Adaptive Finite-Time Fuzzy Control of Nonlinear Active Suspension Systems With Input Delay

This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic sy...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 6; pp. 2639 - 2650
Main Authors Na, Jing, Huang, Yingbo, Wu, Xing, Su, Shun-Feng, Li, Guang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2019.2894724

Cover

Loading…
Abstract This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with <inline-formula> <tex-math notation="LaTeX">{e} </tex-math></inline-formula>-modification or <inline-formula> <tex-math notation="LaTeX">{\sigma } </tex-math></inline-formula>-modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions.
AbstractList This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with e -modification or σ -modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions.
This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with [Formula Omitted]-modification or [Formula Omitted]-modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov–Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions.
This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with e -modification or σ -modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions.This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with e -modification or σ -modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions.
This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with <inline-formula> <tex-math notation="LaTeX">{e} </tex-math></inline-formula>-modification or <inline-formula> <tex-math notation="LaTeX">{\sigma } </tex-math></inline-formula>-modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions.
Author Huang, Yingbo
Li, Guang
Na, Jing
Wu, Xing
Su, Shun-Feng
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-3067-1580
  surname: Na
  fullname: Na, Jing
  email: najing25@163.com
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, China
– sequence: 2
  givenname: Yingbo
  orcidid: 0000-0001-9390-2369
  surname: Huang
  fullname: Huang, Yingbo
  email: yingbo_huang@126.com
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, China
– sequence: 3
  givenname: Xing
  surname: Wu
  fullname: Wu, Xing
  email: xingwu@aliyun.com
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, China
– sequence: 4
  givenname: Shun-Feng
  orcidid: 0000-0001-9777-128X
  surname: Su
  fullname: Su, Shun-Feng
  email: sfsu@mail.ntust.edu.tw
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
– sequence: 5
  givenname: Guang
  orcidid: 0000-0001-9323-5076
  surname: Li
  fullname: Li, Guang
  email: g.li@qmul.ac.uk
  organization: School of Engineering and Materials Science, Queen Mary University of London, London, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30794520$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEUx4O02Fr7B4ggAS9eZpvfkzmuq9VCqYeuiF5CNvMGU2aScZIRtn-9WXfbQw99l_cIn88jvO8rdBRiAITeULKglDQX69XPjwtGaLNguhE1Ey_QKaNKV4zV8uhxVvUJOk_pjpTS5anRL9EJJ3UjJCOn6NeytWP2fwFf-uAzVGs_lHm-v9_iVQx5ij2OHb6JofcB7ISX7j99O6cRQvIx4NttyjAk_MPn3_gqjHPGn6C329fouLN9gvNDP0PfLz-vV1-r629frlbL68px0eSqI7V2gmjXMMKJJGTTgqrVRmvWKctaLixngsu2dkwrR13bSqGYhtZuXMcFP0Mf9nvHKf6ZIWUz-OSg722AOCfDqJZS6aIU9P0T9C7OUyi_M0wQSplkUhXq3YGaNwO0Zpz8YKetebhaAeo94KaY0gSdcT7b7Hf3sr43lJhdRGYXkdlFZA4RFZM-MR-WP-e83TseAB55rYSsG8r_Af5LmjI
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TETCI_2023_3309739
crossref_primary_10_1007_s11071_024_10746_0
crossref_primary_10_1016_j_conengprac_2024_106125
crossref_primary_10_1109_ACCESS_2024_3393970
crossref_primary_10_1007_s00521_023_08780_x
crossref_primary_10_1177_09544070241244412
crossref_primary_10_1007_s40815_020_00927_5
crossref_primary_10_1109_TVT_2024_3370094
crossref_primary_10_1109_TCYB_2021_3069632
crossref_primary_10_3390_su141811230
crossref_primary_10_1080_21642583_2023_2293907
crossref_primary_10_1016_j_ejcon_2022_100764
crossref_primary_10_1109_TNNLS_2023_3257508
crossref_primary_10_1016_j_ins_2022_06_055
crossref_primary_10_1109_TSMC_2021_3089768
crossref_primary_10_1002_rnc_6351
crossref_primary_10_1109_TNSE_2023_3305969
crossref_primary_10_3390_en17174227
crossref_primary_10_3390_s24010156
crossref_primary_10_1109_TMECH_2023_3342013
crossref_primary_10_1109_TTE_2021_3096992
crossref_primary_10_3390_app11010052
crossref_primary_10_1007_s40815_020_00961_3
crossref_primary_10_1007_s10846_022_01742_w
crossref_primary_10_1109_JAS_2020_1003183
crossref_primary_10_1007_s11071_022_07975_6
crossref_primary_10_1016_j_fss_2023_108673
crossref_primary_10_1109_ACCESS_2021_3134990
crossref_primary_10_1016_j_heliyon_2024_e26363
crossref_primary_10_1007_s11071_023_08355_4
crossref_primary_10_1109_TITS_2024_3350918
crossref_primary_10_1016_j_ins_2021_02_021
crossref_primary_10_1080_21642583_2022_2048320
crossref_primary_10_1002_rnc_6342
crossref_primary_10_1016_j_oceaneng_2022_111802
crossref_primary_10_1016_j_ymssp_2024_111280
crossref_primary_10_1016_j_neucom_2022_03_044
crossref_primary_10_1155_2020_8520835
crossref_primary_10_1109_TNNLS_2023_3242345
crossref_primary_10_1007_s11431_022_2126_7
crossref_primary_10_1109_ACCESS_2021_3115909
crossref_primary_10_1155_2020_5910430
crossref_primary_10_1007_s40815_019_00700_3
crossref_primary_10_1017_S0263574723001595
crossref_primary_10_1109_TIE_2020_3040667
crossref_primary_10_1155_2022_3258549
crossref_primary_10_1002_asjc_2984
crossref_primary_10_1002_asjc_2867
crossref_primary_10_1109_ACCESS_2021_3123363
crossref_primary_10_59441_ijame_172895
crossref_primary_10_1016_j_fss_2023_108699
crossref_primary_10_1080_00207179_2024_2380745
crossref_primary_10_1016_j_jfranklin_2022_06_016
crossref_primary_10_1109_TCYB_2020_2972322
crossref_primary_10_1109_TCYB_2021_3052816
crossref_primary_10_1016_j_energy_2024_131918
crossref_primary_10_3390_s21041539
crossref_primary_10_1016_j_chaos_2024_115166
crossref_primary_10_3390_electronics11060921
crossref_primary_10_1080_21642583_2021_1969700
crossref_primary_10_3390_act13040138
crossref_primary_10_1002_acs_3391
crossref_primary_10_1049_iet_cta_2020_0090
crossref_primary_10_1109_TCYB_2020_3024672
crossref_primary_10_1049_cth2_12107
crossref_primary_10_1007_s11071_024_10247_0
crossref_primary_10_1109_TAI_2021_3107226
crossref_primary_10_1007_s40815_023_01549_3
crossref_primary_10_1177_01423312241249207
crossref_primary_10_1016_j_fss_2024_108861
crossref_primary_10_1038_s41598_023_49766_y
crossref_primary_10_3390_machines11111022
crossref_primary_10_1155_2020_1492615
crossref_primary_10_1016_j_ymssp_2023_110400
crossref_primary_10_1016_j_ins_2024_121770
crossref_primary_10_3934_mbe_2022451
crossref_primary_10_1177_10775463241296612
crossref_primary_10_1109_TCYB_2020_3001581
crossref_primary_10_1109_ACCESS_2022_3226323
crossref_primary_10_3390_act14030137
crossref_primary_10_1016_j_ymssp_2025_112542
crossref_primary_10_1109_TMECH_2022_3184617
crossref_primary_10_1002_acs_3339
crossref_primary_10_1002_acs_3977
crossref_primary_10_1109_TFUZZ_2020_2988849
crossref_primary_10_1115_1_4062342
crossref_primary_10_1177_01423312241273788
crossref_primary_10_1590_1679_78256883
crossref_primary_10_1155_2022_4628539
crossref_primary_10_3390_math12121866
crossref_primary_10_1007_s40430_025_05384_5
crossref_primary_10_1109_ACCESS_2020_2997383
crossref_primary_10_1109_TCYB_2019_2930662
crossref_primary_10_1109_JAS_2020_1003306
crossref_primary_10_1002_rnc_6545
crossref_primary_10_1016_j_fss_2023_108642
crossref_primary_10_1590_1679_78256992
crossref_primary_10_1109_TCYB_2020_2989404
crossref_primary_10_1177_01423312241263136
crossref_primary_10_1002_rnc_6846
crossref_primary_10_1109_ACCESS_2024_3468912
crossref_primary_10_1109_TCYB_2021_3063225
crossref_primary_10_1177_10775463241305675
crossref_primary_10_1109_TMECH_2020_3031840
crossref_primary_10_1016_j_arcontrol_2024_100974
crossref_primary_10_3390_sym16070857
crossref_primary_10_1016_j_ymssp_2025_112328
crossref_primary_10_1080_21642583_2021_1949403
crossref_primary_10_1049_cth2_12311
crossref_primary_10_1109_ACCESS_2019_2898925
crossref_primary_10_1109_TASE_2023_3324389
crossref_primary_10_1109_ACCESS_2023_3323395
crossref_primary_10_1109_TNNLS_2022_3222464
crossref_primary_10_1109_TITS_2021_3114284
crossref_primary_10_1590_1679_78256621
crossref_primary_10_1109_TVT_2023_3298060
crossref_primary_10_1016_j_ymssp_2023_110116
crossref_primary_10_1002_acs_3590
crossref_primary_10_1177_01423312241277249
crossref_primary_10_1177_09544070221101324
crossref_primary_10_1016_j_jfranklin_2021_03_019
crossref_primary_10_1002_rnc_7650
crossref_primary_10_3390_math9030249
Cites_doi 10.1109/TCYB.2015.2451116
10.1109/TAC.2008.919568
10.1109/TSMC.2018.2855170
10.1109/TIE.2018.2798564
10.1109/87.845885
10.1109/TIE.2012.2206340
10.1002/rnc.3636
10.1109/72.159070
10.1109/TAC.2015.2451472
10.1109/TCYB.2018.2875134
10.1109/TCYB.2014.2329495
10.1109/TNNLS.2018.2852711
10.1109/TIE.2012.2202354
10.1016/j.automatica.2012.05.033
10.1109/TCYB.2013.2295114
10.1016/j.automatica.2018.10.030
10.1109/TCYB.2013.2279534
10.1109/9.668834
10.1016/j.automatica.2016.09.030
10.1109/TCYB.2015.2388582
10.1109/TIE.2013.2242418
10.1109/9.272329
10.1109/TSMC.2017.2769683
10.1109/TVT.2017.2737440
10.1016/j.isatra.2014.05.025
10.1109/TCYB.2018.2865174
10.1109/TCST.2017.2746060
10.1109/TCST.2010.2078818
10.1109/TNNLS.2015.2470175
10.1109/TFUZZ.2013.2275168
10.1016/S0005-1098(97)00101-5
10.1016/j.automatica.2013.02.013
10.1109/TCYB.2016.2600263
10.1080/00423114.2010.532223
10.1109/TFUZZ.2015.2418000
10.1109/TSMCA.2009.2030164
10.1002/rnc.3247
10.1109/TAES.2018.2832998
10.1109/TFUZZ.2017.2737405
10.1109/TFUZZ.2016.2567457
10.1016/j.mechatronics.2010.11.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2894724
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2650
ExternalDocumentID 30794520
10_1109_TCYB_2019_2894724
8645791
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873115; 61573174
  funderid: 10.13039/501100001809
– fundername: Ph.D. Scholarship between Chinese Scholarship Council and Queen Mary University of London
  grantid: 201708530252
  funderid: 10.13039/501100000851
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-f078c408c92030500bde676b882f6a2d34a32435d7c286c1cdd54628edabcf343
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 05:35:04 EDT 2025
Mon Jun 30 03:18:10 EDT 2025
Mon Jul 21 06:06:44 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Tue Jul 01 00:53:52 EDT 2025
Wed Aug 27 02:39:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-f078c408c92030500bde676b882f6a2d34a32435d7c286c1cdd54628edabcf343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9777-128X
0000-0001-9323-5076
0000-0002-3067-1580
0000-0001-9390-2369
PMID 30794520
PQID 2401125256
PQPubID 85422
PageCount 12
ParticipantIDs proquest_journals_2401125256
pubmed_primary_30794520
crossref_citationtrail_10_1109_TCYB_2019_2894724
crossref_primary_10_1109_TCYB_2019_2894724
proquest_miscellaneous_2185568628
ieee_primary_8645791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
kamalapurkar (ref42) 2014
smith (ref12) 1959; 6
li (ref10) 2014; 44
ref24
ref45
ref23
slotine (ref34) 1991; 199
ref26
ref25
ref20
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
khalil (ref44) 1996; 2
References_xml – ident: ref25
  doi: 10.1109/TCYB.2015.2451116
– ident: ref35
  doi: 10.1109/TAC.2008.919568
– ident: ref32
  doi: 10.1109/TSMC.2018.2855170
– ident: ref7
  doi: 10.1109/TIE.2018.2798564
– volume: 199
  year: 1991
  ident: ref34
  publication-title: Applied nonlinear control
– ident: ref6
  doi: 10.1109/87.845885
– ident: ref9
  doi: 10.1109/TIE.2012.2206340
– ident: ref43
  doi: 10.1002/rnc.3636
– ident: ref39
  doi: 10.1109/72.159070
– ident: ref18
  doi: 10.1109/TAC.2015.2451472
– ident: ref27
  doi: 10.1109/TCYB.2018.2875134
– ident: ref24
  doi: 10.1109/TCYB.2014.2329495
– ident: ref19
  doi: 10.1109/TNNLS.2018.2852711
– ident: ref3
  doi: 10.1109/TIE.2012.2202354
– ident: ref4
  doi: 10.1016/j.automatica.2012.05.033
– ident: ref29
  doi: 10.1109/TCYB.2013.2295114
– ident: ref21
  doi: 10.1016/j.automatica.2018.10.030
– year: 2014
  ident: ref42
  article-title: Supporting lemmas for RISE-based control methods
  publication-title: arXiv 1306 3432
– volume: 44
  start-page: 1111
  year: 2014
  ident: ref10
  article-title: Fuzzy sampled-data control for uncertain vehicle suspension systems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2279534
– ident: ref45
  doi: 10.1109/9.668834
– ident: ref17
  doi: 10.1016/j.automatica.2016.09.030
– ident: ref20
  doi: 10.1109/TCYB.2015.2388582
– ident: ref11
  doi: 10.1109/TIE.2013.2242418
– ident: ref13
  doi: 10.1109/9.272329
– ident: ref40
  doi: 10.1109/TSMC.2017.2769683
– ident: ref38
  doi: 10.1109/TVT.2017.2737440
– ident: ref8
  doi: 10.1016/j.isatra.2014.05.025
– ident: ref33
  doi: 10.1109/TCYB.2018.2865174
– ident: ref37
  doi: 10.1109/TCST.2017.2746060
– ident: ref14
  doi: 10.1109/TCST.2010.2078818
– ident: ref41
  doi: 10.1109/TNNLS.2015.2470175
– ident: ref30
  doi: 10.1109/TFUZZ.2013.2275168
– ident: ref2
  doi: 10.1016/S0005-1098(97)00101-5
– ident: ref16
  doi: 10.1016/j.automatica.2013.02.013
– ident: ref23
  doi: 10.1109/TCYB.2016.2600263
– volume: 6
  start-page: 28
  year: 1959
  ident: ref12
  article-title: A controller to overcome dead time
  publication-title: ISA J
– ident: ref1
  doi: 10.1080/00423114.2010.532223
– ident: ref22
  doi: 10.1109/TFUZZ.2015.2418000
– ident: ref31
  doi: 10.1109/TSMCA.2009.2030164
– ident: ref36
  doi: 10.1002/rnc.3247
– volume: 2
  start-page: 1
  year: 1996
  ident: ref44
  publication-title: Noninear Systems
– ident: ref26
  doi: 10.1109/TAES.2018.2832998
– ident: ref28
  doi: 10.1109/TFUZZ.2017.2737405
– ident: ref15
  doi: 10.1109/TFUZZ.2016.2567457
– ident: ref5
  doi: 10.1016/j.mechatronics.2010.11.001
SSID ssj0000816898
Score 2.605588
Snippet This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2639
SubjectTerms Active control
Active suspension systems
Adaptive algorithms
Adaptive control
Closed loop systems
Computer simulation
Delay effects
Delays
Dynamic stability
Dynamical systems
Feedback control
finite-time (FT) convergence
Fuzzy control
Fuzzy logic
fuzzy logic systems (FLSs)
Fuzzy systems
input time delay
Nonlinear control
Nonlinear dynamics
Nonlinear systems
Parameter estimation
Suspension systems
Suspensions (mechanical systems)
System effectiveness
Systems stability
Time lag
Vehicle dynamics
Title Adaptive Finite-Time Fuzzy Control of Nonlinear Active Suspension Systems With Input Delay
URI https://ieeexplore.ieee.org/document/8645791
https://www.ncbi.nlm.nih.gov/pubmed/30794520
https://www.proquest.com/docview/2401125256
https://www.proquest.com/docview/2185568628
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RTr20pbSQQitX6oFWZPEmTpwct0tXFAkuBZX2Ejm2IxAoWbHJgf31zDjeqEKAerMU50tvbL-x580AfOFSGlOVKkxVkoci4yLMjUBnJdPoPsfYLkk7fHKaHp2L44vkYg32By2MtdYFn9kRNd1Zvml0R1tlB1kqEklS9RfouPVarWE_xRWQcKVvI2yEyCqkP8Qc8_zgbPrnO8Vx5SN0MISMqBwPWncuEir0_c-K5EqsPM023aozew0nq-_tg02uR11bjvTyQSrH__2hN_DK00826e1lA9Zs_RY2_ABfsD2fhfrrJvydGDWnuZDNroiXhiQWYbNuubxj0z6-nTUVO-1TbahbNnEzJ_vVLeYUFN_UzGdDZ7-v2kv2s553LTu0N-ruHZzPfpxNj0JfiCHUscjbsEIeoQVH-CKaHzgvjU1lWiI7r1IVmVgo5GVxYqSOslSPtTEJaV6tUaWuYhG_h_W6qe02MEVCVx4ZZY2kzDZKYn-hIi7sOLNaBsBXYBTaZymnYhk3hfNWeF4QlAVBWXgoA_g23DLvU3Q813mTYBg6egQC2F0hXvhBvCiQ7CAbTZAUBvB5uIzDj85UVG2bDvsg30lIZZMFsNVbyvDslYF9ePydO_AyIufdbenswnp729mPyHDa8pMz7XtK6_K1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAXoJSPQAEjcQBEtt7EiZPjsrDaQncvbEXhEjm2IyqqZNVNDt1fz4zjjRACxM1SnC-9sf3GnjcD8JJLaUxVqjBVSR6KjIswNwKdlUyj-xxjuyTt8GKZzs_Ex_PkfA_eDloYa60LPrMjarqzfNPojrbKjrNUJJKk6jdw3U_GvVpr2FFxJSRc8dsIGyHyCumPMcc8P15Nv76jSK58hC6GkBEV5EH7zkVCpb5_WZNckZW_80237szuwGL3xX24yY9R15Yjvf0tmeP__tJduO0JKJv0FnMAe7a-Bwd-iG_YK5-H-vUhfJsYtabZkM0uiJmGJBdhs267vWbTPsKdNRVb9sk21BWbuLmTfe42awqLb2rm86GzLxftd3ZSr7uWvbeX6vo-nM0-rKbz0JdiCHUs8jaskElowRHAiGYIzktjU5mWyM-rVEUmFgqZWZwYqaMs1WNtTEKqV2tUqatYxA9gv25q-wiYIqkrj4yyRlJuGyWxv1ARF3acWS0D4DswCu3zlFO5jMvC-Ss8LwjKgqAsPJQBvBluWfdJOv7V-ZBgGDp6BAI42iFe-GG8KZDuIB9NkBYG8GK4jAOQTlVUbZsO-yDjSUhnkwXwsLeU4dk7A3v853c-h5vz1eK0OD1ZfnoCtyJy5d0GzxHst1edfYp8py2fOTP_CRy59f4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Finite-Time+Fuzzy+Control+of+Nonlinear+Active+Suspension+Systems+With+Input+Delay&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Na%2C+Jing&rft.au=Huang%2C+Yingbo&rft.au=Wu%2C+Xing&rft.au=Shun-Feng%2C+Su&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=6&rft.spage=2639&rft_id=info:doi/10.1109%2FTCYB.2019.2894724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon