Optimization of Communication Network Topology in Distributed Control Systems Subject to Prescribed Decay Rate
In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faste...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 51; no. 8; pp. 4277 - 4285 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faster than a prespecified value, a constraint on the dominant eigenvalue of the system is required to be considered. This results in a nonconvex optimization problem as eigenvalue of a parametric nonsymmetric matrix is a nonconvex, nonsmooth, and even non-Lipschitz function. Here, we present a convex equivalent optimization problem whose minimizer also solves this eigenvalue optimization problem. This optimization problem proposes a state-feedback matrix which results in a decay rate faster than a given value while input signal costs are considered. The equivalent optimization problem in combination with sparsity-promoting optimal control constitutes a combinatorial optimization problem. Using alternating direction method of multipliers, the problem is decomposed into a chain of analytically solvable subproblems which are differentiable and separable. The proposed optimization framework includes relative preference between the topology of the control network and the decay rate of the system. The simulation results show the effectiveness of the proposed framework. |
---|---|
AbstractList | In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faster than a prespecified value, a constraint on the dominant eigenvalue of the system is required to be considered. This results in a nonconvex optimization problem as eigenvalue of a parametric nonsymmetric matrix is a nonconvex, nonsmooth, and even non-Lipschitz function. Here, we present a convex equivalent optimization problem whose minimizer also solves this eigenvalue optimization problem. This optimization problem proposes a state-feedback matrix which results in a decay rate faster than a given value while input signal costs are considered. The equivalent optimization problem in combination with sparsity-promoting optimal control constitutes a combinatorial optimization problem. Using alternating direction method of multipliers, the problem is decomposed into a chain of analytically solvable subproblems which are differentiable and separable. The proposed optimization framework includes relative preference between the topology of the control network and the decay rate of the system. The simulation results show the effectiveness of the proposed framework. In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faster than a prespecified value, a constraint on the dominant eigenvalue of the system is required to be considered. This results in a nonconvex optimization problem as eigenvalue of a parametric nonsymmetric matrix is a nonconvex, nonsmooth, and even non-Lipschitz function. Here, we present a convex equivalent optimization problem whose minimizer also solves this eigenvalue optimization problem. This optimization problem proposes a state-feedback matrix which results in a decay rate faster than a given value while input signal costs are considered. The equivalent optimization problem in combination with sparsity-promoting optimal control constitutes a combinatorial optimization problem. Using alternating direction method of multipliers, the problem is decomposed into a chain of analytically solvable subproblems which are differentiable and separable. The proposed optimization framework includes relative preference between the topology of the control network and the decay rate of the system. The simulation results show the effectiveness of the proposed framework.In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed decay rate is satisfied in the transient response of a distributed control system. In order to guarantee the system's decay rate to be faster than a prespecified value, a constraint on the dominant eigenvalue of the system is required to be considered. This results in a nonconvex optimization problem as eigenvalue of a parametric nonsymmetric matrix is a nonconvex, nonsmooth, and even non-Lipschitz function. Here, we present a convex equivalent optimization problem whose minimizer also solves this eigenvalue optimization problem. This optimization problem proposes a state-feedback matrix which results in a decay rate faster than a given value while input signal costs are considered. The equivalent optimization problem in combination with sparsity-promoting optimal control constitutes a combinatorial optimization problem. Using alternating direction method of multipliers, the problem is decomposed into a chain of analytically solvable subproblems which are differentiable and separable. The proposed optimization framework includes relative preference between the topology of the control network and the decay rate of the system. The simulation results show the effectiveness of the proposed framework. |
Author | Jalili, Mahdi Yu, Xinghuo Moradi Amani, Ali Gaeini, Nozhatalzaman |
Author_xml | – sequence: 1 givenname: Nozhatalzaman orcidid: 0000-0002-7854-6308 surname: Gaeini fullname: Gaeini, Nozhatalzaman email: s3560329@student.rmit.edu.au organization: School of Engineering, RMIT University, Melbourne, VIC, Australia – sequence: 2 givenname: Ali orcidid: 0000-0001-5158-4307 surname: Moradi Amani fullname: Moradi Amani, Ali organization: School of Engineering, RMIT University, Melbourne, VIC, Australia – sequence: 3 givenname: Mahdi orcidid: 0000-0002-0517-9420 surname: Jalili fullname: Jalili, Mahdi organization: School of Engineering, RMIT University, Melbourne, VIC, Australia – sequence: 4 givenname: Xinghuo orcidid: 0000-0001-8093-9787 surname: Yu fullname: Yu, Xinghuo organization: School of Engineering, RMIT University, Melbourne, VIC, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31329150$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1UREvpD0BIyBIbNgl-zIztJaS8pIoimg0ry-O5Rg4zdmp7hMKvxyEhiy7w5lpX37nXPucpOgsxAELPKVlSStSb9er7uyUjVC2ZYh2X3SN0wWgnF4yJ9ux078Q5usp5Q-qRtaXkE3TOKWeKtuQChdtt8ZP_bYqPAUeHV3Ga5uDtofEFyq-YfuJ13MYx_thhH_C1zyX5fi4wVDqUFEd8t8sFpozv5n4DtuAS8dcE2VauUtdgzQ5_MwWeocfOjBmujvUSrT-8X68-LW5uP35evb1ZWN6osgA79K4VlqjWUancMHDDLOHWKWXANUY1xHDRy24w9Su2EYR2ve0b63ozMH6JXh_GblO8nyEXPflsYRxNgDhnXW2hSjSSdxV99QDdxDmF-jjN2lYooaiQlXp5pOZ-gkFvk59M2ul_RlaAHgCbYs4J3AmhRO_z0vu89D4vfcyrasQDjfXlr-8lGT_-V_nioPQAcNokRdcK0fI_IQajxg |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TSTE_2023_3264656 crossref_primary_10_1109_TEC_2020_3043709 crossref_primary_10_1109_TSMC_2024_3496564 crossref_primary_10_1109_ACCESS_2021_3107492 crossref_primary_10_1109_JSYST_2020_3048951 crossref_primary_10_1109_TCYB_2020_3027642 crossref_primary_10_1109_TCYB_2022_3164285 |
Cites_doi | 10.1109/TAC.2004.838499 10.1016/j.sysconle.2004.10.007 10.1002/9781118577608.ch16 10.1109/TSG.2016.2557813 10.1109/TAC.2017.2713046 10.1109/TCYB.2017.2655511 10.1007/s00041-008-9045-x 10.1137/S1052623495290441 10.1109/TSG.2010.2044814 10.1090/S0002-9939-00-05985-2 10.1109/TAC.2016.2562062 10.1109/TAC.2008.929366 10.1109/IECON.2017.8216887 10.1109/TSP.2015.2436358 10.1109/TIE.2014.2367456 10.1007/s102080010008 10.1109/ACC.2011.5991020 10.1109/TCYB.2015.2496977 10.1017/S0962492900002646 10.1109/TAC.2013.2257618 10.1016/j.ijepes.2017.05.012 10.1109/TCYB.2017.2714173 10.1137/1.9781611970777 10.1109/CDC.2010.5717979 10.1080/00207179.2011.634029 10.1016/j.physrep.2014.07.001 10.1561/2200000016 10.1137/140990309 10.1109/ANZCC.2017.8298498 10.1109/CDC.2017.8264652 10.1109/TSP.2013.2254478 10.1109/TPWRS.2014.2304465 10.1049/iet-gtd.2012.0576 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2019.2926386 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 4285 |
ExternalDocumentID | 31329150 10_1109_TCYB_2019_2926386 8765775 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Australian Research Council grantid: DP170102303 funderid: 10.13039/501100000923 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-ecdbf57c095f189fdd3a2c03cf99aef4a940a37b86da132c47016bcb4cfbad23 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 11:08:21 EDT 2025 Mon Jun 30 06:25:49 EDT 2025 Thu Jan 02 23:02:36 EST 2025 Thu Apr 24 23:03:17 EDT 2025 Tue Jul 01 00:53:53 EDT 2025 Wed Aug 27 02:39:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-ecdbf57c095f189fdd3a2c03cf99aef4a940a37b86da132c47016bcb4cfbad23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8093-9787 0000-0002-0517-9420 0000-0002-7854-6308 0000-0001-5158-4307 |
PMID | 31329150 |
PQID | 2557979178 |
PQPubID | 85422 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2019_2926386 crossref_primary_10_1109_TCYB_2019_2926386 ieee_primary_8765775 proquest_miscellaneous_2261974836 proquest_journals_2557979178 pubmed_primary_31329150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 anderson (ref30) 1971 ref3 ref6 ref5 hastie (ref18) 2009 |
References_xml | – year: 2009 ident: ref18 publication-title: The Elements of Statistical Learning Prediction Inference and Data Mining – ident: ref6 doi: 10.1109/TAC.2004.838499 – ident: ref5 doi: 10.1016/j.sysconle.2004.10.007 – ident: ref25 doi: 10.1002/9781118577608.ch16 – ident: ref12 doi: 10.1109/TSG.2016.2557813 – ident: ref33 doi: 10.1109/TAC.2017.2713046 – ident: ref1 doi: 10.1109/TCYB.2017.2655511 – ident: ref16 doi: 10.1007/s00041-008-9045-x – ident: ref34 doi: 10.1137/S1052623495290441 – ident: ref2 doi: 10.1109/TSG.2010.2044814 – ident: ref22 doi: 10.1090/S0002-9939-00-05985-2 – year: 1971 ident: ref30 publication-title: Linear Optimal Control [by] Brian D O Anderson [and] John B Moore – ident: ref7 doi: 10.1109/TAC.2016.2562062 – ident: ref8 doi: 10.1109/TAC.2008.929366 – ident: ref11 doi: 10.1109/IECON.2017.8216887 – ident: ref32 doi: 10.1109/TSP.2015.2436358 – ident: ref13 doi: 10.1109/TIE.2014.2367456 – ident: ref23 doi: 10.1007/s102080010008 – ident: ref17 doi: 10.1109/ACC.2011.5991020 – ident: ref14 doi: 10.1109/TCYB.2015.2496977 – ident: ref24 doi: 10.1017/S0962492900002646 – ident: ref19 doi: 10.1109/TAC.2013.2257618 – ident: ref10 doi: 10.1016/j.ijepes.2017.05.012 – ident: ref15 doi: 10.1109/TCYB.2017.2714173 – ident: ref27 doi: 10.1137/1.9781611970777 – ident: ref26 doi: 10.1109/CDC.2010.5717979 – ident: ref9 doi: 10.1080/00207179.2011.634029 – ident: ref3 doi: 10.1016/j.physrep.2014.07.001 – ident: ref28 doi: 10.1561/2200000016 – ident: ref35 doi: 10.1137/140990309 – ident: ref21 doi: 10.1109/ANZCC.2017.8298498 – ident: ref29 doi: 10.1109/CDC.2017.8264652 – ident: ref31 doi: 10.1109/TSP.2013.2254478 – ident: ref20 doi: 10.1109/TPWRS.2014.2304465 – ident: ref4 doi: 10.1049/iet-gtd.2012.0576 |
SSID | ssj0000816898 |
Score | 2.3067167 |
Snippet | In this paper, we propose a simple cohesive framework to find an optimal directed control network topology with minimum number of links while a prescribed... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4277 |
SubjectTerms | Closed loop systems Combinatorial analysis Control systems Cost function Decay rate Decentralized control distributed control Distributed control systems eigenvalue optimization problem Eigenvalues Eigenvalues and eigenfunctions Equivalence large-scale systems Network topologies Optimal control Optimization sparsity-promoting optimal control Transient response |
Title | Optimization of Communication Network Topology in Distributed Control Systems Subject to Prescribed Decay Rate |
URI | https://ieeexplore.ieee.org/document/8765775 https://www.ncbi.nlm.nih.gov/pubmed/31329150 https://www.proquest.com/docview/2557979178 https://www.proquest.com/docview/2261974836 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEB2vJYaJGROAAiW6_txPGxbKkqJIqEFqmcIr8iVUCCaPZQfj0zjjcCVBA3S3acx8w4M_Y38wE8c84tgve8MMKFQgkui9pJUQSpYpQhRdCEtjivzj6qtxflxRa8mnJhYowJfBbn1Exn-aH3a9oqO0LLLbUut2EbA7cxV2vaT0kEEon6VmCjQK9C50PMBTdHq-Wn14TjMnNhBKocMRdR0UKzoIT7X_5IiWLl795m-uuc3oF3m-cdwSaf5-vBzf2PP0o5_u8L3YXb2f1kx6O-7MJW7PZgNxv4FXueq1C_2IfuPS4mX3OWJutb9lsqCTsf4eNsNZIsXLPLjp1QEV7iz4qBLUcIPMsV0RkuULTjw4aeEeoD1yqHo06it9fsA_q792B1-ma1PCsyOUPhpTJDEX1wbak9umjtojZtCNIKz6VvjbGxVdYobqV2dRUsfmivNDqXzjvlW2eDkPdhp-u7-BCYqZy2XHutsbeOpdOV5rXHUCzWFXd6Bnwjn8bnwuXEn_GlSQEMNw1JtyHpNlm6M3g5XfJtrNrxr8H7JJlpYBbKDA42StBku75qMADTRmOIW8_g6dSNFknHLLaL_RrHUFCqVS1x5gej8kxzb3Tu0c33fAy3BGFmEsDwAHaG7-t4iE7P4J4kbf8JysH8jQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5QAXoJTHQgEjgQRI2Xqdh-MDB9il2tKySGiRyimKH5EQbYLYrNDyV_gr_DhmHCcCBNwqcbPkiaM4n8cz9jczAA-11hNrDI-U0DZKBI-jXMcisnHiXGy9B01si0U2f5e8OklPtuDbEAvjnPPkMzempr_Lt41Z01HZPq7cVMqeQnnkNl_QQVs9O5zh33wkxMHL5XQehRoCkYkT1UbOWF2l0qAlUU1yVVkbl8Lw2FRKla5KSpXwMpY6z2yJjplJJNpA2ujEVLq0lNUA9fsFNDNS0QWHDQc4vmKFr7UrsBGhGSPDremEq_3l9P0LIo6psVACMU6lkihLoppQhP9PW6Cv6fJ389ZvcwdX4Hs_QR275eN43eqx-fpb7sj_dAavwuVgXrPn3XrYgS1XX4OdoMBW7HHIsv1kF-o3qCzPQhQqayr2S6gMW3T0eLbsikhs2IeazSjJMNUHc5ZNO4o_CxnfGSpgOtFibcOI1YK6WKPUzJlyw96iPX8dlufx2Tdgu25qdwuYyrQsuTRSYm_uUi0zyXODrqbLM67lCHgPh8KExOxUH-S08A4aVwWBqSAwFQFMI3g6PPKpy0ryL-FdAsIgGDAwgr0ec0XQW6sCHUypJLrw-QgeDN2ocegaqaxds0YZcrplksc48s0Oq8PYPcRv__md9-HifPn6uDg-XBzdgUuC-EGeTLkH2-3ntbuLBl6r7_mFxqA4Z1j-AMszXP0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Communication+Network+Topology+in+Distributed+Control+Systems+Subject+to+Prescribed+Decay+Rate&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Gaeini%2C+Nozhatalzaman&rft.au=Moradi+Amani%2C+Ali&rft.au=Jalili%2C+Mahdi&rft.au=Yu%2C+Xinghuo&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=51&rft.issue=8&rft.spage=4277&rft.epage=4285&rft_id=info:doi/10.1109%2FTCYB.2019.2926386&rft_id=info%3Apmid%2F31329150&rft.externalDocID=8765775 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |