A Three-Level Radial Basis Function Method for Expensive Optimization

This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 7; pp. 1 - 12
Main Authors Li, Genghui, Zhang, Qingfu, Lin, Qiuzhen, Gao, Weifeng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2021.3061420

Cover

Loading…
Abstract This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization.
AbstractList This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization.
This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization.This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization.
Author Zhang, Qingfu
Li, Genghui
Gao, Weifeng
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Genghui
  orcidid: 0000-0002-9950-9848
  surname: Li
  fullname: Li, Genghui
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, and also with City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518060, China (e-mail: genghuili2-c@my.cityu.edu.hk)
– sequence: 2
  givenname: Qingfu
  surname: Zhang
  fullname: Zhang, Qingfu
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, and also with City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518060, China
– sequence: 3
  givenname: Qiuzhen
  orcidid: 0000-0003-2415-0401
  surname: Lin
  fullname: Lin, Qiuzhen
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
– sequence: 4
  givenname: Weifeng
  orcidid: 0000-0003-3853-0771
  surname: Gao
  fullname: Gao, Weifeng
  organization: School of Mathematics and Statistics, Xidian University, Xi'an 710126, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33750724$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMofv8AEaTgxUvXfDbJUZf1A1YE2YunkDZTjHTbNWkX9debdVcPHpzLDMPzDjPzHqDttmsBoROCR4RgfTkbP1-PKKZkxHBBOMVbaJ-SQuWUSrH9WxdyDx3H-IpTqNTSahftMSYFlpTvo8lVNnsJAPkUltBkT9Z522TXNvqY3Qxt1fuuzR6gf-lcVnchm7wvoI1-Cdnjovdz_2lXxBHaqW0T4XiTD9HsZjIb3-XTx9v78dU0rxjXfV4zrJlzuHaiVGBlKTjHXBaupGWNdeFSWCupZDgVqgBBVVFaVbqal1iyQ3SxHrsI3dsAsTdzHytoGttCN0RDBeZMEKl5Qs__oK_dENq0nKGFEkRoJVSizjbUUM7BmUXwcxs-zM9_EiDXQBW6GAPUpvL998l9sL4xBJuVGWZlhlmZYTZmJCX5o_wZ_p_mdK3xAPDLa6aoFox9AWBHksY
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_ins_2024_121408
crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1007_s40747_024_01478_0
crossref_primary_10_1016_j_csda_2024_108097
crossref_primary_10_1016_j_eswa_2022_119495
crossref_primary_10_1109_TAI_2024_3382267
crossref_primary_10_1109_TSMC_2022_3219080
crossref_primary_10_1109_TCYB_2021_3113575
crossref_primary_10_1080_0305215X_2022_2139374
crossref_primary_10_1016_j_ins_2022_01_052
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_1016_j_asoc_2023_110733
crossref_primary_10_1016_j_engappai_2023_107684
crossref_primary_10_1109_TEVC_2023_3291614
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1007_s00158_022_03455_y
crossref_primary_10_1016_j_asoc_2023_110879
crossref_primary_10_1016_j_ins_2024_120246
crossref_primary_10_3389_fncom_2022_1019776
crossref_primary_10_1109_JAS_2024_124320
crossref_primary_10_1016_j_asoc_2022_109957
crossref_primary_10_1016_j_ins_2023_02_053
crossref_primary_10_1109_TEVC_2021_3120980
crossref_primary_10_1007_s13042_022_01573_z
crossref_primary_10_1016_j_asoc_2025_113019
crossref_primary_10_1109_TCYB_2021_3126341
crossref_primary_10_1109_TEVC_2023_3346435
crossref_primary_10_1109_TSMC_2024_3519537
crossref_primary_10_1016_j_asoc_2024_111616
crossref_primary_10_1016_j_asoc_2024_111857
crossref_primary_10_1016_j_eswa_2023_120530
crossref_primary_10_1016_j_eswa_2023_122575
crossref_primary_10_1016_j_ins_2024_121522
crossref_primary_10_1109_TCYB_2024_3489885
crossref_primary_10_1016_j_swevo_2024_101521
crossref_primary_10_3390_math13061007
Cites_doi 10.1007/s10898-006-9040-1
10.1109/TCYB.2020.2967553
10.1109/TCYB.2018.2811761
10.1016/j.ins.2018.04.062
10.1109/TSMCC.2005.855506
10.1109/TEVC.2017.2675628
10.1023/A:1008350230239
10.1109/TEVC.2013.2248012
10.1080/03052150211751
10.1007/s00500-014-1283-z
10.1109/TEVC.2009.2033671
10.1016/j.cma.2008.11.019
10.1016/j.ins.2018.04.024
10.1109/CEC.2009.4983242
10.1016/j.cor.2015.09.006
10.1145/3071178.3071321
10.1029/jb076i008p01905
10.1109/CEC.2001.934444
10.1109/TCYB.2018.2794503
10.1109/TCYB.2018.2809430
10.1016/j.asoc.2016.12.017
10.1007/978-3-319-24465-5_27
10.1038/s41562-017-0189-z
10.1109/TCYB.2020.3014126
10.1109/TEVC.2015.2449293
10.1109/TCYB.2017.2710978
10.1109/TCYB.2020.3020727
10.1016/j.jocs.2013.07.004
10.1007/s10898-017-0599-5
10.1109/TEVC.2009.2014613
10.1109/CEC.2015.7257002
10.1007/s10898-004-0570-0
10.1016/j.ejor.2003.10.009
10.1007/s00158-018-1942-2
10.1109/CEC.2003.1299929
10.1109/FUZZ-IEEE.2016.7737789
10.1109/CEC.2016.7743918
10.1016/j.jksues.2013.04.003
10.1023/A:1011255519438
10.1007/978-1-4757-0450-1
10.1007/s00500-008-0323-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3061420
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 12
ExternalDocumentID 33750724
10_1109_TCYB_2021_3061420
9382953
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61876163
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-f3093dd0fd5b8ea7b5440476db2bf096ddddaa72730dda86e5286ba8bdf4b073
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 00:48:09 EDT 2025
Mon Jun 30 06:24:38 EDT 2025
Thu Apr 03 06:58:45 EDT 2025
Tue Jul 01 00:53:59 EDT 2025
Thu Apr 24 22:52:35 EDT 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-f3093dd0fd5b8ea7b5440476db2bf096ddddaa72730dda86e5286ba8bdf4b073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3853-0771
0000-0003-2415-0401
0000-0002-9950-9848
PMID 33750724
PQID 2685159858
PQPubID 85422
PageCount 12
ParticipantIDs proquest_journals_2685159858
pubmed_primary_33750724
crossref_citationtrail_10_1109_TCYB_2021_3061420
crossref_primary_10_1109_TCYB_2021_3061420
proquest_miscellaneous_2504351794
ieee_primary_9382953
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
Jones (ref5) 2001; 21
ref11
ref33
ref10
ref32
Chen (ref47) 2014
ref2
Viana (ref20)
ref1
ref17
ref39
ref16
ref38
ref19
ref46
Sarra (ref18) 2009
ref23
ref45
ref26
ref48
ref25
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
Gutmann (ref21) 2001; 19
ref4
ref3
Regis (ref24) 2007; 182
Dennis (ref6) 1996
ref40
References_xml – ident: ref23
  doi: 10.1007/s10898-006-9040-1
– ident: ref29
  doi: 10.1109/TCYB.2020.2967553
– ident: ref31
  doi: 10.1109/TCYB.2018.2811761
– ident: ref16
  doi: 10.1016/j.ins.2018.04.062
– ident: ref1
  doi: 10.1109/TSMCC.2005.855506
– ident: ref15
  doi: 10.1109/TEVC.2017.2675628
– ident: ref4
  doi: 10.1023/A:1008350230239
– ident: ref11
  doi: 10.1109/TEVC.2013.2248012
– ident: ref7
  doi: 10.1080/03052150211751
– ident: ref14
  doi: 10.1007/s00500-014-1283-z
– volume-title: Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations
  year: 2009
  ident: ref18
– ident: ref41
  doi: 10.1109/TEVC.2009.2033671
– ident: ref9
  doi: 10.1016/j.cma.2008.11.019
– ident: ref13
  doi: 10.1016/j.ins.2018.04.024
– ident: ref3
  doi: 10.1109/CEC.2009.4983242
– start-page: 330
  volume-title: Multidisciplinary Design Optimization: State-of-the-Art
  year: 1996
  ident: ref6
  article-title: Managing approximation models in optimization
– ident: ref37
  doi: 10.1016/j.cor.2015.09.006
– ident: ref40
  doi: 10.1145/3071178.3071321
– ident: ref19
  doi: 10.1029/jb076i008p01905
– ident: ref34
  doi: 10.1109/CEC.2001.934444
– ident: ref30
  doi: 10.1109/TCYB.2018.2794503
– ident: ref32
  doi: 10.1109/TCYB.2018.2809430
– year: 2014
  ident: ref47
  article-title: Problems definitions and evaluation criteria for CEC2015 special session on bound constrained single-objective computationally expensive numerical optimization
– ident: ref26
  doi: 10.1016/j.asoc.2016.12.017
– ident: ref38
  doi: 10.1007/978-3-319-24465-5_27
– ident: ref44
  doi: 10.1038/s41562-017-0189-z
– volume-title: SURROGATES toolbox user’s guide
  ident: ref20
– ident: ref33
  doi: 10.1109/TCYB.2020.3014126
– ident: ref12
  doi: 10.1109/TEVC.2015.2449293
– ident: ref17
  doi: 10.1109/TCYB.2017.2710978
– ident: ref28
  doi: 10.1109/TCYB.2020.3020727
– ident: ref10
  doi: 10.1016/j.jocs.2013.07.004
– ident: ref25
  doi: 10.1007/s10898-017-0599-5
– ident: ref36
  doi: 10.1109/TEVC.2009.2014613
– ident: ref45
  doi: 10.1109/CEC.2015.7257002
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: ref5
  publication-title: A Taxonomy of Global Optimization Methods Based on Response Surfaces
– ident: ref46
  doi: 10.1109/CEC.2015.7257002
– ident: ref22
  doi: 10.1007/s10898-004-0570-0
– ident: ref8
  doi: 10.1016/j.ejor.2003.10.009
– volume: 182
  start-page: 514
  issue: 2
  year: 2007
  ident: ref24
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS J. Comput.
– ident: ref2
  doi: 10.1007/s00158-018-1942-2
– ident: ref35
  doi: 10.1109/CEC.2003.1299929
– ident: ref39
  doi: 10.1109/FUZZ-IEEE.2016.7737789
– ident: ref27
  doi: 10.1109/CEC.2016.7743918
– ident: ref48
  doi: 10.1016/j.jksues.2013.04.003
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: ref21
  article-title: A radial basis function method for global optimization
  publication-title: J. Global Optimiz.
  doi: 10.1023/A:1011255519438
– ident: ref42
  doi: 10.1007/978-1-4757-0450-1
– ident: ref43
  doi: 10.1007/s00500-008-0323-y
SSID ssj0000816898
Score 2.4966364
Snippet This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation
Clustering
Computational modeling
Data models
Design optimization
Expensive optimization
exploration and exploitation
Iterative methods
Mathematical analysis
Mathematical model
Optimization
Predictive models
Radial basis function
radial basis function model (RBF)
Search problems
Searching
Title A Three-Level Radial Basis Function Method for Expensive Optimization
URI https://ieeexplore.ieee.org/document/9382953
https://www.ncbi.nlm.nih.gov/pubmed/33750724
https://www.proquest.com/docview/2685159858
https://www.proquest.com/docview/2504351794
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp14KFFrCozISh1LVS9Z2EucIiBWq2CKhRaKnyI4dCXW7i9jdC7-eGccbCUQrcrIU5-UZx994Zr4BOCpl6pyQnuemUFz1leDG5BlvhPO1VWWuJSU4D3_ll7fq5112twI_ulwY730IPvM9agZfvpvWC9oqOymlFmUmV2EVDbc2V6vbTwkFJELpW4ENjqiiiE7MflqejM5_n6ExKPo9SSaQoAJwUuJqWQj1YkUKJVb-jTbDqjNYh-Hyfdtgkz-9xdz26qdXVI7v_aAN-BjhJztt9WUTVvzkE2zGCT5j3yIL9fEWXJyyEcrZ8ysKK2I3xGEwZmdmdj9jA1wMSaBsGOpPMwS-jDiTQyw8u8a_0N-Y3rkNo8HF6PySx5oLvJaqnPOGPKPOpY3LrPamsBkRCBZUdco2aO44PIwh0IMyNjr3mdC5Ndq6Rln8XXyGtcl04neAiQbBZtOIsq-sIk6eLDfGWwRkRpE7MoF0OexVHfnIqSzGuAp2SVpWJLSKhFZFoSXwvbvkoSXj-F_nLRrwrmMc6wT2l7Kt4nSdVSLXhOt0phM47E7jRCPviZn46QL7ENcbEZqpBL60OtHde6lKu28_cw8-CMqaCFG--7A2f1z4A8Qyc_s1KPEztkbrIQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALUAolUMBIHADhbdaPxDm2VVcL7BYJBamcIjt2JES7W7G7F349M443EggQOVmK8_KMM589M98AvKxk7r2QgRe2VFyNleDWFpp3wofWqaowkhKc5-fF9LN6f6EvduDtkAsTQojBZ2FEzejL98t2Q1tlR5U0otLyBtzUlIzbZ2sNOyqxhEQsfiuwwRFXlMmNOc6ro_r0ywkuB8V4JGkRJKgEnJRoL0uhfrFJscjK3_FmtDuTuzDfvnEfbvJttFm7UfvjNzLH__2ke3AnAVB23GvMHuyExX3YS1N8xV4lHurX-3B2zGqUdOAzCixin4jF4JKd2NXXFZugOSSRsnmsQM0Q-jJiTY7R8Owj_oeuUoLnA6gnZ_XplKeqC7yVqlrzjnyj3ued184EWzpNFIIl1Z1yHS54PB7WEuxBKVtTBC1M4axxvlMOfxgPYXexXIRHwESHcLPrRDVWThErjy6sDQ4hmVXkkMwg3w570yZGciqMcdnElUleNSS0hoTWJKFl8Ga45Lqn4_hX530a8KFjGusMDreybdKEXTWiMITsjDYZvBhO41Qj_4ldhOUG-xDbG1GaqQwOep0Y7r1Vpcd_fuZzuDWt57Nm9u78wxO4LSiHIsb8HsLu-vsmPEVks3bPokL_BCJC7mk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Three-Level+Radial+Basis+Function+Method+for+Expensive+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Li%2C+Genghui&rft.au=Zhang%2C+Qingfu&rft.au=Lin%2C+Qiuzhen&rft.au=Gao%2C+Weifeng&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=7&rft.spage=5720&rft_id=info:doi/10.1109%2FTCYB.2021.3061420&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon