A Three-Level Radial Basis Function Method for Expensive Optimization
This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 7; pp. 1 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2021.3061420 |
Cover
Loading…
Abstract | This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization. |
---|---|
AbstractList | This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization. This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization.This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization. |
Author | Zhang, Qingfu Li, Genghui Gao, Weifeng Lin, Qiuzhen |
Author_xml | – sequence: 1 givenname: Genghui orcidid: 0000-0002-9950-9848 surname: Li fullname: Li, Genghui organization: Department of Computer Science, City University of Hong Kong, Hong Kong, and also with City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518060, China (e-mail: genghuili2-c@my.cityu.edu.hk) – sequence: 2 givenname: Qingfu surname: Zhang fullname: Zhang, Qingfu organization: Department of Computer Science, City University of Hong Kong, Hong Kong, and also with City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518060, China – sequence: 3 givenname: Qiuzhen orcidid: 0000-0003-2415-0401 surname: Lin fullname: Lin, Qiuzhen organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China – sequence: 4 givenname: Weifeng orcidid: 0000-0003-3853-0771 surname: Gao fullname: Gao, Weifeng organization: School of Mathematics and Statistics, Xidian University, Xi'an 710126, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33750724$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAQhoMofv8AEaTgxUvXfDbJUZf1A1YE2YunkDZTjHTbNWkX9debdVcPHpzLDMPzDjPzHqDttmsBoROCR4RgfTkbP1-PKKZkxHBBOMVbaJ-SQuWUSrH9WxdyDx3H-IpTqNTSahftMSYFlpTvo8lVNnsJAPkUltBkT9Z522TXNvqY3Qxt1fuuzR6gf-lcVnchm7wvoI1-Cdnjovdz_2lXxBHaqW0T4XiTD9HsZjIb3-XTx9v78dU0rxjXfV4zrJlzuHaiVGBlKTjHXBaupGWNdeFSWCupZDgVqgBBVVFaVbqal1iyQ3SxHrsI3dsAsTdzHytoGttCN0RDBeZMEKl5Qs__oK_dENq0nKGFEkRoJVSizjbUUM7BmUXwcxs-zM9_EiDXQBW6GAPUpvL998l9sL4xBJuVGWZlhlmZYTZmJCX5o_wZ_p_mdK3xAPDLa6aoFox9AWBHksY |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_121408 crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1007_s40747_024_01478_0 crossref_primary_10_1016_j_csda_2024_108097 crossref_primary_10_1016_j_eswa_2022_119495 crossref_primary_10_1109_TAI_2024_3382267 crossref_primary_10_1109_TSMC_2022_3219080 crossref_primary_10_1109_TCYB_2021_3113575 crossref_primary_10_1080_0305215X_2022_2139374 crossref_primary_10_1016_j_ins_2022_01_052 crossref_primary_10_1016_j_swevo_2025_101879 crossref_primary_10_1016_j_asoc_2023_110733 crossref_primary_10_1016_j_engappai_2023_107684 crossref_primary_10_1109_TEVC_2023_3291614 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1007_s00158_022_03455_y crossref_primary_10_1016_j_asoc_2023_110879 crossref_primary_10_1016_j_ins_2024_120246 crossref_primary_10_3389_fncom_2022_1019776 crossref_primary_10_1109_JAS_2024_124320 crossref_primary_10_1016_j_asoc_2022_109957 crossref_primary_10_1016_j_ins_2023_02_053 crossref_primary_10_1109_TEVC_2021_3120980 crossref_primary_10_1007_s13042_022_01573_z crossref_primary_10_1016_j_asoc_2025_113019 crossref_primary_10_1109_TCYB_2021_3126341 crossref_primary_10_1109_TEVC_2023_3346435 crossref_primary_10_1109_TSMC_2024_3519537 crossref_primary_10_1016_j_asoc_2024_111616 crossref_primary_10_1016_j_asoc_2024_111857 crossref_primary_10_1016_j_eswa_2023_120530 crossref_primary_10_1016_j_eswa_2023_122575 crossref_primary_10_1016_j_ins_2024_121522 crossref_primary_10_1109_TCYB_2024_3489885 crossref_primary_10_1016_j_swevo_2024_101521 crossref_primary_10_3390_math13061007 |
Cites_doi | 10.1007/s10898-006-9040-1 10.1109/TCYB.2020.2967553 10.1109/TCYB.2018.2811761 10.1016/j.ins.2018.04.062 10.1109/TSMCC.2005.855506 10.1109/TEVC.2017.2675628 10.1023/A:1008350230239 10.1109/TEVC.2013.2248012 10.1080/03052150211751 10.1007/s00500-014-1283-z 10.1109/TEVC.2009.2033671 10.1016/j.cma.2008.11.019 10.1016/j.ins.2018.04.024 10.1109/CEC.2009.4983242 10.1016/j.cor.2015.09.006 10.1145/3071178.3071321 10.1029/jb076i008p01905 10.1109/CEC.2001.934444 10.1109/TCYB.2018.2794503 10.1109/TCYB.2018.2809430 10.1016/j.asoc.2016.12.017 10.1007/978-3-319-24465-5_27 10.1038/s41562-017-0189-z 10.1109/TCYB.2020.3014126 10.1109/TEVC.2015.2449293 10.1109/TCYB.2017.2710978 10.1109/TCYB.2020.3020727 10.1016/j.jocs.2013.07.004 10.1007/s10898-017-0599-5 10.1109/TEVC.2009.2014613 10.1109/CEC.2015.7257002 10.1007/s10898-004-0570-0 10.1016/j.ejor.2003.10.009 10.1007/s00158-018-1942-2 10.1109/CEC.2003.1299929 10.1109/FUZZ-IEEE.2016.7737789 10.1109/CEC.2016.7743918 10.1016/j.jksues.2013.04.003 10.1023/A:1011255519438 10.1007/978-1-4757-0450-1 10.1007/s00500-008-0323-y |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3061420 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 12 |
ExternalDocumentID | 33750724 10_1109_TCYB_2021_3061420 9382953 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61876163 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-f3093dd0fd5b8ea7b5440476db2bf096ddddaa72730dda86e5286ba8bdf4b073 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 00:48:09 EDT 2025 Mon Jun 30 06:24:38 EDT 2025 Thu Apr 03 06:58:45 EDT 2025 Tue Jul 01 00:53:59 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Wed Aug 27 02:30:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-f3093dd0fd5b8ea7b5440476db2bf096ddddaa72730dda86e5286ba8bdf4b073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3853-0771 0000-0003-2415-0401 0000-0002-9950-9848 |
PMID | 33750724 |
PQID | 2685159858 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2685159858 pubmed_primary_33750724 crossref_citationtrail_10_1109_TCYB_2021_3061420 crossref_primary_10_1109_TCYB_2021_3061420 proquest_miscellaneous_2504351794 ieee_primary_9382953 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 Jones (ref5) 2001; 21 ref11 ref33 ref10 ref32 Chen (ref47) 2014 ref2 Viana (ref20) ref1 ref17 ref39 ref16 ref38 ref19 ref46 Sarra (ref18) 2009 ref23 ref45 ref26 ref48 ref25 ref42 ref41 ref22 ref44 ref43 ref28 ref27 ref29 ref8 ref7 ref9 Gutmann (ref21) 2001; 19 ref4 ref3 Regis (ref24) 2007; 182 Dennis (ref6) 1996 ref40 |
References_xml | – ident: ref23 doi: 10.1007/s10898-006-9040-1 – ident: ref29 doi: 10.1109/TCYB.2020.2967553 – ident: ref31 doi: 10.1109/TCYB.2018.2811761 – ident: ref16 doi: 10.1016/j.ins.2018.04.062 – ident: ref1 doi: 10.1109/TSMCC.2005.855506 – ident: ref15 doi: 10.1109/TEVC.2017.2675628 – ident: ref4 doi: 10.1023/A:1008350230239 – ident: ref11 doi: 10.1109/TEVC.2013.2248012 – ident: ref7 doi: 10.1080/03052150211751 – ident: ref14 doi: 10.1007/s00500-014-1283-z – volume-title: Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations year: 2009 ident: ref18 – ident: ref41 doi: 10.1109/TEVC.2009.2033671 – ident: ref9 doi: 10.1016/j.cma.2008.11.019 – ident: ref13 doi: 10.1016/j.ins.2018.04.024 – ident: ref3 doi: 10.1109/CEC.2009.4983242 – start-page: 330 volume-title: Multidisciplinary Design Optimization: State-of-the-Art year: 1996 ident: ref6 article-title: Managing approximation models in optimization – ident: ref37 doi: 10.1016/j.cor.2015.09.006 – ident: ref40 doi: 10.1145/3071178.3071321 – ident: ref19 doi: 10.1029/jb076i008p01905 – ident: ref34 doi: 10.1109/CEC.2001.934444 – ident: ref30 doi: 10.1109/TCYB.2018.2794503 – ident: ref32 doi: 10.1109/TCYB.2018.2809430 – year: 2014 ident: ref47 article-title: Problems definitions and evaluation criteria for CEC2015 special session on bound constrained single-objective computationally expensive numerical optimization – ident: ref26 doi: 10.1016/j.asoc.2016.12.017 – ident: ref38 doi: 10.1007/978-3-319-24465-5_27 – ident: ref44 doi: 10.1038/s41562-017-0189-z – volume-title: SURROGATES toolbox user’s guide ident: ref20 – ident: ref33 doi: 10.1109/TCYB.2020.3014126 – ident: ref12 doi: 10.1109/TEVC.2015.2449293 – ident: ref17 doi: 10.1109/TCYB.2017.2710978 – ident: ref28 doi: 10.1109/TCYB.2020.3020727 – ident: ref10 doi: 10.1016/j.jocs.2013.07.004 – ident: ref25 doi: 10.1007/s10898-017-0599-5 – ident: ref36 doi: 10.1109/TEVC.2009.2014613 – ident: ref45 doi: 10.1109/CEC.2015.7257002 – volume: 21 start-page: 345 issue: 4 year: 2001 ident: ref5 publication-title: A Taxonomy of Global Optimization Methods Based on Response Surfaces – ident: ref46 doi: 10.1109/CEC.2015.7257002 – ident: ref22 doi: 10.1007/s10898-004-0570-0 – ident: ref8 doi: 10.1016/j.ejor.2003.10.009 – volume: 182 start-page: 514 issue: 2 year: 2007 ident: ref24 article-title: A stochastic radial basis function method for the global optimization of expensive functions publication-title: INFORMS J. Comput. – ident: ref2 doi: 10.1007/s00158-018-1942-2 – ident: ref35 doi: 10.1109/CEC.2003.1299929 – ident: ref39 doi: 10.1109/FUZZ-IEEE.2016.7737789 – ident: ref27 doi: 10.1109/CEC.2016.7743918 – ident: ref48 doi: 10.1016/j.jksues.2013.04.003 – volume: 19 start-page: 201 issue: 3 year: 2001 ident: ref21 article-title: A radial basis function method for global optimization publication-title: J. Global Optimiz. doi: 10.1023/A:1011255519438 – ident: ref42 doi: 10.1007/978-1-4757-0450-1 – ident: ref43 doi: 10.1007/s00500-008-0323-y |
SSID | ssj0000816898 |
Score | 2.4966364 |
Snippet | This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Approximation Clustering Computational modeling Data models Design optimization Expensive optimization exploration and exploitation Iterative methods Mathematical analysis Mathematical model Optimization Predictive models Radial basis function radial basis function model (RBF) Search problems Searching |
Title | A Three-Level Radial Basis Function Method for Expensive Optimization |
URI | https://ieeexplore.ieee.org/document/9382953 https://www.ncbi.nlm.nih.gov/pubmed/33750724 https://www.proquest.com/docview/2685159858 https://www.proquest.com/docview/2504351794 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp14KFFrCozISh1LVS9Z2EucIiBWq2CKhRaKnyI4dCXW7i9jdC7-eGccbCUQrcrIU5-UZx994Zr4BOCpl6pyQnuemUFz1leDG5BlvhPO1VWWuJSU4D3_ll7fq5112twI_ulwY730IPvM9agZfvpvWC9oqOymlFmUmV2EVDbc2V6vbTwkFJELpW4ENjqiiiE7MflqejM5_n6ExKPo9SSaQoAJwUuJqWQj1YkUKJVb-jTbDqjNYh-Hyfdtgkz-9xdz26qdXVI7v_aAN-BjhJztt9WUTVvzkE2zGCT5j3yIL9fEWXJyyEcrZ8ysKK2I3xGEwZmdmdj9jA1wMSaBsGOpPMwS-jDiTQyw8u8a_0N-Y3rkNo8HF6PySx5oLvJaqnPOGPKPOpY3LrPamsBkRCBZUdco2aO44PIwh0IMyNjr3mdC5Ndq6Rln8XXyGtcl04neAiQbBZtOIsq-sIk6eLDfGWwRkRpE7MoF0OexVHfnIqSzGuAp2SVpWJLSKhFZFoSXwvbvkoSXj-F_nLRrwrmMc6wT2l7Kt4nSdVSLXhOt0phM47E7jRCPviZn46QL7ENcbEZqpBL60OtHde6lKu28_cw8-CMqaCFG--7A2f1z4A8Qyc_s1KPEztkbrIQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALUAolUMBIHADhbdaPxDm2VVcL7BYJBamcIjt2JES7W7G7F349M443EggQOVmK8_KMM589M98AvKxk7r2QgRe2VFyNleDWFpp3wofWqaowkhKc5-fF9LN6f6EvduDtkAsTQojBZ2FEzejL98t2Q1tlR5U0otLyBtzUlIzbZ2sNOyqxhEQsfiuwwRFXlMmNOc6ro_r0ywkuB8V4JGkRJKgEnJRoL0uhfrFJscjK3_FmtDuTuzDfvnEfbvJttFm7UfvjNzLH__2ke3AnAVB23GvMHuyExX3YS1N8xV4lHurX-3B2zGqUdOAzCixin4jF4JKd2NXXFZugOSSRsnmsQM0Q-jJiTY7R8Owj_oeuUoLnA6gnZ_XplKeqC7yVqlrzjnyj3ued184EWzpNFIIl1Z1yHS54PB7WEuxBKVtTBC1M4axxvlMOfxgPYXexXIRHwESHcLPrRDVWThErjy6sDQ4hmVXkkMwg3w570yZGciqMcdnElUleNSS0hoTWJKFl8Ga45Lqn4_hX530a8KFjGusMDreybdKEXTWiMITsjDYZvBhO41Qj_4ldhOUG-xDbG1GaqQwOep0Y7r1Vpcd_fuZzuDWt57Nm9u78wxO4LSiHIsb8HsLu-vsmPEVks3bPokL_BCJC7mk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Three-Level+Radial+Basis+Function+Method+for+Expensive+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Li%2C+Genghui&rft.au=Zhang%2C+Qingfu&rft.au=Lin%2C+Qiuzhen&rft.au=Gao%2C+Weifeng&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=7&rft.spage=5720&rft_id=info:doi/10.1109%2FTCYB.2021.3061420&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |