Stable local volatility function calibration using spline kernel

We propose an optimization formulation using the l 1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support ve...

Full description

Saved in:
Bibliographic Details
Published inComputational optimization and applications Vol. 55; no. 3; pp. 675 - 702
Main Authors Coleman, Thomas F., Li, Yuying, Wang, Cheng
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.07.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0926-6003
1573-2894
DOI10.1007/s10589-013-9543-x

Cover

Loading…
Abstract We propose an optimization formulation using the l 1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.
AbstractList We propose an optimization formulation using the l ^sub 1^ norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.[PUBLICATION ABSTRACT]
We propose an optimization formulation using the l 1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.
We propose an optimization formulation using the l sub(1) norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.
Author Li, Yuying
Wang, Cheng
Coleman, Thomas F.
Author_xml – sequence: 1
  givenname: Thomas F.
  surname: Coleman
  fullname: Coleman, Thomas F.
  email: tfcoleman@uwaterloo.ca
  organization: Combinatorics and Optimization, University of Waterloo
– sequence: 2
  givenname: Yuying
  surname: Li
  fullname: Li, Yuying
  organization: David R. Cheriton School of Computer Science, University of Waterloo
– sequence: 3
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: David R. Cheriton School of Computer Science, University of Waterloo
BookMark eNp9kMFq3DAQhkVJoZu0D9CboZdcnMxYliXdEpYkDQR6aHsWsna0KFXkjWSH3bevd7eHEkhOMwz_NzN8p-wkDYkY-4pwgQDysiAIpWtAXmvR8nr7gS1QSF43SrcnbAG66eoOgH9ip6U8AoCWvFmwq5-j7SNVcXA2Vi9DtGOIYdxVfkpuDEOq5nnosz30UwlpXZVNDImqP5QTxc_so7ex0Jd_9Yz9vr35tfxeP_y4u19eP9SOt3qsiYTCBjuuBAnhml4q5XmHIBVpaFegneVceUui9U50q7ZvpG2Fd10P3hM_Y-fHvZs8PE9URvMUiqMYbaJhKgZblBoAOzVHv72KPg5TTvN3BrlEjh0KmFN4TLk8lJLJm00OTzbvDILZOzVHp2Z2avZOzXZm5CvGhfGgZsw2xHfJ5kiW-UpaU_7vpzehv6QNjWo
CitedBy_id crossref_primary_10_1016_j_jocs_2021_101341
crossref_primary_10_1155_2018_3093708
crossref_primary_10_2139_ssrn_2091117
crossref_primary_10_2139_ssrn_2143101
crossref_primary_10_2139_ssrn_2400872
crossref_primary_10_1093_imaman_dpv007
Cites_doi 10.1111/j.1540-6261.1991.tb03775.x
10.1093/rfs/6.2.327
10.1111/j.1540-6261.1994.tb00079.x
10.1007/BF01582221
10.1137/S1052623494240456
10.1086/260062
10.1016/0304-405X(76)90022-2
10.3905/jod.2010.17.3.053
10.1137/0806023
10.1007/s11147-006-9003-1
10.1093/rfs/3.4.493
10.1111/j.1540-6261.1987.tb02568.x
10.1162/089976698300017269
10.21314/JCF.1997.009
10.21314/JCF.1999.027
10.1111/j.1540-6261.2007.01241.x
10.1016/j.amc.2010.10.046
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Copyright_xml – notice: Springer Science+Business Media New York 2013
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-013-9543-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 702
ExternalDocumentID 3004844631
10_1007_s10589_013_9543_x
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c349t-ee581216385e55c2b788f361078e904d09ca338fae54fc56d4b27a45fc6b0ffe3
IEDL.DBID U2A
ISSN 0926-6003
IngestDate Mon Jul 21 11:09:18 EDT 2025
Sat Aug 23 14:36:02 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Tue Jul 01 00:44:23 EDT 2025
Fri Feb 21 02:30:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Spline kernel
optimization
Option pricing
Local volatility function
Calibration
L
Trust region method
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-ee581216385e55c2b788f361078e904d09ca338fae54fc56d4b27a45fc6b0ffe3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1371316150
PQPubID 30811
PageCount 28
ParticipantIDs proquest_miscellaneous_1417900168
proquest_journals_1371316150
crossref_primary_10_1007_s10589_013_9543_x
crossref_citationtrail_10_1007_s10589_013_9543_x
springer_journals_10_1007_s10589_013_9543_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130700
2013-7-00
20130701
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 7
  year: 2013
  text: 20130700
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2013
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR4
Coleman, Verma, Berz, Bischof, Corliss, Griewank (CR8) 1996
Gatheral (CR13) 2006
Bates (CR2) 1991; 46
Heston (CR17) 1993; 6
Naik, Lee (CR20) 1990; 3
CR15
He, Kennedy, Coleman, Forsyth, Li, Vetzal (CR16) 2006; 9
Derman, Kani (CR10) 1994; 7
CR14
Coleman, Li, Verma (CR9) 1999; 2
CR23
Coleman, Li (CR7) 1996; 6
Fletcher (CR12) 1980
Coleman, Li (CR5) 1994; 67
Vapnik (CR24) 1998
Black, Scholes (CR3) 1973; 81
Dupire (CR11) 1994; 7
Hull, White (CR18) 1987; 42
Orosi (CR21) 2010; 17
Merton (CR19) 1976; 3
Andersen, Brotherton-Ratcliffe (CR1) 1997; 1
Coleman, Li (CR6) 1996; 6
Rubinstein (CR22) 1994; 49
F. Black (9543_CR3) 1973; 81
B. Dupire (9543_CR11) 1994; 7
9543_CR4
T.F. Coleman (9543_CR6) 1996; 6
R. Fletcher (9543_CR12) 1980
T.F. Coleman (9543_CR5) 1994; 67
E. Derman (9543_CR10) 1994; 7
J. Gatheral (9543_CR13) 2006
R.C. Merton (9543_CR19) 1976; 3
L.B.G. Andersen (9543_CR1) 1997; 1
T.F. Coleman (9543_CR7) 1996; 6
S.L. Heston (9543_CR17) 1993; 6
C. He (9543_CR16) 2006; 9
G. Orosi (9543_CR21) 2010; 17
J. Hull (9543_CR18) 1987; 42
9543_CR23
D.S. Bates (9543_CR2) 1991; 46
9543_CR14
M. Rubinstein (9543_CR22) 1994; 49
9543_CR15
T.F. Coleman (9543_CR9) 1999; 2
V. Naik (9543_CR20) 1990; 3
V.N. Vapnik (9543_CR24) 1998
T.F. Coleman (9543_CR8) 1996
References_xml – volume: 46
  start-page: 1009
  year: 1991
  end-page: 1044
  ident: CR2
  article-title: The crash of ’87: was it expected? The evidence from options markets
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1991.tb03775.x
– year: 1980
  ident: CR12
  publication-title: Practical Methods of Optimization: Unconstrained Optimization
– volume: 7
  start-page: 32
  year: 1994
  end-page: 39
  ident: CR10
  article-title: Riding on a smile
  publication-title: Risk
– volume: 6
  start-page: 327
  year: 1993
  end-page: 343
  ident: CR17
  article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/6.2.327
– ident: CR4
– ident: CR14
– ident: CR15
– volume: 49
  start-page: 771
  year: 1994
  end-page: 818
  ident: CR22
  article-title: Implied binomial trees
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1994.tb00079.x
– year: 1998
  ident: CR24
  publication-title: Statistical Learning Theory
– volume: 67
  start-page: 189
  year: 1994
  end-page: 224
  ident: CR5
  article-title: On the convergence of reflective Newton methods for large-scale nonlinear minimization on bounds
  publication-title: Math. Program.
  doi: 10.1007/BF01582221
– volume: 6
  start-page: 1040
  issue: 4
  year: 1996
  end-page: 1058
  ident: CR7
  article-title: A reflective Newton method for minimizing a quadratic function subject to bounds on the variables
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494240456
– volume: 81
  start-page: 637
  issue: 1
  year: 1973
  end-page: 654
  ident: CR3
  article-title: The pricing of options and corporate liabilities
  publication-title: J. Polit. Econ.
  doi: 10.1086/260062
– volume: 3
  start-page: 125
  year: 1976
  end-page: 144
  ident: CR19
  article-title: Option pricing when underlying stock returns are discontinuous
  publication-title: J. Financ. Econ.
  doi: 10.1016/0304-405X(76)90022-2
– volume: 17
  start-page: 53
  issue: 3
  year: 2010
  end-page: 64
  ident: CR21
  article-title: Improved implementation of local volatility and its application to s&p 500 index options
  publication-title: J. Deriv.
  doi: 10.3905/jod.2010.17.3.053
– volume: 6
  start-page: 418
  issue: 2
  year: 1996
  end-page: 445
  ident: CR6
  article-title: An interior, trust region approach for nonlinear minimization subject to bounds
  publication-title: SIAM J. Optim.
  doi: 10.1137/0806023
– volume: 9
  start-page: 1
  year: 2006
  end-page: 35
  ident: CR16
  article-title: Calibration and hedging under jump diffusion
  publication-title: Rev. Deriv. Res.
  doi: 10.1007/s11147-006-9003-1
– start-page: 149
  year: 1996
  end-page: 159
  ident: CR8
  article-title: Structure and efficient Jacobian calculation
  publication-title: Computational Differentiation: Techniques, Applications, and Tools
– volume: 7
  start-page: 18
  issue: 1
  year: 1994
  end-page: 20
  ident: CR11
  article-title: Pricing with a smile
  publication-title: Risk Mag.
– volume: 3
  start-page: 493
  year: 1990
  end-page: 521
  ident: CR20
  article-title: General equilibrium pricing of options on the market portfolio with discontinuous returns
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/3.4.493
– volume: 2
  start-page: 77
  issue: 3
  year: 1999
  end-page: 102
  ident: CR9
  article-title: Reconstructing the unknown local volatility function
  publication-title: J. Comput. Finance
– volume: 1
  start-page: 5
  issue: 2
  year: 1997
  end-page: 37
  ident: CR1
  article-title: The equity option volatility smile: an implicit finite difference approach
  publication-title: J. Comput. Finance
– volume: 42
  start-page: 281
  year: 1987
  end-page: 300
  ident: CR18
  article-title: The pricing of options on assets with stochastic volatilities
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1987.tb02568.x
– year: 2006
  ident: CR13
  publication-title: The Volatility Surface: A Practitioner’s Guide
– ident: CR23
– volume: 46
  start-page: 1009
  year: 1991
  ident: 9543_CR2
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1991.tb03775.x
– volume: 67
  start-page: 189
  year: 1994
  ident: 9543_CR5
  publication-title: Math. Program.
  doi: 10.1007/BF01582221
– volume: 3
  start-page: 493
  year: 1990
  ident: 9543_CR20
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/3.4.493
– volume: 81
  start-page: 637
  issue: 1
  year: 1973
  ident: 9543_CR3
  publication-title: J. Polit. Econ.
  doi: 10.1086/260062
– volume-title: The Volatility Surface: A Practitioner’s Guide
  year: 2006
  ident: 9543_CR13
– volume: 49
  start-page: 771
  year: 1994
  ident: 9543_CR22
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1994.tb00079.x
– start-page: 149
  volume-title: Computational Differentiation: Techniques, Applications, and Tools
  year: 1996
  ident: 9543_CR8
– volume: 3
  start-page: 125
  year: 1976
  ident: 9543_CR19
  publication-title: J. Financ. Econ.
  doi: 10.1016/0304-405X(76)90022-2
– ident: 9543_CR14
  doi: 10.1162/089976698300017269
– volume: 17
  start-page: 53
  issue: 3
  year: 2010
  ident: 9543_CR21
  publication-title: J. Deriv.
  doi: 10.3905/jod.2010.17.3.053
– volume: 1
  start-page: 5
  issue: 2
  year: 1997
  ident: 9543_CR1
  publication-title: J. Comput. Finance
  doi: 10.21314/JCF.1997.009
– volume: 7
  start-page: 18
  issue: 1
  year: 1994
  ident: 9543_CR11
  publication-title: Risk Mag.
– volume: 42
  start-page: 281
  year: 1987
  ident: 9543_CR18
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1987.tb02568.x
– volume: 2
  start-page: 77
  issue: 3
  year: 1999
  ident: 9543_CR9
  publication-title: J. Comput. Finance
  doi: 10.21314/JCF.1999.027
– ident: 9543_CR23
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 9543_CR24
– ident: 9543_CR4
  doi: 10.1111/j.1540-6261.2007.01241.x
– volume: 6
  start-page: 327
  year: 1993
  ident: 9543_CR17
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/6.2.327
– volume-title: Practical Methods of Optimization: Unconstrained Optimization
  year: 1980
  ident: 9543_CR12
– volume: 9
  start-page: 1
  year: 2006
  ident: 9543_CR16
  publication-title: Rev. Deriv. Res.
  doi: 10.1007/s11147-006-9003-1
– volume: 6
  start-page: 1040
  issue: 4
  year: 1996
  ident: 9543_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494240456
– volume: 6
  start-page: 418
  issue: 2
  year: 1996
  ident: 9543_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/0806023
– volume: 7
  start-page: 32
  year: 1994
  ident: 9543_CR10
  publication-title: Risk
– ident: 9543_CR15
  doi: 10.1016/j.amc.2010.10.046
SSID ssj0009732
Score 2.0181153
Snippet We propose an optimization formulation using the l 1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using...
We propose an optimization formulation using the l ^sub 1^ norm to ensure accuracy and stability in calibrating a local volatility function for option pricing....
We propose an optimization formulation using the l sub(1) norm to ensure accuracy and stability in calibrating a local volatility function for option pricing....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 675
SubjectTerms Accuracy
Calibration
Computational mathematics
Convex and Discrete Geometry
Engineering research
Management Science
Markets
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Partial differential equations
Securities prices
Splines
Statistics
Stochastic models
Studies
Vectors (mathematics)
Volatility
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6veiD-InVKRV8UoJtk7TNk19sDMEh4mBvJUlTHxzd3Afsz_eua9cpuLfQpg38ktz9Lne5I-Ras0j5mVaUcRlTblEOpprTVMpIgfpTIsDbyK-9sNvnLwMxKA_cpmVYZSUTC0Gdjgyekd_5DMwppCfe_fibYtUo9K6WJTS2SRNEcAzGV_Op3Xt7r9PuRkWJMk8GIQXVziq_5vLynMBwIZ9RKTiji9-aqaabfzykheLp7JO9kjG6j8spPiBbNj8ku2t5BI_IA1BGPbRuoZhcEDgAN9JrF7UWIu_Cc7SLizaGun-6U7yKa90vO8nt8Jj0O-2P5y4tSyNQA6DOqLUCNDNyKWGFMIEGSzZjQIWi2EqPp540CozPTFnBMyPClOsgUlxkJtRelll2Qhr5KLenxJWhCJQPOIUx56mvVQptHnkhyDLmGesQr4IlMWXecCxfMUzqjMeIZAJIJohksnDIzeqT8TJpxqbOrQrrpNw_06SebYdcrV7Dykd3hsrtaA59sHgaUtbYIbfVHK394r8BzzYPeE52gqLkBYbktkhjNpnbCyAeM31Zrq4fKd_Tpw
  priority: 102
  providerName: ProQuest
Title Stable local volatility function calibration using spline kernel
URI https://link.springer.com/article/10.1007/s10589-013-9543-x
https://www.proquest.com/docview/1371316150
https://www.proquest.com/docview/1417900168
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e5kPolNxOkcFn5RA2yT9eHPK5lA2RBzMp5K0qQ-OTvYB_vnede02RQWfmjRpCndJ7nfcF8CF5r5yUq0YF2HAhKF7MNGCJWHoKxR_SroUjdwfeL2huB_JURHHPSu93UuTZH5TbwS7SXLvcTgLpeAMgWNVkuqOm3jotteZdv28Kpkduh5Dac5LU-ZPS3wVRmuE-c0omsua7h7sFiDRai-5ug9bJqvDzkbqQOz1V_lWZ3WoEWZcplw-gGvs6LGxcjFl4fWDQwS2LZJhxAcL35OWnLfJ8f3VmlFgrrHezDQz40MYdjvPtz1WFEpgMZJ4zoyRKKcJWUkjZexq1GtTjsDID0xoi8QOY4WqaKqMFGksvURo11dCprGn7TQ1_Agq2SQzx2CFnnSVgyT0AiESR6sE28K3PbzZuB2bBtglxaK4yCJOxSzG0Tr_MRE5QiJHROToowGXq0_elyk0_prcLNkQFadpFjkcVWmCpnYDzlfDeA7IuKEyM1ngHCqlRgA2aMBVyb6NJX774cm_Zp9Czc3rYZC_bhMq8-nCnCEqmesWbAfduxZU23cvDx183nQGj0-tfG9-AoPD3GY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOiLagLq-6Er2ALJLYTuJDVRBlWZ4nkLgFO5n0wCq7sIuAP9Xf2JnshoVKcOMWJY4djccz32ReABteJS4svZNK21RqZDlYeC0LaxNH6s-ZiLORT8_izoU-ujSXU_C3yYXhsMpGJtaCuujl_I98O1RkTjE8CX71byR3jWLvatNCY8QWx_h4Tybb4Ofhb9rfH1HU3j_f68hxVwGZ0_cMJaIhpcYwxKAxeeTJCCwVoYgkRRvoIrC5I7utdGh0mZu40D5KnDZlHvugLFHRvB9gRitl-USl7YNJkd-kbogW2CiWBCRU40UdpeoZDk4KlbRGK_nwUg9OwO1__thazbUXYH6MT8XuiKE-wRRWn2HuWdXCL7BDANV3UdRqUJB4o81lMC9YR_I-C7rPVnh9zYH1f8SAE39RXONthd1FuHgXki3BdNWr8CsIG5vIhUSnONW6CL0r6FonQUySUwU5tiBoyJLl4yrl3Cyjm03qKzMlM6JkxpTMHlqw-fRKf1Si463Bqw2ts_FpHWQT3mrB96fHdM7YeeIq7N3RGG7VxgA5bcFWs0fPpnhtweW3F_wGs53z05Ps5PDseAU-RnWzDQ4GXoXp4e0drhHkGfr1ms8EXL03Y_8D5eYPJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlX0UEFb1G15uBJcqCyc2E42h4r3iucKIZC4pXYy6aGrLGUXlf61_rrOZBMWkODGLUocOxqPZ77JvABWvY5dUHgntUk60iDLwdwbmSdJ7Ej9ORtyNvJpLzq4NEdX9moK_jW5MBxW2cjESlDng4z_kW8Emswphidqo6jDIs72upvXvyV3kGJPa9NOY8wix_j3D5lvw--He7TXa2HY3b_YPZB1hwGZ0beNJKIlBceQxKK1WejJICw0IYq4g4kyuUoyRzZc4dCaIrNRbnwYO2OLLPKqKFDTvNMwE5NVpFows7PfOzuflPyNq_ZoKgkjSbBCNz7VceKe5VClQMvEGi3vHmvFCdR94p2tlF53Dt7VaFVsj9lrHqawfA9vH9Qw_ABbBFd9H0WlFAUJO9pqhvaCNSbvuqD7bJNX1xxm_1MMOQ0YxS-8KbH_ES5fhWgL0CoHJX4CkUQ2dAHRKeoYkwfe5XRtYhWRHNUqwzaohixpVtcs59YZ_XRSbZkpmRIlU6ZketeG9ftXrscFO14avNjQOq3P7jCdcFobvt4_plPHrhRX4uCWxnDjNobLnTZ8a_bowRTPLfj55QVX4A0xdXpy2Dv-ArNh1XmDI4MXoTW6ucUlwj8jv1wzmoAfr83b_wEtMxS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+local+volatility+function+calibration+using+spline+kernel&rft.jtitle=Computational+optimization+and+applications&rft.au=Coleman%2C+Thomas+F.&rft.au=Li%2C+Yuying&rft.au=Wang%2C+Cheng&rft.date=2013-07-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=55&rft.issue=3&rft.spage=675&rft.epage=702&rft_id=info:doi/10.1007%2Fs10589-013-9543-x&rft.externalDocID=10_1007_s10589_013_9543_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon