Stable local volatility function calibration using spline kernel
We propose an optimization formulation using the l 1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support ve...
Saved in:
Published in | Computational optimization and applications Vol. 55; no. 3; pp. 675 - 702 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.07.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0926-6003 1573-2894 |
DOI | 10.1007/s10589-013-9543-x |
Cover
Loading…
Abstract | We propose an optimization formulation using the
l
1
norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates. |
---|---|
AbstractList | We propose an optimization formulation using the l ^sub 1^ norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.[PUBLICATION ABSTRACT] We propose an optimization formulation using the l 1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates. We propose an optimization formulation using the l sub(1) norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates. |
Author | Li, Yuying Wang, Cheng Coleman, Thomas F. |
Author_xml | – sequence: 1 givenname: Thomas F. surname: Coleman fullname: Coleman, Thomas F. email: tfcoleman@uwaterloo.ca organization: Combinatorics and Optimization, University of Waterloo – sequence: 2 givenname: Yuying surname: Li fullname: Li, Yuying organization: David R. Cheriton School of Computer Science, University of Waterloo – sequence: 3 givenname: Cheng surname: Wang fullname: Wang, Cheng organization: David R. Cheriton School of Computer Science, University of Waterloo |
BookMark | eNp9kMFq3DAQhkVJoZu0D9CboZdcnMxYliXdEpYkDQR6aHsWsna0KFXkjWSH3bevd7eHEkhOMwz_NzN8p-wkDYkY-4pwgQDysiAIpWtAXmvR8nr7gS1QSF43SrcnbAG66eoOgH9ip6U8AoCWvFmwq5-j7SNVcXA2Vi9DtGOIYdxVfkpuDEOq5nnosz30UwlpXZVNDImqP5QTxc_so7ex0Jd_9Yz9vr35tfxeP_y4u19eP9SOt3qsiYTCBjuuBAnhml4q5XmHIBVpaFegneVceUui9U50q7ZvpG2Fd10P3hM_Y-fHvZs8PE9URvMUiqMYbaJhKgZblBoAOzVHv72KPg5TTvN3BrlEjh0KmFN4TLk8lJLJm00OTzbvDILZOzVHp2Z2avZOzXZm5CvGhfGgZsw2xHfJ5kiW-UpaU_7vpzehv6QNjWo |
CitedBy_id | crossref_primary_10_1016_j_jocs_2021_101341 crossref_primary_10_1155_2018_3093708 crossref_primary_10_2139_ssrn_2091117 crossref_primary_10_2139_ssrn_2143101 crossref_primary_10_2139_ssrn_2400872 crossref_primary_10_1093_imaman_dpv007 |
Cites_doi | 10.1111/j.1540-6261.1991.tb03775.x 10.1093/rfs/6.2.327 10.1111/j.1540-6261.1994.tb00079.x 10.1007/BF01582221 10.1137/S1052623494240456 10.1086/260062 10.1016/0304-405X(76)90022-2 10.3905/jod.2010.17.3.053 10.1137/0806023 10.1007/s11147-006-9003-1 10.1093/rfs/3.4.493 10.1111/j.1540-6261.1987.tb02568.x 10.1162/089976698300017269 10.21314/JCF.1997.009 10.21314/JCF.1999.027 10.1111/j.1540-6261.2007.01241.x 10.1016/j.amc.2010.10.046 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2013 |
Copyright_xml | – notice: Springer Science+Business Media New York 2013 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10589-013-9543-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Mathematics |
EISSN | 1573-2894 |
EndPage | 702 |
ExternalDocumentID | 3004844631 10_1007_s10589_013_9543_x |
Genre | Feature |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c349t-ee581216385e55c2b788f361078e904d09ca338fae54fc56d4b27a45fc6b0ffe3 |
IEDL.DBID | U2A |
ISSN | 0926-6003 |
IngestDate | Mon Jul 21 11:09:18 EDT 2025 Sat Aug 23 14:36:02 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Tue Jul 01 00:44:23 EDT 2025 Fri Feb 21 02:30:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Spline kernel optimization Option pricing Local volatility function Calibration L Trust region method |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-ee581216385e55c2b788f361078e904d09ca338fae54fc56d4b27a45fc6b0ffe3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1371316150 |
PQPubID | 30811 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_1417900168 proquest_journals_1371316150 crossref_primary_10_1007_s10589_013_9543_x crossref_citationtrail_10_1007_s10589_013_9543_x springer_journals_10_1007_s10589_013_9543_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130700 2013-7-00 20130701 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 7 year: 2013 text: 20130700 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Computational optimization and applications |
PublicationTitleAbbrev | Comput Optim Appl |
PublicationYear | 2013 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR4 Coleman, Verma, Berz, Bischof, Corliss, Griewank (CR8) 1996 Gatheral (CR13) 2006 Bates (CR2) 1991; 46 Heston (CR17) 1993; 6 Naik, Lee (CR20) 1990; 3 CR15 He, Kennedy, Coleman, Forsyth, Li, Vetzal (CR16) 2006; 9 Derman, Kani (CR10) 1994; 7 CR14 Coleman, Li, Verma (CR9) 1999; 2 CR23 Coleman, Li (CR7) 1996; 6 Fletcher (CR12) 1980 Coleman, Li (CR5) 1994; 67 Vapnik (CR24) 1998 Black, Scholes (CR3) 1973; 81 Dupire (CR11) 1994; 7 Hull, White (CR18) 1987; 42 Orosi (CR21) 2010; 17 Merton (CR19) 1976; 3 Andersen, Brotherton-Ratcliffe (CR1) 1997; 1 Coleman, Li (CR6) 1996; 6 Rubinstein (CR22) 1994; 49 F. Black (9543_CR3) 1973; 81 B. Dupire (9543_CR11) 1994; 7 9543_CR4 T.F. Coleman (9543_CR6) 1996; 6 R. Fletcher (9543_CR12) 1980 T.F. Coleman (9543_CR5) 1994; 67 E. Derman (9543_CR10) 1994; 7 J. Gatheral (9543_CR13) 2006 R.C. Merton (9543_CR19) 1976; 3 L.B.G. Andersen (9543_CR1) 1997; 1 T.F. Coleman (9543_CR7) 1996; 6 S.L. Heston (9543_CR17) 1993; 6 C. He (9543_CR16) 2006; 9 G. Orosi (9543_CR21) 2010; 17 J. Hull (9543_CR18) 1987; 42 9543_CR23 D.S. Bates (9543_CR2) 1991; 46 9543_CR14 M. Rubinstein (9543_CR22) 1994; 49 9543_CR15 T.F. Coleman (9543_CR9) 1999; 2 V. Naik (9543_CR20) 1990; 3 V.N. Vapnik (9543_CR24) 1998 T.F. Coleman (9543_CR8) 1996 |
References_xml | – volume: 46 start-page: 1009 year: 1991 end-page: 1044 ident: CR2 article-title: The crash of ’87: was it expected? The evidence from options markets publication-title: J. Finance doi: 10.1111/j.1540-6261.1991.tb03775.x – year: 1980 ident: CR12 publication-title: Practical Methods of Optimization: Unconstrained Optimization – volume: 7 start-page: 32 year: 1994 end-page: 39 ident: CR10 article-title: Riding on a smile publication-title: Risk – volume: 6 start-page: 327 year: 1993 end-page: 343 ident: CR17 article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/6.2.327 – ident: CR4 – ident: CR14 – ident: CR15 – volume: 49 start-page: 771 year: 1994 end-page: 818 ident: CR22 article-title: Implied binomial trees publication-title: J. Finance doi: 10.1111/j.1540-6261.1994.tb00079.x – year: 1998 ident: CR24 publication-title: Statistical Learning Theory – volume: 67 start-page: 189 year: 1994 end-page: 224 ident: CR5 article-title: On the convergence of reflective Newton methods for large-scale nonlinear minimization on bounds publication-title: Math. Program. doi: 10.1007/BF01582221 – volume: 6 start-page: 1040 issue: 4 year: 1996 end-page: 1058 ident: CR7 article-title: A reflective Newton method for minimizing a quadratic function subject to bounds on the variables publication-title: SIAM J. Optim. doi: 10.1137/S1052623494240456 – volume: 81 start-page: 637 issue: 1 year: 1973 end-page: 654 ident: CR3 article-title: The pricing of options and corporate liabilities publication-title: J. Polit. Econ. doi: 10.1086/260062 – volume: 3 start-page: 125 year: 1976 end-page: 144 ident: CR19 article-title: Option pricing when underlying stock returns are discontinuous publication-title: J. Financ. Econ. doi: 10.1016/0304-405X(76)90022-2 – volume: 17 start-page: 53 issue: 3 year: 2010 end-page: 64 ident: CR21 article-title: Improved implementation of local volatility and its application to s&p 500 index options publication-title: J. Deriv. doi: 10.3905/jod.2010.17.3.053 – volume: 6 start-page: 418 issue: 2 year: 1996 end-page: 445 ident: CR6 article-title: An interior, trust region approach for nonlinear minimization subject to bounds publication-title: SIAM J. Optim. doi: 10.1137/0806023 – volume: 9 start-page: 1 year: 2006 end-page: 35 ident: CR16 article-title: Calibration and hedging under jump diffusion publication-title: Rev. Deriv. Res. doi: 10.1007/s11147-006-9003-1 – start-page: 149 year: 1996 end-page: 159 ident: CR8 article-title: Structure and efficient Jacobian calculation publication-title: Computational Differentiation: Techniques, Applications, and Tools – volume: 7 start-page: 18 issue: 1 year: 1994 end-page: 20 ident: CR11 article-title: Pricing with a smile publication-title: Risk Mag. – volume: 3 start-page: 493 year: 1990 end-page: 521 ident: CR20 article-title: General equilibrium pricing of options on the market portfolio with discontinuous returns publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/3.4.493 – volume: 2 start-page: 77 issue: 3 year: 1999 end-page: 102 ident: CR9 article-title: Reconstructing the unknown local volatility function publication-title: J. Comput. Finance – volume: 1 start-page: 5 issue: 2 year: 1997 end-page: 37 ident: CR1 article-title: The equity option volatility smile: an implicit finite difference approach publication-title: J. Comput. Finance – volume: 42 start-page: 281 year: 1987 end-page: 300 ident: CR18 article-title: The pricing of options on assets with stochastic volatilities publication-title: J. Finance doi: 10.1111/j.1540-6261.1987.tb02568.x – year: 2006 ident: CR13 publication-title: The Volatility Surface: A Practitioner’s Guide – ident: CR23 – volume: 46 start-page: 1009 year: 1991 ident: 9543_CR2 publication-title: J. Finance doi: 10.1111/j.1540-6261.1991.tb03775.x – volume: 67 start-page: 189 year: 1994 ident: 9543_CR5 publication-title: Math. Program. doi: 10.1007/BF01582221 – volume: 3 start-page: 493 year: 1990 ident: 9543_CR20 publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/3.4.493 – volume: 81 start-page: 637 issue: 1 year: 1973 ident: 9543_CR3 publication-title: J. Polit. Econ. doi: 10.1086/260062 – volume-title: The Volatility Surface: A Practitioner’s Guide year: 2006 ident: 9543_CR13 – volume: 49 start-page: 771 year: 1994 ident: 9543_CR22 publication-title: J. Finance doi: 10.1111/j.1540-6261.1994.tb00079.x – start-page: 149 volume-title: Computational Differentiation: Techniques, Applications, and Tools year: 1996 ident: 9543_CR8 – volume: 3 start-page: 125 year: 1976 ident: 9543_CR19 publication-title: J. Financ. Econ. doi: 10.1016/0304-405X(76)90022-2 – ident: 9543_CR14 doi: 10.1162/089976698300017269 – volume: 17 start-page: 53 issue: 3 year: 2010 ident: 9543_CR21 publication-title: J. Deriv. doi: 10.3905/jod.2010.17.3.053 – volume: 1 start-page: 5 issue: 2 year: 1997 ident: 9543_CR1 publication-title: J. Comput. Finance doi: 10.21314/JCF.1997.009 – volume: 7 start-page: 18 issue: 1 year: 1994 ident: 9543_CR11 publication-title: Risk Mag. – volume: 42 start-page: 281 year: 1987 ident: 9543_CR18 publication-title: J. Finance doi: 10.1111/j.1540-6261.1987.tb02568.x – volume: 2 start-page: 77 issue: 3 year: 1999 ident: 9543_CR9 publication-title: J. Comput. Finance doi: 10.21314/JCF.1999.027 – ident: 9543_CR23 – volume-title: Statistical Learning Theory year: 1998 ident: 9543_CR24 – ident: 9543_CR4 doi: 10.1111/j.1540-6261.2007.01241.x – volume: 6 start-page: 327 year: 1993 ident: 9543_CR17 publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/6.2.327 – volume-title: Practical Methods of Optimization: Unconstrained Optimization year: 1980 ident: 9543_CR12 – volume: 9 start-page: 1 year: 2006 ident: 9543_CR16 publication-title: Rev. Deriv. Res. doi: 10.1007/s11147-006-9003-1 – volume: 6 start-page: 1040 issue: 4 year: 1996 ident: 9543_CR7 publication-title: SIAM J. Optim. doi: 10.1137/S1052623494240456 – volume: 6 start-page: 418 issue: 2 year: 1996 ident: 9543_CR6 publication-title: SIAM J. Optim. doi: 10.1137/0806023 – volume: 7 start-page: 32 year: 1994 ident: 9543_CR10 publication-title: Risk – ident: 9543_CR15 doi: 10.1016/j.amc.2010.10.046 |
SSID | ssj0009732 |
Score | 2.0181153 |
Snippet | We propose an optimization formulation using the
l
1
norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using... We propose an optimization formulation using the l ^sub 1^ norm to ensure accuracy and stability in calibrating a local volatility function for option pricing.... We propose an optimization formulation using the l sub(1) norm to ensure accuracy and stability in calibrating a local volatility function for option pricing.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 675 |
SubjectTerms | Accuracy Calibration Computational mathematics Convex and Discrete Geometry Engineering research Management Science Markets Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Partial differential equations Securities prices Splines Statistics Stochastic models Studies Vectors (mathematics) Volatility |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6veiD-InVKRV8UoJtk7TNk19sDMEh4mBvJUlTHxzd3Afsz_eua9cpuLfQpg38ktz9Lne5I-Ras0j5mVaUcRlTblEOpprTVMpIgfpTIsDbyK-9sNvnLwMxKA_cpmVYZSUTC0Gdjgyekd_5DMwppCfe_fibYtUo9K6WJTS2SRNEcAzGV_Op3Xt7r9PuRkWJMk8GIQXVziq_5vLynMBwIZ9RKTiji9-aqaabfzykheLp7JO9kjG6j8spPiBbNj8ku2t5BI_IA1BGPbRuoZhcEDgAN9JrF7UWIu_Cc7SLizaGun-6U7yKa90vO8nt8Jj0O-2P5y4tSyNQA6DOqLUCNDNyKWGFMIEGSzZjQIWi2EqPp540CozPTFnBMyPClOsgUlxkJtRelll2Qhr5KLenxJWhCJQPOIUx56mvVQptHnkhyDLmGesQr4IlMWXecCxfMUzqjMeIZAJIJohksnDIzeqT8TJpxqbOrQrrpNw_06SebYdcrV7Dykd3hsrtaA59sHgaUtbYIbfVHK394r8BzzYPeE52gqLkBYbktkhjNpnbCyAeM31Zrq4fKd_Tpw priority: 102 providerName: ProQuest |
Title | Stable local volatility function calibration using spline kernel |
URI | https://link.springer.com/article/10.1007/s10589-013-9543-x https://www.proquest.com/docview/1371316150 https://www.proquest.com/docview/1417900168 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e5kPolNxOkcFn5RA2yT9eHPK5lA2RBzMp5K0qQ-OTvYB_vnede02RQWfmjRpCndJ7nfcF8CF5r5yUq0YF2HAhKF7MNGCJWHoKxR_SroUjdwfeL2huB_JURHHPSu93UuTZH5TbwS7SXLvcTgLpeAMgWNVkuqOm3jotteZdv28Kpkduh5Dac5LU-ZPS3wVRmuE-c0omsua7h7sFiDRai-5ug9bJqvDzkbqQOz1V_lWZ3WoEWZcplw-gGvs6LGxcjFl4fWDQwS2LZJhxAcL35OWnLfJ8f3VmlFgrrHezDQz40MYdjvPtz1WFEpgMZJ4zoyRKKcJWUkjZexq1GtTjsDID0xoi8QOY4WqaKqMFGksvURo11dCprGn7TQ1_Agq2SQzx2CFnnSVgyT0AiESR6sE28K3PbzZuB2bBtglxaK4yCJOxSzG0Tr_MRE5QiJHROToowGXq0_elyk0_prcLNkQFadpFjkcVWmCpnYDzlfDeA7IuKEyM1ngHCqlRgA2aMBVyb6NJX774cm_Zp9Czc3rYZC_bhMq8-nCnCEqmesWbAfduxZU23cvDx183nQGj0-tfG9-AoPD3GY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOiLagLq-6Er2ALJLYTuJDVRBlWZ4nkLgFO5n0wCq7sIuAP9Xf2JnshoVKcOMWJY4djccz32ReABteJS4svZNK21RqZDlYeC0LaxNH6s-ZiLORT8_izoU-ujSXU_C3yYXhsMpGJtaCuujl_I98O1RkTjE8CX71byR3jWLvatNCY8QWx_h4Tybb4Ofhb9rfH1HU3j_f68hxVwGZ0_cMJaIhpcYwxKAxeeTJCCwVoYgkRRvoIrC5I7utdGh0mZu40D5KnDZlHvugLFHRvB9gRitl-USl7YNJkd-kbogW2CiWBCRU40UdpeoZDk4KlbRGK_nwUg9OwO1__thazbUXYH6MT8XuiKE-wRRWn2HuWdXCL7BDANV3UdRqUJB4o81lMC9YR_I-C7rPVnh9zYH1f8SAE39RXONthd1FuHgXki3BdNWr8CsIG5vIhUSnONW6CL0r6FonQUySUwU5tiBoyJLl4yrl3Cyjm03qKzMlM6JkxpTMHlqw-fRKf1Si463Bqw2ts_FpHWQT3mrB96fHdM7YeeIq7N3RGG7VxgA5bcFWs0fPpnhtweW3F_wGs53z05Ps5PDseAU-RnWzDQ4GXoXp4e0drhHkGfr1ms8EXL03Y_8D5eYPJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlX0UEFb1G15uBJcqCyc2E42h4r3iucKIZC4pXYy6aGrLGUXlf61_rrOZBMWkODGLUocOxqPZ77JvABWvY5dUHgntUk60iDLwdwbmSdJ7Ej9ORtyNvJpLzq4NEdX9moK_jW5MBxW2cjESlDng4z_kW8Emswphidqo6jDIs72upvXvyV3kGJPa9NOY8wix_j3D5lvw--He7TXa2HY3b_YPZB1hwGZ0beNJKIlBceQxKK1WejJICw0IYq4g4kyuUoyRzZc4dCaIrNRbnwYO2OLLPKqKFDTvNMwE5NVpFows7PfOzuflPyNq_ZoKgkjSbBCNz7VceKe5VClQMvEGi3vHmvFCdR94p2tlF53Dt7VaFVsj9lrHqawfA9vH9Qw_ABbBFd9H0WlFAUJO9pqhvaCNSbvuqD7bJNX1xxm_1MMOQ0YxS-8KbH_ES5fhWgL0CoHJX4CkUQ2dAHRKeoYkwfe5XRtYhWRHNUqwzaohixpVtcs59YZ_XRSbZkpmRIlU6ZketeG9ftXrscFO14avNjQOq3P7jCdcFobvt4_plPHrhRX4uCWxnDjNobLnTZ8a_bowRTPLfj55QVX4A0xdXpy2Dv-ArNh1XmDI4MXoTW6ucUlwj8jv1wzmoAfr83b_wEtMxS4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+local+volatility+function+calibration+using+spline+kernel&rft.jtitle=Computational+optimization+and+applications&rft.au=Coleman%2C+Thomas+F.&rft.au=Li%2C+Yuying&rft.au=Wang%2C+Cheng&rft.date=2013-07-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=55&rft.issue=3&rft.spage=675&rft.epage=702&rft_id=info:doi/10.1007%2Fs10589-013-9543-x&rft.externalDocID=10_1007_s10589_013_9543_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |