation yields the displacement field. To demonstrate the capabilities of the proposed solution technique, a generic case study was modeled and computed. A curved beam is subjected to a longitudinal impulse loading and the transient displacement field is calculated. This solution technique is valid for any curvature so long as the curvature is the same throughout the beam. This includes the limiting case where the inner radius of the beam goes to zero and the curved beam becomes a section of a disk. The presented solution results were compared with an approximate solution from the literature and experimental data from the literature. The solution is also compared with an explicit FEM solution conducted by the Authors. The presented solution agrees with the results from the literature and from the FEM solutions conducted by the Authors. This paper demonstrates that the accuracy and robustness of the proposed solution technique meets the needs of many potential applications. •The 3D transient response of solids is investigated and an analytical solution is developed.•The displacement field is represented as Fourier series.•A generic case study of a curved beam is conducted and compared with the literature and with numerical results.
This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular cross-section. The solution technique uses vector identities to decouple the governing equations. The decoupled equations are then solved by method of separation of variables. The solutions to the decoupled equations can be recombined to form a new equation. Solving this new equation yields the displacement field. To demonstrate the capabilities of the proposed solution technique, a generic case study was modeled and computed. A curved beam is subjected to a longitudinal impulse loading and the transient displacement field is calculated. This solution technique is valid for any curvature so long as the curvature is the same throughout the beam. This includes the limiting case where the inner radius of the beam goes to zero and the curved beam becomes a section of a disk. The presented solution results were compared with an approximate solution from the literature and experimental data from the literature. The solution is also compared with an explicit FEM solution conducted by the Authors. The presented solution agrees with the results from the literature and from the FEM solutions conducted by the Authors. This paper demonstrates that the accuracy and robustness of the proposed solution technique meets the needs of many potential applications.
Author Gau, Jenn-Terng
Mitchell, Drew
Author_xml – sequence: 1
  givenname: Drew
  surname: Mitchell
  fullname: Mitchell, Drew
  email: Mitche2388@gmail.com
– sequence: 2
  givenname: Jenn-Terng
  orcidid: 0000-0002-8882-8659
  surname: Gau
  fullname: Gau, Jenn-Terng
  email: jgau@niu.edu
BookMark eNqNkE1vEzEQhi1UJNLCfzDivIs_4_iEUCgfUgQXOFte75h6tWu3trciP4D_jZNwQJx6Gskz84zf5xpdxRQBodeU9JTQ7duphzWnBdxdSXPPCNU9oT1h8hna0J3inWI7eYU2RGvVKcl3L9B1KRMhhBFGN-j37S_rKrbRzscanJ1x46w1pIhrwvUOMP-Av9rHALk72AUwPKz23PYpY4vdmh9hxAPYBSePXYql2ljP77auGXBZhwnaiYazeQg123zE4zHaJTg8JzuG-PMleu7tXODV33qDfny8_b7_3B2-ffqyf3_oHBe6dn7X6iAIEYQPgxqZ2jLFuJROc-qJAhBEj15TBVpo6ke5HZSXnGthQVLGb9CbC_c-p4cVSjVTWnPLXgxjYsuk0Ey0qXeXKZdTKRm8caGeQ7fPh9lQYk7uzWT-cW9O7g2hprlvBP0f4T6HpQV_0u7-sgtNxMm7KS5AdDCG3DyaMYUnUP4A8dGqgw
CitedBy_id crossref_primary_10_1088_1402_4896_ac418f
crossref_primary_10_1007_s11012_020_01153_x
crossref_primary_10_1016_j_tws_2023_110941
crossref_primary_10_1016_j_euromechsol_2020_103953
crossref_primary_10_1177_0892705720930765
Cites_doi 10.1115/1.2789097
10.1006/jsvi.1997.1290
10.1016/j.wavemoti.2011.06.003
10.1016/j.jsv.2008.05.011
10.1016/S0022-460X(74)80116-1
10.1016/j.cma.2010.03.006
10.1093/qjmam/14.2.155
10.1006/jsvi.1996.0504
10.1016/j.euromechsol.2017.07.004
10.1016/0022-460X(72)90953-4
10.1115/1.3423274
10.1098/rspa.1966.0163
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV May/Jun 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV May/Jun 2019
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.euromechsol.2019.01.025
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-7285
EndPage 224
ExternalDocumentID 10_1016_j_euromechsol_2019_01_025
S0997753818303978
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c349t-f8c34b400403bb7d276272355c931f07ee409df917e9491fd56b7f53394ae5123
IEDL.DBID .~1
ISSN 0997-7538
IngestDate Fri Jul 25 05:51:03 EDT 2025
Tue Jul 01 01:55:20 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Fri Feb 23 02:28:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Curved beam
Elasticity
Elastic wave propagation
Displacement field
Dynamic impact
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-f8c34b400403bb7d276272355c931f07ee409df917e9491fd56b7f53394ae5123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8882-8659
PQID 2246254924
PQPubID 2045479
PageCount 9
ParticipantIDs proquest_journals_2246254924
crossref_citationtrail_10_1016_j_euromechsol_2019_01_025
crossref_primary_10_1016_j_euromechsol_2019_01_025
elsevier_sciencedirect_doi_10_1016_j_euromechsol_2019_01_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May-June 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May-June 2019
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle European journal of mechanics, A, Solids
PublicationYear 2019
Publisher Elsevier Masson SAS
Elsevier BV
Publisher_xml – name: Elsevier Masson SAS
– name: Elsevier BV
References Tüfekçi, Arpaci (bib15) 1998; 209
Morley (bib11) 1961; 14
[Accessed May 22, 2018].
Kang, Riedel (bib6) 2012; 49
Love (bib7) 1927
Huang, Teng, Leissa (bib5) 1996; 196
Phillips, Crowley (bib12) 1972; 24
Eason (bib2) 1974; 36
Green, Laws (bib3) 1966; 293
Mitchell, Gau (bib10) 2017; 66
Shim, Quah (bib13) 1988; 65
Crowley, Phillips, Taylor (bib1) 1974; 41
Svante, Fraggstedt (bib14) 2008; 312
Zhou, Ichchou (bib16) 2010; 199
Lü, Lü (bib8) 2008; 318
Malvern (bib9) 1969
Huang (10.1016/j.euromechsol.2019.01.025_bib5) 1996; 196
Kang (10.1016/j.euromechsol.2019.01.025_bib6) 2012; 49
Morley (10.1016/j.euromechsol.2019.01.025_bib11) 1961; 14
Lü (10.1016/j.euromechsol.2019.01.025_bib8) 2008; 318
Phillips (10.1016/j.euromechsol.2019.01.025_bib12) 1972; 24
Green (10.1016/j.euromechsol.2019.01.025_bib3) 1966; 293
Mitchell (10.1016/j.euromechsol.2019.01.025_bib10) 2017; 66
Shim (10.1016/j.euromechsol.2019.01.025_bib13) 1988; 65
Crowley (10.1016/j.euromechsol.2019.01.025_bib1) 1974; 41
Eason (10.1016/j.euromechsol.2019.01.025_bib2) 1974; 36
Svante (10.1016/j.euromechsol.2019.01.025_bib14) 2008; 312
Tüfekçi (10.1016/j.euromechsol.2019.01.025_bib15) 1998; 209
10.1016/j.euromechsol.2019.01.025_bib4
Love (10.1016/j.euromechsol.2019.01.025_bib7) 1927
Zhou (10.1016/j.euromechsol.2019.01.025_bib16) 2010; 199
Malvern (10.1016/j.euromechsol.2019.01.025_bib9) 1969
References_xml – year: 1927
  ident: bib7
  article-title: A Treatise on the Mathematical Theory of Elasticity
– volume: 199
  start-page: 2099
  year: 2010
  end-page: 2109
  ident: bib16
  article-title: Wave propagation in mechanical waveguide with curved members using wave finite element solution
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 66
  start-page: 269
  year: 2017
  end-page: 278
  ident: bib10
  article-title: A new model for calculating the transient displacement field within a linear elastic isotropic solid with a through hole under dynamic impact: a 3D model is developed and a 2D case study is examined
  publication-title: Eur. J. Mech. A Solid.
– volume: 318
  start-page: 982
  year: 2008
  end-page: 990
  ident: bib8
  article-title: Exact two-dimensional solutions for in-plane natural frequencies of laminated circular arches
  publication-title: J. Sound Vib.
– volume: 24
  start-page: 247
  year: 1972
  end-page: 258
  ident: bib12
  article-title: On the theory of pulse propagation in curved beams
  publication-title: J. Sound Vib.
– volume: 41
  start-page: 71
  year: 1974
  end-page: 76
  ident: bib1
  article-title: Pulse propagation in straight and curved beams-theory and experiment
  publication-title: J. Appl. Mech.
– year: 1969
  ident: bib9
  article-title: Introduction to the Mechanics of a Continuous Medium
– volume: 209
  start-page: 845
  year: 1998
  end-page: 856
  ident: bib15
  article-title: Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects
  publication-title: J. Sound Vib.
– reference: [Accessed May 22, 2018].
– volume: 36
  start-page: 491
  year: 1974
  end-page: 511
  ident: bib2
  article-title: Wave propagation in a naturally curved elastic rod
  publication-title: J. Sound Vib.
– volume: 65
  start-page: 569
  year: 1988
  end-page: 579
  ident: bib13
  article-title: Solution of impact-induced flexural waves in a circular ring by the method of characteristics
  publication-title: J. Appl. Mech.
– volume: 196
  start-page: 595
  year: 1996
  end-page: 609
  ident: bib5
  article-title: An accurate solution for the in-plane transient response of a circular arch
  publication-title: J. Sound Vib.
– volume: 49
  start-page: 1
  year: 2012
  end-page: 23
  ident: bib6
  article-title: On the validity of planar, thick curved beam models derived with respect to centroidal and neutral axes
  publication-title: Wave Motion
– volume: 14
  start-page: 155
  year: 1961
  end-page: 172
  ident: bib11
  article-title: Elastic waves in a naturally curved rod
  publication-title: Q. J. Mech. Appl. Math.
– volume: 312
  start-page: 644
  year: 2008
  end-page: 671
  ident: bib14
  article-title: Waveguide finite elements for curved structures
  publication-title: J. Sound Vib.
– volume: 293
  start-page: 145
  year: 1966
  end-page: 155
  ident: bib3
  article-title: A general theory of rods
  publication-title: Proc. Royal Soc. London A, Math., Phys. Eng. Sci.
– volume: 65
  start-page: 569
  issue: 3
  year: 1988
  ident: 10.1016/j.euromechsol.2019.01.025_bib13
  article-title: Solution of impact-induced flexural waves in a circular ring by the method of characteristics
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2789097
– volume: 209
  start-page: 845
  issue: 5
  year: 1998
  ident: 10.1016/j.euromechsol.2019.01.025_bib15
  article-title: Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1997.1290
– volume: 49
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.euromechsol.2019.01.025_bib6
  article-title: On the validity of planar, thick curved beam models derived with respect to centroidal and neutral axes
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2011.06.003
– volume: 318
  start-page: 982
  issue: 4–5
  year: 2008
  ident: 10.1016/j.euromechsol.2019.01.025_bib8
  article-title: Exact two-dimensional solutions for in-plane natural frequencies of laminated circular arches
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.05.011
– year: 1927
  ident: 10.1016/j.euromechsol.2019.01.025_bib7
– volume: 36
  start-page: 491
  issue: 4
  year: 1974
  ident: 10.1016/j.euromechsol.2019.01.025_bib2
  article-title: Wave propagation in a naturally curved elastic rod
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(74)80116-1
– ident: 10.1016/j.euromechsol.2019.01.025_bib4
– volume: 199
  start-page: 2099
  issue: 33–36
  year: 2010
  ident: 10.1016/j.euromechsol.2019.01.025_bib16
  article-title: Wave propagation in mechanical waveguide with curved members using wave finite element solution
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.03.006
– volume: 14
  start-page: 155
  issue: 2
  year: 1961
  ident: 10.1016/j.euromechsol.2019.01.025_bib11
  article-title: Elastic waves in a naturally curved rod
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/14.2.155
– volume: 196
  start-page: 595
  issue: 5
  year: 1996
  ident: 10.1016/j.euromechsol.2019.01.025_bib5
  article-title: An accurate solution for the in-plane transient response of a circular arch
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1996.0504
– volume: 66
  start-page: 269
  year: 2017
  ident: 10.1016/j.euromechsol.2019.01.025_bib10
  article-title: A new model for calculating the transient displacement field within a linear elastic isotropic solid with a through hole under dynamic impact: a 3D model is developed and a 2D case study is examined
  publication-title: Eur. J. Mech. A Solid.
  doi: 10.1016/j.euromechsol.2017.07.004
– volume: 24
  start-page: 247
  issue: 2
  year: 1972
  ident: 10.1016/j.euromechsol.2019.01.025_bib12
  article-title: On the theory of pulse propagation in curved beams
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(72)90953-4
– volume: 41
  start-page: 71
  issue: 1
  year: 1974
  ident: 10.1016/j.euromechsol.2019.01.025_bib1
  article-title: Pulse propagation in straight and curved beams-theory and experiment
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3423274
– volume: 293
  start-page: 145
  issue: 1433
  year: 1966
  ident: 10.1016/j.euromechsol.2019.01.025_bib3
  article-title: A general theory of rods
  publication-title: Proc. Royal Soc. London A, Math., Phys. Eng. Sci.
  doi: 10.1098/rspa.1966.0163
– year: 1969
  ident: 10.1016/j.euromechsol.2019.01.025_bib9
– volume: 312
  start-page: 644
  issue: 4–5
  year: 2008
  ident: 10.1016/j.euromechsol.2019.01.025_bib14
  article-title: Waveguide finite elements for curved structures
  publication-title: J. Sound Vib.
SSID ssj0002021
Score 2.2664852
Snippet This paper presents an exact analytical solution to the 3D transient dynamics of a linear elastic, isotropic homogeneous, curved beam, with uniform rectangular...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 216
SubjectTerms Curvature
Curved beam
Curved beams
Displacement field
Dynamic impact
Dynamic loads
Economic models
Elastic wave propagation
Elasticity
Exact solutions
Identities
Impulse loading
Lame functions
Robustness (mathematics)
Title Exact analytical solution to the 3D Navier-Lame equation for a curved beam of constant curvature subject to arbitrary dynamic loading
URI https://dx.doi.org/10.1016/j.euromechsol.2019.01.025
https://www.proquest.com/docview/2246254924
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBchhbHL1q0dzZaVN-jVi2MrdgS9hKwl-8qlC-QmJFmiKfla4oydetv_vfdkeekKg8BOxsaSjd6Hfk-893uMXQiFsDzWvUjY2EVcpQJNymDgmitHDeFT7rn0vo6z0YR_mvamDTasa2EorTL4_sqne28dnnTCanbWs1nnhmo-EWzjjoNuGIMhqmDnOWn5-_t9mgcG975rHrGO0ttP2Lt9jhfxXyysuUUxU5aXqBg8e__aox55a78FXR-zZwE7wqD6vResYZcv2fOAIyFY6faE_br6qUwJivhG_FE11AoG5QoQ8UH6AcaKvhZ9UQsL9ntF-A2IYEGB2W1-4ITaqgWsHJgKQpb-uecBhe1O0_kNTac2euZL96GomtvDfOXz8k_Z5Prq23AUhXYLkUm5KCPXx6smm45TrfMiQT-ZJ4hHjEi7Ls6txViwcBjfWcFF1xW9TOcO4aLgyiJuSF-x5nK1tGcMMkQ1BUZWieExdyYTme0rI3hiVe6si1usXy-wNIGLnFpizGWddHYnH8hGkmxk3JUomxZL_gxdV4Qchwy6rKUo_9IuiRvHIcPbteRlMPGtJCY-iq4T_vr_Zn_DntJdlUXZZs1ys7NvEemU-tyr8jk7Gnz8PBr_BrYeAQI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED66FLa9rPvJurXbDfZq4tiyHcFeSteSrmle1kLfhCRLNKNJ2sQp-wf2f-9OlruuMCjsySBzstHp7r4Tp-8APktNsDw1RSJd6hOhc0kmZSlxrbTnhvC5CFx6J5NydCa-nRfnG7Df3YXhssro-1ufHrx1HOnH1exfTaf973znk8A2RRxyw5QMPYJNZqcqerC5d3Q8mtw6ZMrvQ-M8Jh5lgcfw6U-ZF1NgzJy9IE1zoZdsSTyLf4Wpew47RKHD5_Aswkfca__wBWy4-UvYilASo6GuXsGvg5_aNqiZciScVmO3x7BZIIE-zL_iRPPXkrGeOXTXLec3EohFjXa9vKEJjdMzXHi0LYpswnigAsXV2vARDk-nl2Yabu9j3fa3x8tFKM1_DWeHB6f7oyR2XEhsLmST-CE9DZt1mhtT1Rm5yiojSGJlPvBp5Rylg7WnFM9JIQe-LkpTeUKMUmhH0CF_A735Yu7eApYEbGpKrjIrUuFtKUs31FaKzOnKO59uw7BbYGUjHTl3xbhUXd3ZD3VHN4p1o9KBIt1sQ3YretVycjxE6EunRfXXBlMUOx4ivtNpXkUrXykm4-MEOxPv_m_2j_BkdHoyVuOjyfF7eMpv2qLKHeg1y7XbJeDTmA9xY_8GdZkDsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+analytical+solution+to+the+3D+Navier-Lame+equation+for+a+curved+beam+of+constant+curvature+subject+to+arbitrary+dynamic+loading&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Mitchell%2C+Drew&rft.au=Gau%2C+Jenn-Terng&rft.date=2019-05-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=75&rft.spage=216&rft.epage=224&rft_id=info:doi/10.1016%2Fj.euromechsol.2019.01.025&rft.externalDocID=S0997753818303978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon