Adaptive Finite-Time Fuzzy Control of Nonlinear Active Suspension Systems With Input Delay
This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic sy...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 6; pp. 2639 - 2650 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2019.2894724 |
Cover
Loading…
Abstract | This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with <inline-formula> <tex-math notation="LaTeX">{e} </tex-math></inline-formula>-modification or <inline-formula> <tex-math notation="LaTeX">{\sigma } </tex-math></inline-formula>-modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions. |
---|---|
AbstractList | This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with e -modification or σ -modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions. This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with [Formula Omitted]-modification or [Formula Omitted]-modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov–Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions. This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with e -modification or σ -modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions.This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with e -modification or σ -modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions. This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor-based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error-based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, for example, gradient algorithm with <inline-formula> <tex-math notation="LaTeX">{e} </tex-math></inline-formula>-modification or <inline-formula> <tex-math notation="LaTeX">{\sigma } </tex-math></inline-formula>-modification. In this framework, both the suspension and estimation errors can achieve convergence in FT. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions. |
Author | Huang, Yingbo Li, Guang Na, Jing Wu, Xing Su, Shun-Feng |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-3067-1580 surname: Na fullname: Na, Jing email: najing25@163.com organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, China – sequence: 2 givenname: Yingbo orcidid: 0000-0001-9390-2369 surname: Huang fullname: Huang, Yingbo email: yingbo_huang@126.com organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, China – sequence: 3 givenname: Xing surname: Wu fullname: Wu, Xing email: xingwu@aliyun.com organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, China – sequence: 4 givenname: Shun-Feng orcidid: 0000-0001-9777-128X surname: Su fullname: Su, Shun-Feng email: sfsu@mail.ntust.edu.tw organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan – sequence: 5 givenname: Guang orcidid: 0000-0001-9323-5076 surname: Li fullname: Li, Guang email: g.li@qmul.ac.uk organization: School of Engineering and Materials Science, Queen Mary University of London, London, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30794520$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9rFDEUx4O02Fr7B4ggAS9eZpvfkzmuq9VCqYeuiF5CNvMGU2aScZIRtn-9WXfbQw99l_cIn88jvO8rdBRiAITeULKglDQX69XPjwtGaLNguhE1Ey_QKaNKV4zV8uhxVvUJOk_pjpTS5anRL9EJJ3UjJCOn6NeytWP2fwFf-uAzVGs_lHm-v9_iVQx5ij2OHb6JofcB7ISX7j99O6cRQvIx4NttyjAk_MPn3_gqjHPGn6C329fouLN9gvNDP0PfLz-vV1-r629frlbL68px0eSqI7V2gmjXMMKJJGTTgqrVRmvWKctaLixngsu2dkwrR13bSqGYhtZuXMcFP0Mf9nvHKf6ZIWUz-OSg722AOCfDqJZS6aIU9P0T9C7OUyi_M0wQSplkUhXq3YGaNwO0Zpz8YKetebhaAeo94KaY0gSdcT7b7Hf3sr43lJhdRGYXkdlFZA4RFZM-MR-WP-e83TseAB55rYSsG8r_Af5LmjI |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TETCI_2023_3309739 crossref_primary_10_1007_s11071_024_10746_0 crossref_primary_10_1016_j_conengprac_2024_106125 crossref_primary_10_1109_ACCESS_2024_3393970 crossref_primary_10_1007_s00521_023_08780_x crossref_primary_10_1177_09544070241244412 crossref_primary_10_1007_s40815_020_00927_5 crossref_primary_10_1109_TVT_2024_3370094 crossref_primary_10_1109_TCYB_2021_3069632 crossref_primary_10_3390_su141811230 crossref_primary_10_1080_21642583_2023_2293907 crossref_primary_10_1016_j_ejcon_2022_100764 crossref_primary_10_1109_TNNLS_2023_3257508 crossref_primary_10_1016_j_ins_2022_06_055 crossref_primary_10_1109_TSMC_2021_3089768 crossref_primary_10_1002_rnc_6351 crossref_primary_10_1109_TNSE_2023_3305969 crossref_primary_10_3390_en17174227 crossref_primary_10_3390_s24010156 crossref_primary_10_1109_TMECH_2023_3342013 crossref_primary_10_1109_TTE_2021_3096992 crossref_primary_10_3390_app11010052 crossref_primary_10_1007_s40815_020_00961_3 crossref_primary_10_1007_s10846_022_01742_w crossref_primary_10_1109_JAS_2020_1003183 crossref_primary_10_1007_s11071_022_07975_6 crossref_primary_10_1016_j_fss_2023_108673 crossref_primary_10_1109_ACCESS_2021_3134990 crossref_primary_10_1016_j_heliyon_2024_e26363 crossref_primary_10_1007_s11071_023_08355_4 crossref_primary_10_1109_TITS_2024_3350918 crossref_primary_10_1016_j_ins_2021_02_021 crossref_primary_10_1080_21642583_2022_2048320 crossref_primary_10_1002_rnc_6342 crossref_primary_10_1016_j_oceaneng_2022_111802 crossref_primary_10_1016_j_ymssp_2024_111280 crossref_primary_10_1016_j_neucom_2022_03_044 crossref_primary_10_1155_2020_8520835 crossref_primary_10_1109_TNNLS_2023_3242345 crossref_primary_10_1007_s11431_022_2126_7 crossref_primary_10_1109_ACCESS_2021_3115909 crossref_primary_10_1155_2020_5910430 crossref_primary_10_1007_s40815_019_00700_3 crossref_primary_10_1017_S0263574723001595 crossref_primary_10_1109_TIE_2020_3040667 crossref_primary_10_1155_2022_3258549 crossref_primary_10_1002_asjc_2984 crossref_primary_10_1002_asjc_2867 crossref_primary_10_1109_ACCESS_2021_3123363 crossref_primary_10_59441_ijame_172895 crossref_primary_10_1016_j_fss_2023_108699 crossref_primary_10_1080_00207179_2024_2380745 crossref_primary_10_1016_j_jfranklin_2022_06_016 crossref_primary_10_1109_TCYB_2020_2972322 crossref_primary_10_1109_TCYB_2021_3052816 crossref_primary_10_1016_j_energy_2024_131918 crossref_primary_10_3390_s21041539 crossref_primary_10_1016_j_chaos_2024_115166 crossref_primary_10_3390_electronics11060921 crossref_primary_10_1080_21642583_2021_1969700 crossref_primary_10_3390_act13040138 crossref_primary_10_1002_acs_3391 crossref_primary_10_1049_iet_cta_2020_0090 crossref_primary_10_1109_TCYB_2020_3024672 crossref_primary_10_1049_cth2_12107 crossref_primary_10_1007_s11071_024_10247_0 crossref_primary_10_1109_TAI_2021_3107226 crossref_primary_10_1007_s40815_023_01549_3 crossref_primary_10_1177_01423312241249207 crossref_primary_10_1016_j_fss_2024_108861 crossref_primary_10_1038_s41598_023_49766_y crossref_primary_10_3390_machines11111022 crossref_primary_10_1155_2020_1492615 crossref_primary_10_1016_j_ymssp_2023_110400 crossref_primary_10_1016_j_ins_2024_121770 crossref_primary_10_3934_mbe_2022451 crossref_primary_10_1177_10775463241296612 crossref_primary_10_1109_TCYB_2020_3001581 crossref_primary_10_1109_ACCESS_2022_3226323 crossref_primary_10_3390_act14030137 crossref_primary_10_1016_j_ymssp_2025_112542 crossref_primary_10_1109_TMECH_2022_3184617 crossref_primary_10_1002_acs_3339 crossref_primary_10_1002_acs_3977 crossref_primary_10_1109_TFUZZ_2020_2988849 crossref_primary_10_1115_1_4062342 crossref_primary_10_1177_01423312241273788 crossref_primary_10_1590_1679_78256883 crossref_primary_10_1155_2022_4628539 crossref_primary_10_3390_math12121866 crossref_primary_10_1007_s40430_025_05384_5 crossref_primary_10_1109_ACCESS_2020_2997383 crossref_primary_10_1109_TCYB_2019_2930662 crossref_primary_10_1109_JAS_2020_1003306 crossref_primary_10_1002_rnc_6545 crossref_primary_10_1016_j_fss_2023_108642 crossref_primary_10_1590_1679_78256992 crossref_primary_10_1109_TCYB_2020_2989404 crossref_primary_10_1177_01423312241263136 crossref_primary_10_1002_rnc_6846 crossref_primary_10_1109_ACCESS_2024_3468912 crossref_primary_10_1109_TCYB_2021_3063225 crossref_primary_10_1177_10775463241305675 crossref_primary_10_1109_TMECH_2020_3031840 crossref_primary_10_1016_j_arcontrol_2024_100974 crossref_primary_10_3390_sym16070857 crossref_primary_10_1016_j_ymssp_2025_112328 crossref_primary_10_1080_21642583_2021_1949403 crossref_primary_10_1049_cth2_12311 crossref_primary_10_1109_ACCESS_2019_2898925 crossref_primary_10_1109_TASE_2023_3324389 crossref_primary_10_1109_ACCESS_2023_3323395 crossref_primary_10_1109_TNNLS_2022_3222464 crossref_primary_10_1109_TITS_2021_3114284 crossref_primary_10_1590_1679_78256621 crossref_primary_10_1109_TVT_2023_3298060 crossref_primary_10_1016_j_ymssp_2023_110116 crossref_primary_10_1002_acs_3590 crossref_primary_10_1177_01423312241277249 crossref_primary_10_1177_09544070221101324 crossref_primary_10_1016_j_jfranklin_2021_03_019 crossref_primary_10_1002_rnc_7650 crossref_primary_10_3390_math9030249 |
Cites_doi | 10.1109/TCYB.2015.2451116 10.1109/TAC.2008.919568 10.1109/TSMC.2018.2855170 10.1109/TIE.2018.2798564 10.1109/87.845885 10.1109/TIE.2012.2206340 10.1002/rnc.3636 10.1109/72.159070 10.1109/TAC.2015.2451472 10.1109/TCYB.2018.2875134 10.1109/TCYB.2014.2329495 10.1109/TNNLS.2018.2852711 10.1109/TIE.2012.2202354 10.1016/j.automatica.2012.05.033 10.1109/TCYB.2013.2295114 10.1016/j.automatica.2018.10.030 10.1109/TCYB.2013.2279534 10.1109/9.668834 10.1016/j.automatica.2016.09.030 10.1109/TCYB.2015.2388582 10.1109/TIE.2013.2242418 10.1109/9.272329 10.1109/TSMC.2017.2769683 10.1109/TVT.2017.2737440 10.1016/j.isatra.2014.05.025 10.1109/TCYB.2018.2865174 10.1109/TCST.2017.2746060 10.1109/TCST.2010.2078818 10.1109/TNNLS.2015.2470175 10.1109/TFUZZ.2013.2275168 10.1016/S0005-1098(97)00101-5 10.1016/j.automatica.2013.02.013 10.1109/TCYB.2016.2600263 10.1080/00423114.2010.532223 10.1109/TFUZZ.2015.2418000 10.1109/TSMCA.2009.2030164 10.1002/rnc.3247 10.1109/TAES.2018.2832998 10.1109/TFUZZ.2017.2737405 10.1109/TFUZZ.2016.2567457 10.1016/j.mechatronics.2010.11.001 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2019.2894724 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 2650 |
ExternalDocumentID | 30794520 10_1109_TCYB_2019_2894724 8645791 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873115; 61573174 funderid: 10.13039/501100001809 – fundername: Ph.D. Scholarship between Chinese Scholarship Council and Queen Mary University of London grantid: 201708530252 funderid: 10.13039/501100000851 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-f078c408c92030500bde676b882f6a2d34a32435d7c286c1cdd54628edabcf343 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 05:35:04 EDT 2025 Mon Jun 30 03:18:10 EDT 2025 Mon Jul 21 06:06:44 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Tue Jul 01 00:53:52 EDT 2025 Wed Aug 27 02:39:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-f078c408c92030500bde676b882f6a2d34a32435d7c286c1cdd54628edabcf343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9777-128X 0000-0001-9323-5076 0000-0002-3067-1580 0000-0001-9390-2369 |
PMID | 30794520 |
PQID | 2401125256 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2401125256 pubmed_primary_30794520 crossref_citationtrail_10_1109_TCYB_2019_2894724 crossref_primary_10_1109_TCYB_2019_2894724 proquest_miscellaneous_2185568628 ieee_primary_8645791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 kamalapurkar (ref42) 2014 smith (ref12) 1959; 6 li (ref10) 2014; 44 ref24 ref45 ref23 slotine (ref34) 1991; 199 ref26 ref25 ref20 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 khalil (ref44) 1996; 2 |
References_xml | – ident: ref25 doi: 10.1109/TCYB.2015.2451116 – ident: ref35 doi: 10.1109/TAC.2008.919568 – ident: ref32 doi: 10.1109/TSMC.2018.2855170 – ident: ref7 doi: 10.1109/TIE.2018.2798564 – volume: 199 year: 1991 ident: ref34 publication-title: Applied nonlinear control – ident: ref6 doi: 10.1109/87.845885 – ident: ref9 doi: 10.1109/TIE.2012.2206340 – ident: ref43 doi: 10.1002/rnc.3636 – ident: ref39 doi: 10.1109/72.159070 – ident: ref18 doi: 10.1109/TAC.2015.2451472 – ident: ref27 doi: 10.1109/TCYB.2018.2875134 – ident: ref24 doi: 10.1109/TCYB.2014.2329495 – ident: ref19 doi: 10.1109/TNNLS.2018.2852711 – ident: ref3 doi: 10.1109/TIE.2012.2202354 – ident: ref4 doi: 10.1016/j.automatica.2012.05.033 – ident: ref29 doi: 10.1109/TCYB.2013.2295114 – ident: ref21 doi: 10.1016/j.automatica.2018.10.030 – year: 2014 ident: ref42 article-title: Supporting lemmas for RISE-based control methods publication-title: arXiv 1306 3432 – volume: 44 start-page: 1111 year: 2014 ident: ref10 article-title: Fuzzy sampled-data control for uncertain vehicle suspension systems publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2279534 – ident: ref45 doi: 10.1109/9.668834 – ident: ref17 doi: 10.1016/j.automatica.2016.09.030 – ident: ref20 doi: 10.1109/TCYB.2015.2388582 – ident: ref11 doi: 10.1109/TIE.2013.2242418 – ident: ref13 doi: 10.1109/9.272329 – ident: ref40 doi: 10.1109/TSMC.2017.2769683 – ident: ref38 doi: 10.1109/TVT.2017.2737440 – ident: ref8 doi: 10.1016/j.isatra.2014.05.025 – ident: ref33 doi: 10.1109/TCYB.2018.2865174 – ident: ref37 doi: 10.1109/TCST.2017.2746060 – ident: ref14 doi: 10.1109/TCST.2010.2078818 – ident: ref41 doi: 10.1109/TNNLS.2015.2470175 – ident: ref30 doi: 10.1109/TFUZZ.2013.2275168 – ident: ref2 doi: 10.1016/S0005-1098(97)00101-5 – ident: ref16 doi: 10.1016/j.automatica.2013.02.013 – ident: ref23 doi: 10.1109/TCYB.2016.2600263 – volume: 6 start-page: 28 year: 1959 ident: ref12 article-title: A controller to overcome dead time publication-title: ISA J – ident: ref1 doi: 10.1080/00423114.2010.532223 – ident: ref22 doi: 10.1109/TFUZZ.2015.2418000 – ident: ref31 doi: 10.1109/TSMCA.2009.2030164 – ident: ref36 doi: 10.1002/rnc.3247 – volume: 2 start-page: 1 year: 1996 ident: ref44 publication-title: Noninear Systems – ident: ref26 doi: 10.1109/TAES.2018.2832998 – ident: ref28 doi: 10.1109/TFUZZ.2017.2737405 – ident: ref15 doi: 10.1109/TFUZZ.2016.2567457 – ident: ref5 doi: 10.1016/j.mechatronics.2010.11.001 |
SSID | ssj0000816898 |
Score | 2.605588 |
Snippet | This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2639 |
SubjectTerms | Active control Active suspension systems Adaptive algorithms Adaptive control Closed loop systems Computer simulation Delay effects Delays Dynamic stability Dynamical systems Feedback control finite-time (FT) convergence Fuzzy control Fuzzy logic fuzzy logic systems (FLSs) Fuzzy systems input time delay Nonlinear control Nonlinear dynamics Nonlinear systems Parameter estimation Suspension systems Suspensions (mechanical systems) System effectiveness Systems stability Time lag Vehicle dynamics |
Title | Adaptive Finite-Time Fuzzy Control of Nonlinear Active Suspension Systems With Input Delay |
URI | https://ieeexplore.ieee.org/document/8645791 https://www.ncbi.nlm.nih.gov/pubmed/30794520 https://www.proquest.com/docview/2401125256 https://www.proquest.com/docview/2185568628 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RTr20pbSQQitX6oFWZPEmTpwct0tXFAkuBZX2Ejm2IxAoWbHJgf31zDjeqEKAerMU50tvbL-x580AfOFSGlOVKkxVkoci4yLMjUBnJdPoPsfYLkk7fHKaHp2L44vkYg32By2MtdYFn9kRNd1Zvml0R1tlB1kqEklS9RfouPVarWE_xRWQcKVvI2yEyCqkP8Qc8_zgbPrnO8Vx5SN0MISMqBwPWncuEir0_c-K5EqsPM023aozew0nq-_tg02uR11bjvTyQSrH__2hN_DK00826e1lA9Zs_RY2_ABfsD2fhfrrJvydGDWnuZDNroiXhiQWYbNuubxj0z6-nTUVO-1TbahbNnEzJ_vVLeYUFN_UzGdDZ7-v2kv2s553LTu0N-ruHZzPfpxNj0JfiCHUscjbsEIeoQVH-CKaHzgvjU1lWiI7r1IVmVgo5GVxYqSOslSPtTEJaV6tUaWuYhG_h_W6qe02MEVCVx4ZZY2kzDZKYn-hIi7sOLNaBsBXYBTaZymnYhk3hfNWeF4QlAVBWXgoA_g23DLvU3Q813mTYBg6egQC2F0hXvhBvCiQ7CAbTZAUBvB5uIzDj85UVG2bDvsg30lIZZMFsNVbyvDslYF9ePydO_AyIufdbenswnp729mPyHDa8pMz7XtK6_K1 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAXoJSPQAEjcQBEtt7EiZPjsrDaQncvbEXhEjm2IyqqZNVNDt1fz4zjjRACxM1SnC-9sf3GnjcD8JJLaUxVqjBVSR6KjIswNwKdlUyj-xxjuyTt8GKZzs_Ex_PkfA_eDloYa60LPrMjarqzfNPojrbKjrNUJJKk6jdw3U_GvVpr2FFxJSRc8dsIGyHyCumPMcc8P15Nv76jSK58hC6GkBEV5EH7zkVCpb5_WZNckZW_80237szuwGL3xX24yY9R15Yjvf0tmeP__tJduO0JKJv0FnMAe7a-Bwd-iG_YK5-H-vUhfJsYtabZkM0uiJmGJBdhs267vWbTPsKdNRVb9sk21BWbuLmTfe42awqLb2rm86GzLxftd3ZSr7uWvbeX6vo-nM0-rKbz0JdiCHUs8jaskElowRHAiGYIzktjU5mWyM-rVEUmFgqZWZwYqaMs1WNtTEKqV2tUqatYxA9gv25q-wiYIqkrj4yyRlJuGyWxv1ARF3acWS0D4DswCu3zlFO5jMvC-Ss8LwjKgqAsPJQBvBluWfdJOv7V-ZBgGDp6BAI42iFe-GG8KZDuIB9NkBYG8GK4jAOQTlVUbZsO-yDjSUhnkwXwsLeU4dk7A3v853c-h5vz1eK0OD1ZfnoCtyJy5d0GzxHst1edfYp8py2fOTP_CRy59f4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Finite-Time+Fuzzy+Control+of+Nonlinear+Active+Suspension+Systems+With+Input+Delay&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Na%2C+Jing&rft.au=Huang%2C+Yingbo&rft.au=Wu%2C+Xing&rft.au=Shun-Feng%2C+Su&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=6&rft.spage=2639&rft_id=info:doi/10.1109%2FTCYB.2019.2894724&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |