Optimization of Communication Network Topology in Distributed Control Systems Subject to Prescribed Decay Rate

In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faste...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 51; no. 8; pp. 4277 - 4285
Main Authors Gaeini, Nozhatalzaman, Moradi Amani, Ali, Jalili, Mahdi, Yu, Xinghuo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faster than a prespecified value, a constraint on the dominant eigenvalue of the system is required to be considered. This results in a nonconvex optimization problem as eigenvalue of a parametric nonsymmetric matrix is a nonconvex, nonsmooth, and even non-Lipschitz function. Here, we present a convex equivalent optimization problem whose minimizer also solves this eigenvalue optimization problem. This optimization problem proposes a state-feedback matrix which results in a decay rate faster than a given value while input signal costs are considered. The equivalent optimization problem in combination with sparsity-promoting optimal control constitutes a combinatorial optimization problem. Using alternating direction method of multipliers, the problem is decomposed into a chain of analytically solvable subproblems which are differentiable and separable. The proposed optimization framework includes relative preference between the topology of the control network and the decay rate of the system. The simulation results show the effectiveness of the proposed framework.
AbstractList In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faster than a prespecified value, a constraint on the dominant eigenvalue of the system is required to be considered. This results in a nonconvex optimization problem as eigenvalue of a parametric nonsymmetric matrix is a nonconvex, nonsmooth, and even non-Lipschitz function. Here, we present a convex equivalent optimization problem whose minimizer also solves this eigenvalue optimization problem. This optimization problem proposes a state-feedback matrix which results in a decay rate faster than a given value while input signal costs are considered. The equivalent optimization problem in combination with sparsity-promoting optimal control constitutes a combinatorial optimization problem. Using alternating direction method of multipliers, the problem is decomposed into a chain of analytically solvable subproblems which are differentiable and separable. The proposed optimization framework includes relative preference between the topology of the control network and the decay rate of the system. The simulation results show the effectiveness of the proposed framework.
In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faster than a prespecified value, a constraint on the dominant eigenvalue of the system is required to be considered. This results in a nonconvex optimization problem as eigenvalue of a parametric nonsymmetric matrix is a nonconvex, nonsmooth, and even non-Lipschitz function. Here, we present a convex equivalent optimization problem whose minimizer also solves this eigenvalue optimization problem. This optimization problem proposes a state-feedback matrix which results in a decay rate faster than a given value while input signal costs are considered. The equivalent optimization problem in combination with sparsity-promoting optimal control constitutes a combinatorial optimization problem. Using alternating direction method of multipliers, the problem is decomposed into a chain of analytically solvable subproblems which are differentiable and separable. The proposed optimization framework includes relative preference between the topology of the control network and the decay rate of the system. The simulation results show the effectiveness of the proposed framework.In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faster than a prespecified value, a constraint on the dominant eigenvalue of the system is required to be considered. This results in a nonconvex optimization problem as eigenvalue of a parametric nonsymmetric matrix is a nonconvex, nonsmooth, and even non-Lipschitz function. Here, we present a convex equivalent optimization problem whose minimizer also solves this eigenvalue optimization problem. This optimization problem proposes a state-feedback matrix which results in a decay rate faster than a given value while input signal costs are considered. The equivalent optimization problem in combination with sparsity-promoting optimal control constitutes a combinatorial optimization problem. Using alternating direction method of multipliers, the problem is decomposed into a chain of analytically solvable subproblems which are differentiable and separable. The proposed optimization framework includes relative preference between the topology of the control network and the decay rate of the system. The simulation results show the effectiveness of the proposed framework.
Author Jalili, Mahdi
Yu, Xinghuo
Moradi Amani, Ali
Gaeini, Nozhatalzaman
Author_xml – sequence: 1
  givenname: Nozhatalzaman
  orcidid: 0000-0002-7854-6308
  surname: Gaeini
  fullname: Gaeini, Nozhatalzaman
  email: s3560329@student.rmit.edu.au
  organization: School of Engineering, RMIT University, Melbourne, VIC, Australia
– sequence: 2
  givenname: Ali
  orcidid: 0000-0001-5158-4307
  surname: Moradi Amani
  fullname: Moradi Amani, Ali
  organization: School of Engineering, RMIT University, Melbourne, VIC, Australia
– sequence: 3
  givenname: Mahdi
  orcidid: 0000-0002-0517-9420
  surname: Jalili
  fullname: Jalili, Mahdi
  organization: School of Engineering, RMIT University, Melbourne, VIC, Australia
– sequence: 4
  givenname: Xinghuo
  orcidid: 0000-0001-8093-9787
  surname: Yu
  fullname: Yu, Xinghuo
  organization: School of Engineering, RMIT University, Melbourne, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31329150$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1UREvpD0BIyBIbNgl-zIztJaS8pIoimg0ry-O5Rg4zdmp7hMKvxyEhiy7w5lpX37nXPucpOgsxAELPKVlSStSb9er7uyUjVC2ZYh2X3SN0wWgnF4yJ9ux078Q5usp5Q-qRtaXkE3TOKWeKtuQChdtt8ZP_bYqPAUeHV3Ga5uDtofEFyq-YfuJ13MYx_thhH_C1zyX5fi4wVDqUFEd8t8sFpozv5n4DtuAS8dcE2VauUtdgzQ5_MwWeocfOjBmujvUSrT-8X68-LW5uP35evb1ZWN6osgA79K4VlqjWUancMHDDLOHWKWXANUY1xHDRy24w9Su2EYR2ve0b63ozMH6JXh_GblO8nyEXPflsYRxNgDhnXW2hSjSSdxV99QDdxDmF-jjN2lYooaiQlXp5pOZ-gkFvk59M2ul_RlaAHgCbYs4J3AmhRO_z0vu89D4vfcyrasQDjfXlr-8lGT_-V_nioPQAcNokRdcK0fI_IQajxg
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TSTE_2023_3264656
crossref_primary_10_1109_TEC_2020_3043709
crossref_primary_10_1109_TSMC_2024_3496564
crossref_primary_10_1109_ACCESS_2021_3107492
crossref_primary_10_1109_JSYST_2020_3048951
crossref_primary_10_1109_TCYB_2020_3027642
crossref_primary_10_1109_TCYB_2022_3164285
Cites_doi 10.1109/TAC.2004.838499
10.1016/j.sysconle.2004.10.007
10.1002/9781118577608.ch16
10.1109/TSG.2016.2557813
10.1109/TAC.2017.2713046
10.1109/TCYB.2017.2655511
10.1007/s00041-008-9045-x
10.1137/S1052623495290441
10.1109/TSG.2010.2044814
10.1090/S0002-9939-00-05985-2
10.1109/TAC.2016.2562062
10.1109/TAC.2008.929366
10.1109/IECON.2017.8216887
10.1109/TSP.2015.2436358
10.1109/TIE.2014.2367456
10.1007/s102080010008
10.1109/ACC.2011.5991020
10.1109/TCYB.2015.2496977
10.1017/S0962492900002646
10.1109/TAC.2013.2257618
10.1016/j.ijepes.2017.05.012
10.1109/TCYB.2017.2714173
10.1137/1.9781611970777
10.1109/CDC.2010.5717979
10.1080/00207179.2011.634029
10.1016/j.physrep.2014.07.001
10.1561/2200000016
10.1137/140990309
10.1109/ANZCC.2017.8298498
10.1109/CDC.2017.8264652
10.1109/TSP.2013.2254478
10.1109/TPWRS.2014.2304465
10.1049/iet-gtd.2012.0576
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2926386
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4285
ExternalDocumentID 31329150
10_1109_TCYB_2019_2926386
8765775
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP170102303
  funderid: 10.13039/501100000923
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-ecdbf57c095f189fdd3a2c03cf99aef4a940a37b86da132c47016bcb4cfbad23
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 11:08:21 EDT 2025
Mon Jun 30 06:25:49 EDT 2025
Thu Jan 02 23:02:36 EST 2025
Thu Apr 24 23:03:17 EDT 2025
Tue Jul 01 00:53:53 EDT 2025
Wed Aug 27 02:39:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-ecdbf57c095f189fdd3a2c03cf99aef4a940a37b86da132c47016bcb4cfbad23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8093-9787
0000-0002-0517-9420
0000-0002-7854-6308
0000-0001-5158-4307
PMID 31329150
PQID 2557979178
PQPubID 85422
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2019_2926386
crossref_primary_10_1109_TCYB_2019_2926386
ieee_primary_8765775
proquest_miscellaneous_2261974836
proquest_journals_2557979178
pubmed_primary_31329150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
anderson (ref30) 1971
ref3
ref6
ref5
hastie (ref18) 2009
References_xml – year: 2009
  ident: ref18
  publication-title: The Elements of Statistical Learning Prediction Inference and Data Mining
– ident: ref6
  doi: 10.1109/TAC.2004.838499
– ident: ref5
  doi: 10.1016/j.sysconle.2004.10.007
– ident: ref25
  doi: 10.1002/9781118577608.ch16
– ident: ref12
  doi: 10.1109/TSG.2016.2557813
– ident: ref33
  doi: 10.1109/TAC.2017.2713046
– ident: ref1
  doi: 10.1109/TCYB.2017.2655511
– ident: ref16
  doi: 10.1007/s00041-008-9045-x
– ident: ref34
  doi: 10.1137/S1052623495290441
– ident: ref2
  doi: 10.1109/TSG.2010.2044814
– ident: ref22
  doi: 10.1090/S0002-9939-00-05985-2
– year: 1971
  ident: ref30
  publication-title: Linear Optimal Control [by] Brian D O Anderson [and] John B Moore
– ident: ref7
  doi: 10.1109/TAC.2016.2562062
– ident: ref8
  doi: 10.1109/TAC.2008.929366
– ident: ref11
  doi: 10.1109/IECON.2017.8216887
– ident: ref32
  doi: 10.1109/TSP.2015.2436358
– ident: ref13
  doi: 10.1109/TIE.2014.2367456
– ident: ref23
  doi: 10.1007/s102080010008
– ident: ref17
  doi: 10.1109/ACC.2011.5991020
– ident: ref14
  doi: 10.1109/TCYB.2015.2496977
– ident: ref24
  doi: 10.1017/S0962492900002646
– ident: ref19
  doi: 10.1109/TAC.2013.2257618
– ident: ref10
  doi: 10.1016/j.ijepes.2017.05.012
– ident: ref15
  doi: 10.1109/TCYB.2017.2714173
– ident: ref27
  doi: 10.1137/1.9781611970777
– ident: ref26
  doi: 10.1109/CDC.2010.5717979
– ident: ref9
  doi: 10.1080/00207179.2011.634029
– ident: ref3
  doi: 10.1016/j.physrep.2014.07.001
– ident: ref28
  doi: 10.1561/2200000016
– ident: ref35
  doi: 10.1137/140990309
– ident: ref21
  doi: 10.1109/ANZCC.2017.8298498
– ident: ref29
  doi: 10.1109/CDC.2017.8264652
– ident: ref31
  doi: 10.1109/TSP.2013.2254478
– ident: ref20
  doi: 10.1109/TPWRS.2014.2304465
– ident: ref4
  doi: 10.1049/iet-gtd.2012.0576
SSID ssj0000816898
Score 2.3067167
Snippet In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4277
SubjectTerms Closed loop systems
Combinatorial analysis
Control systems
Cost function
Decay rate
Decentralized control
distributed control
Distributed control systems
eigenvalue optimization problem
Eigenvalues
Eigenvalues and eigenfunctions
Equivalence
large-scale systems
Network topologies
Optimal control
Optimization
sparsity-promoting optimal control
Transient response
Title Optimization of Communication Network Topology in Distributed Control Systems Subject to Prescribed Decay Rate
URI https://ieeexplore.ieee.org/document/8765775
https://www.ncbi.nlm.nih.gov/pubmed/31329150
https://www.proquest.com/docview/2557979178
https://www.proquest.com/docview/2261974836
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEB2vJYaJGROAAiW6_txPGxbKkqJIqEFqmcIr8iVUCCaPZQfj0zjjcCVBA3S3acx8w4M_Y38wE8c84tgve8MMKFQgkui9pJUQSpYpQhRdCEtjivzj6qtxflxRa8mnJhYowJfBbn1Exn-aH3a9oqO0LLLbUut2EbA7cxV2vaT0kEEon6VmCjQK9C50PMBTdHq-Wn14TjMnNhBKocMRdR0UKzoIT7X_5IiWLl795m-uuc3oF3m-cdwSaf5-vBzf2PP0o5_u8L3YXb2f1kx6O-7MJW7PZgNxv4FXueq1C_2IfuPS4mX3OWJutb9lsqCTsf4eNsNZIsXLPLjp1QEV7iz4qBLUcIPMsV0RkuULTjw4aeEeoD1yqHo06it9fsA_q792B1-ma1PCsyOUPhpTJDEX1wbak9umjtojZtCNIKz6VvjbGxVdYobqV2dRUsfmivNDqXzjvlW2eDkPdhp-u7-BCYqZy2XHutsbeOpdOV5rXHUCzWFXd6Bnwjn8bnwuXEn_GlSQEMNw1JtyHpNlm6M3g5XfJtrNrxr8H7JJlpYBbKDA42StBku75qMADTRmOIW8_g6dSNFknHLLaL_RrHUFCqVS1x5gej8kxzb3Tu0c33fAy3BGFmEsDwAHaG7-t4iE7P4J4kbf8JysH8jQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5QAXoJTHQgEjgQRI2Xqdh-MDB9il2tKySGiRyimKH5EQbYLYrNDyV_gr_DhmHCcCBNwqcbPkiaM4n8cz9jczAA-11hNrDI-U0DZKBI-jXMcisnHiXGy9B01si0U2f5e8OklPtuDbEAvjnPPkMzempr_Lt41Z01HZPq7cVMqeQnnkNl_QQVs9O5zh33wkxMHL5XQehRoCkYkT1UbOWF2l0qAlUU1yVVkbl8Lw2FRKla5KSpXwMpY6z2yJjplJJNpA2ujEVLq0lNUA9fsFNDNS0QWHDQc4vmKFr7UrsBGhGSPDremEq_3l9P0LIo6psVACMU6lkihLoppQhP9PW6Cv6fJ389ZvcwdX4Hs_QR275eN43eqx-fpb7sj_dAavwuVgXrPn3XrYgS1XX4OdoMBW7HHIsv1kF-o3qCzPQhQqayr2S6gMW3T0eLbsikhs2IeazSjJMNUHc5ZNO4o_CxnfGSpgOtFibcOI1YK6WKPUzJlyw96iPX8dlufx2Tdgu25qdwuYyrQsuTRSYm_uUi0zyXODrqbLM67lCHgPh8KExOxUH-S08A4aVwWBqSAwFQFMI3g6PPKpy0ryL-FdAsIgGDAwgr0ec0XQW6sCHUypJLrw-QgeDN2ocegaqaxds0YZcrplksc48s0Oq8PYPcRv__md9-HifPn6uDg-XBzdgUuC-EGeTLkH2-3ntbuLBl6r7_mFxqA4Z1j-AMszXP0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Communication+Network+Topology+in+Distributed+Control+Systems+Subject+to+Prescribed+Decay+Rate&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Gaeini%2C+Nozhatalzaman&rft.au=Moradi+Amani%2C+Ali&rft.au=Jalili%2C+Mahdi&rft.au=Yu%2C+Xinghuo&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=51&rft.issue=8&rft.spage=4277&rft.epage=4285&rft_id=info:doi/10.1109%2FTCYB.2019.2926386&rft_id=info%3Apmid%2F31329150&rft.externalDocID=8765775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon