A Dynamic Cloud Dimensioning Approach for Parallel Scientific Workflows: a Case Study in the Comparative Genomics Domain
Usually, scientists need to execute experiments that demand high performance computing environments and parallel techniques. This is the scenario found in many bioinformatics experiments modeled as scientific workflows, such as phylogenetic and phylogenomic analyses. To execute these experiments, sc...
Saved in:
Published in | Journal of grid computing Vol. 14; no. 3; pp. 443 - 461 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Usually, scientists need to execute experiments that demand high performance computing environments and parallel techniques. This is the scenario found in many bioinformatics experiments modeled as scientific workflows, such as phylogenetic and phylogenomic analyses. To execute these experiments, scientists have adopted virtual machines (VMs) instantiated in clouds. Estimating the number of VMs to instantiate is a crucial task to avoid negative impacts on the execution performance and on the financial costs with under or overestimations. Previously, the necessary number of VMs to execute bioinformatics workflows have been estimated by a GRASP heuristic and have been coupled to a Cloud-based Parallel Scientific Workflow Management System. Although this work was a step forward, this approach only provided a static dimensioning. If the characteristics of the environment change (processing capacity, network speed), this static dimensioning may not be suitable. In this way, it is of interest that the dimensioning is adjusted at runtime. To achieve this, we developed a novel framework for monitoring and dynamically dimensioning resources during the execution of parallel scientific workflows in clouds, called Dynamic Dimensioning of Cloud Computing Framework (DDC-F). We have evaluated DDC-F in real executions of bioinformatics workflows. Experiments showed that DDC-F is able to efficiently calculate the number of VMs necessary to execute bioinformatics workflows of Comparative Genomics (CG), also reducing the financial costs, when compared with other works of the related literature. |
---|---|
AbstractList | Usually, scientists need to execute experiments that demand high performance computing environments and parallel techniques. This is the scenario found in many bioinformatics experiments modeled as scientific workflows, such as phylogenetic and phylogenomic analyses. To execute these experiments, scientists have adopted virtual machines (VMs) instantiated in clouds. Estimating the number of VMs to instantiate is a crucial task to avoid negative impacts on the execution performance and on the financial costs with under or overestimations. Previously, the necessary number of VMs to execute bioinformatics workflows have been estimated by a GRASP heuristic and have been coupled to a Cloud-based Parallel Scientific Workflow Management System. Although this work was a step forward, this approach only provided a static dimensioning. If the characteristics of the environment change (processing capacity, network speed), this static dimensioning may not be suitable. In this way, it is of interest that the dimensioning is adjusted at runtime. To achieve this, we developed a novel framework for monitoring and dynamically dimensioning resources during the execution of parallel scientific workflows in clouds, called Dynamic Dimensioning of Cloud Computing Framework (DDC-F). We have evaluated DDC-F in real executions of bioinformatics workflows. Experiments showed that DDC-F is able to efficiently calculate the number of VMs necessary to execute bioinformatics workflows of Comparative Genomics (CG), also reducing the financial costs, when compared with other works of the related literature. |
Author | Drummond, Lúcia M. A. de Oliveira, Daniel Ocaña, Kary Coutinho, Rafaelli Frota, Yuri |
Author_xml | – sequence: 1 givenname: Rafaelli surname: Coutinho fullname: Coutinho, Rafaelli email: rcoutinho@ic.uff.br organization: Federal Center of Technological Education, CEFET – sequence: 2 givenname: Yuri surname: Frota fullname: Frota, Yuri organization: Institute of Computing, Fluminense Federal University – sequence: 3 givenname: Kary surname: Ocaña fullname: Ocaña, Kary organization: National Laboratory of Scientific Computing, LNCC – sequence: 4 givenname: Daniel surname: de Oliveira fullname: de Oliveira, Daniel organization: Institute of Computing, Fluminense Federal University – sequence: 5 givenname: Lúcia M. A. surname: Drummond fullname: Drummond, Lúcia M. A. organization: Institute of Computing, Fluminense Federal University |
BookMark | eNp1kU1r3DAQhkVIIR_ND8hNkEsvbkeSbVm9Ld58FAIJJJCjENpRosSWtpLd7v77arOBQqGnGYbnmZF4T8hhiAEJOWfwlQHIb5mB5KIC1lZKtLLaHJBj1kheKdbVh-89VLKT4oic5PwKwJsO-DHZLOhyG8zoLe2HOK_o0o8Yso_Bh2e6WK9TNPaFupjovUlmGHCgD9ZjmLwrzlNMb26Iv_N3amhvMtKHaV5tqQ90ekHax3FdrMn_QnqNIZYzmS7jaHz4TD45M2Q8-6in5PHq8rG_qW7vrn_0i9vKilpNFUoLrYOG1apWDXJmnDRSgAQnyszUdoUCeKf4qm1ROFV3CqToHLeCKSFOyZf92vKRnzPmSY8-WxwGEzDOWbNOCcXamkFBL_5BX-OcQnmc5rxRsqlFt6PYnrIp5pzQ6XXyo0lbzUDvotD7KHSJQu-i0Jvi8L2TCxueMf3d_H_pD_xfjRM |
CitedBy_id | crossref_primary_10_1109_TSC_2020_2975774 |
Cites_doi | 10.1109/CLOUD.2015.130 10.1007/s10723-012-9219-2 10.1145/2503210.2503244 10.1109/ICEBE.2011.42 10.1109/CLUSTER.2014.6968789 10.1002/0471250953.bia01es00 10.1145/2371536.2371547 10.1007/978-3-642-22825-4_9 10.1145/2110497.2110501 10.1016/j.future.2014.10.009 10.1145/1985500.1985510 10.1145/2465848.2465852 10.1145/2038916.2038921 10.1016/j.future.2013.04.005 10.1155/2014/348725 10.1145/1851476.1851538 10.1016/j.future.2015.03.017 10.1109/TCC.2015.2404821 10.1002/cpe.992 10.1007/s10723-011-9196-x 10.1186/1471-2105-13-77 10.1016/j.parco.2004.04.001 10.1145/1273404.1273411 10.1109/DASC.2009.58 10.1145/1645164.1645176 10.1109/SC.2012.38 10.1109/CLOUD.2010.64 10.1007/s10723-013-9282-3 10.1007/978-1-84628-757-2 10.1007/s10723-013-9260-9 10.1093/nar/gkf544 10.1007/978-3-642-31927-3_16 10.1016/j.future.2012.12.019 10.1109/TPDS.2012.283 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2016 Journal of Grid Computing is a copyright of Springer, (2016). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2016 – notice: Journal of Grid Computing is a copyright of Springer, (2016). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PQEST PQQKQ PQUKI PRINS 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10723-016-9367-x |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Advanced Technologies & Aerospace Collection Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1572-9184 |
EndPage | 461 |
ExternalDocumentID | 10_1007_s10723_016_9367_x |
GroupedDBID | -59 -5G -BR -D3 -D4 -D8 -DT -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KZ1 LAK LLZTM LMP M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z81 Z83 Z88 ZMTXR AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 DWQXO PQEST PQQKQ PQUKI PRINS 7SC 8FD AAYZH JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c349t-e7c06f05149495e21af7a73070f3149a4cde302892d66e3f94890738f2c31933 |
IEDL.DBID | 8FG |
ISSN | 1570-7873 |
IngestDate | Sat Oct 26 00:44:56 EDT 2024 Thu Oct 10 17:00:14 EDT 2024 Thu Sep 12 17:33:23 EDT 2024 Sat Dec 16 12:02:21 EST 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Cloud computing Virtual machine allocation Scientific workflows |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-e7c06f05149495e21af7a73070f3149a4cde302892d66e3f94890738f2c31933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2259754380 |
PQPubID | 2043852 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1893916410 proquest_journals_2259754380 crossref_primary_10_1007_s10723_016_9367_x springer_journals_10_1007_s10723_016_9367_x |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | From Grids to Cloud Federations |
PublicationTitle | Journal of grid computing |
PublicationTitleAbbrev | J Grid Computing |
PublicationYear | 2016 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | FASTA. www.ncbi.nlm.nih.gov/blast/fasta.shtml OcañaKADe OliveiraDDiasJOgasawaraEMattosoMDesigning a parallel cloud based comparative genomics workflow to improve phylogenetic analysesFuture Generation Computer Systems20132982205221910.1016/j.future.2013.04.005 Coutinho, R., Drummond, L., Frota, Y., De Oliveira, D., Ocaña, K.: Evaluating Grasp-Based Cloud Dimensioning for Comparative Genomics: a Practical Approach. In: IEEE International Conference on Cluster Computing (CLUSTER), pp 371–379 (2014) Xu, L., Zeng, Z., Ye, X.: Multi-Objective Optimization Based Virtual Resource Allocation Strategy for Cloud Computing. In: Proceedings of the 11Th International Conference on Computer and Information Science, ICIS ’12, pp 56–61. IEEE Computer Society, DC, USA (2012) Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and Deadline-constrained Provisioning for Scientific Workflow Ensembles in IaaS Clouds. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, pp 22:1–22:11. IEEE Computer Society Press, CA, USA (2012) ProbCons. http://probcons.stanford.edu EmeakarohaVMaurerMSternPAbajPBrandicIKreilDManaging and optimizing bioinformatics workflows for data analysis in cloudsJ. Grid Comput.201311340742810.1007/s10723-013-9260-9 RoderoIViswanathanHLeeEKGamellMPompiliDParasharMEnergy-efficient thermal-aware autonomic management of virtualized hpc cloud infrastructureJ. Grid Comput.201210344747310.1007/s10723-012-9219-2 Tian, W.: Adaptive Dimensioning of Cloud Data Centers. In: Proceedings of the 8Th International Conference on Dependable, Autonomic and Secure Computing, DASC ’09, pp 5–10. IEEE Computer Society, DC, USA (2009) Foster, I., Kesselman, C.: The Grid 2, Second Edition: Blueprint for a New Computing Infrastructure (The Elsevier Series in Grid Computing), 2nd edn. Morgan Kaufmann (2003) Taylor, I.J., Deelman, E., Gannon, D.B.: Workflows for e-Science: Scientific Workflows for Grids. Springer (2007) OcañaKADe OliveiraDDiasJOgasawaraEMattosoMDiscovering drug targets for neglected diseases using a pharmacophylogenomic cloud workflowIEEE 8th Int. Conf. E-Sci.2012018 ProdanRWieczorekMFardHDouble auction-based scheduling of scientific applications in distributed grid and cloud environmentsJ. Grid Comput.20119453154810.1007/s10723-011-9196-x WozniakJMArmstrongTGMaheshwariKLuskELKatzDSWildeMFosterITTurbine: A distributed memory dataflow engine for high performance many-task applicationsFundam. Inf. J.20131283337366 Kalign. http://msa.sbc.su.se/cgi-bin/msa.cgi Lama, P., Zhou, X.: AROMA: Automated Resource Allocation and Configuration of MapReduce Environment in the Cloud. In: Proceedings of the 9th International Conference on Autonomic Computing, ICAC ’12, pp 63–72. ACM, NY, USA (2012) OcañaKAde OliveiraDDiasJOgasawaraEMattosoMOptimizing Phylogenetic Analysis Using Scihmm Cloud-based Scientific WorkflowIEEE 9th Int. Conf. e-Sci.201106269 MaderaMGoughJA comparison of profile hidden markov model procedures for remote homology detectionNucleic Acids Res.200230194321432810.1093/nar/gkf544 SadooghiIHernandez MartinJLiTBrandstatterKZhaoYMaheshwariKPais Pitta de Lacerda RuivoTTimmSGarzoglioGRaicuIUnderstanding the performance and potential of cloud computing for scientific applicationsIEEE Trans. Cloud Comput.2015PP991110.1109/TCC.2015.2404821 Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: Elastic Resource Scaling for Multi-tenant Cloud Systems. In: Proceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC ’11, pp 5:1–5:14. ACM, NY, USA (2011) Wang, J., Crawl, D., Altintas, I.: Kepler + Hadoop: A General Architecture Facilitating Data-intensive Applications in Scientific Workflow Systems. In: Proceedings of the 4Th Workshop on Workflows in Support of Large-Scale Science, WORKS ’09, pp 12:1–12:8. ACM, NY, USA (2009) ChurchesDGombasGHarrisonAMaassenJRobinsonCShieldsMTaylorIWangIProgramming scientific and distributed workflow with Triana servicesConcurr. Comput. Pract. Exper.200618101021103710.1002/cpe.992 Deng, K., Song, J., Ren, K., Iosup, A.: Exploring Portfolio Scheduling forLong-term Execution of Scientific Workloads in IaaS Clouds. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’13, pp 55:1–55:12. ACM, NY, USA (2013) MaheshwariKJungESMengJMorozovVVishwanathVKettimuthuRWorkflow performance improvement using model-based scheduling over multiple clusters and cloudsFut. Gener. Comput. Syst.20165420621810.1016/j.future.2015.03.017 Ocaña, K.A., de Oliveira, D., Horta, F., Dias, J., Ogasawara, E., Mattoso, M.: Exploring Molecular Evolution Reconstruction Using a Parallel Cloud Based Scientific Workflow. In: Advances in Bioinformatics and Computational Biology, Lecture Notes in Computer Science, Vol. 7409, pp 179–191. Springer, Berlin Heidelberg (2012) ReadSeq. https://sourceforge.net/projects/readseq Sun, X., Fan, L., Yan, L., Kong, L., Ding, Y., Guo, C., Sun, W.: Deliver Bioinformatics Services in Public Cloud: Challenges and Research Framework. In: Proceedings of the 2011 IEEE 8Th International Conference on E-Business Engineering, ICEBE ’11, pp 352–357. IEEE Computer Society, DC, USA (2011) RAxML. http://sco.h-its.org/exelixis/web/software/raxml/index.html RefSeq database. http://www.ncbi.nlm.nih.gov/refseq Crawl, D., Wang, J., Altintas, I.: Provenance for MapReduce-based Data-intensive Workflows. In: Proceedings of the 6Th Workshop on Workflows in Support of Large-Scale Science, WORKS ’11, pp 21–30. ACM, NY, USA (2011) CoutinhoRDrummondLFrotaYDe OliveiraDOptimizing virtual machine allocation for parallel scientific workflows in federated cloudsFut. Gener. Comput. Syst.2015460516810.1016/j.future.2014.10.009 Gilbert, D.: Sequence file format conversion with commandline readseq. Current Protocols in Bioinformatics Appendix 1, Appendix 1E (2003) Walker, E., Guiang, C.: Challenges in Executing Large Parameter Sweep Studies across Widely Distributed Computing Environments. In: Proceedings of the 5Th IEEE Workshop on Challenges of Large Applications in Distributed Environments, CLADE ’07, pp 11–18. ACM, NY, USA (2007) Muscle. http://www.drive5.com/muscle MAFFT. http://mafft.cbrc.jp/alignment/software Jackson, K.R., Ramakrishnan, L., Runge, K.J., Thomas, R.C.: Seeking Supernovae in the Clouds: a Performance Study. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10, pp 421–429. ACM, NY, USA (2010) XiaoZSongWChenQDynamic resource allocation using virtual machines for cloud computing environmentIEEE Trans. Parallel Distrib. Syst.20132461107111710.1109/TPDS.2012.283 Ocaña, K., de Oliveira, D., Ogasawara, E.S., Dv̈ila, A.M.R., Lima, A.A.B., Mattoso, M.: Sciphy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug Targets in Protozoan Genomes. In: De Souza, O.N., Telles, G.P., Palakal, M.J. (eds.) BSB, Lecture Notes in Computer Science, vol. 6832, pp 66–70. Springer (2011) AbouelhodaMIssaSGhanemMTavaxy: Integrating Taverna and Galaxy workflows with cloud computing supportBMC Bioinforma.201213177+10.1186/1471-2105-13-77 Clustal. http://clustal.org/clustal2 De OliveiraDOcañaKAOgasawaraEDiasJGonlvesJBaioFMattosoMPerformance evaluation of parallel strategies in public clouds: a study with phylogenomic workflowsFut. Gener. Comput. Syst.20132971816182510.1016/j.future.2012.12.019 RagothamanABodduSCKimNFeinsteinWBrylinskiMJhaSKimJDeveloping eThread Pipeline Using SAGA-pilot Abstraction for Large-Scale Structural BioinformaticsBioMed Res. Int.2014201411210.1155/2014/348725 Chard, R., Chard, K., Bubendorfer, K., Lacinski, L., Madduri, R., Foster, I.: Cost-Aware Elastic Cloud Provisioning for Scientific Workloads. In: 2015 IEEE 8Th International Conference On Cloud Computing (CLOUD), pp 971–974 (2015) hmmbuild/hmmsearch (HMMER3). http://hmmer.org EddySA new generation of homology search tools based on probabilistic inference. Genome InformaticsInt. Conf. Genome Inf.200923520511 Nguyen, P., Halem, M.: A MapReduce Workflow System for Architecting Scientific Data Intensive Applications. In: Proceedings of the 2Nd International Workshop on Software Engineering for Cloud Computing, SECLOUD ’11, pp 57–63. ACM, NY, USA (2011) De Oliveira, D., Viana, V., Ogasawara, E., Ocaña, K., Mattoso, M.: Dimensioning the Virtual Cluster for Parallel Scientific Workflows in Clouds. In: Proceedings of the 4Th ACM Workshop on Scientific Cloud Computing, Science Cloud ’13, pp 5–12. ACM, NY, USA (2013) FelsensteinJPHYLIP - Phylogeny inference package (version 3.2)Cladistics19895164166 ModelGenerator. http://mcinerneylab.com/software/modelgenerator MassiMLChunBNCullerDEThe ganglia distributed monitoring system: design, implementation and experienceParallel Comput.200430781784010.1016/j.parco.2004.04.001 De Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: Scicumulus: a Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in Scientific Workflows. In: 3Rd International Conference on Cloud Computing, pp 378–385 (2010) SzaboCShengQKroegerTZhangYYuJScience in the cloud: Allocation and execution of data-intensive scientific workflowsJ. Grid Comput.201412224526410.1007/s10723-013-9282-3 codeml(PAML). http://abacus.gene.ucl.ac.uk/software/paml.html 9367_CR29 KA Ocaña (9367_CR34) 2011; 0 C Szabo (9367_CR46) 2014; 12 9367_CR25 9367_CR26 9367_CR23 9367_CR24 J Felsenstein (9367_CR22) 1989; 5 I Sadooghi (9367_CR43) 2015; PP D De Oliveira (9367_CR37) 2013; 29 9367_CR4 9367_CR3 9367_CR6 9367_CR5 R Coutinho (9367_CR16) 2015; 46 9367_CR8 9367_CR7 9367_CR9 JM Wozniak (9367_CR51) 2013; 128 Z Xiao (9367_CR52) 2013; 24 M Madera (9367_CR27) 2002; 30 9367_CR38 9367_CR39 9367_CR36 A Ragothaman (9367_CR41) 2014; 2014 9367_CR33 9367_CR31 M Abouelhoda (9367_CR13) 2012; 13 KA Ocaña (9367_CR35) 2012; 0 R Prodan (9367_CR40) 2011; 9 9367_CR49 9367_CR47 9367_CR48 9367_CR45 I Rodero (9367_CR42) 2012; 10 9367_CR44 D Churches (9367_CR15) 2006; 18 S Eddy (9367_CR20) 2009; 23 ML Massi (9367_CR30) 2004; 30 K Maheshwari (9367_CR28) 2016; 54 V Emeakaroha (9367_CR21) 2013; 11 9367_CR18 9367_CR19 9367_CR2 9367_CR1 9367_CR17 9367_CR14 9367_CR12 9367_CR10 9367_CR11 9367_CR53 9367_CR50 KA Ocaña (9367_CR32) 2013; 29 |
References_xml | – ident: 9367_CR6 – volume: 23 start-page: 205 issue: 5 year: 2009 ident: 9367_CR20 publication-title: Int. Conf. Genome Inf. contributor: fullname: S Eddy – ident: 9367_CR14 doi: 10.1109/CLOUD.2015.130 – ident: 9367_CR2 – volume: 10 start-page: 447 issue: 3 year: 2012 ident: 9367_CR42 publication-title: J. Grid Comput. doi: 10.1007/s10723-012-9219-2 contributor: fullname: I Rodero – volume: 5 start-page: 164 year: 1989 ident: 9367_CR22 publication-title: Cladistics contributor: fullname: J Felsenstein – ident: 9367_CR19 doi: 10.1145/2503210.2503244 – volume: 0 start-page: 62 year: 2011 ident: 9367_CR34 publication-title: IEEE 9th Int. Conf. e-Sci. contributor: fullname: KA Ocaña – ident: 9367_CR45 doi: 10.1109/ICEBE.2011.42 – ident: 9367_CR17 doi: 10.1109/CLUSTER.2014.6968789 – ident: 9367_CR24 doi: 10.1002/0471250953.bia01es00 – ident: 9367_CR26 doi: 10.1145/2371536.2371547 – ident: 9367_CR12 – ident: 9367_CR5 – ident: 9367_CR33 doi: 10.1007/978-3-642-22825-4_9 – ident: 9367_CR1 – ident: 9367_CR9 – ident: 9367_CR18 doi: 10.1145/2110497.2110501 – volume: 46 start-page: 51 issue: 0 year: 2015 ident: 9367_CR16 publication-title: Fut. Gener. Comput. Syst. doi: 10.1016/j.future.2014.10.009 contributor: fullname: R Coutinho – ident: 9367_CR31 doi: 10.1145/1985500.1985510 – ident: 9367_CR39 doi: 10.1145/2465848.2465852 – ident: 9367_CR53 – ident: 9367_CR44 doi: 10.1145/2038916.2038921 – volume: 29 start-page: 2205 issue: 8 year: 2013 ident: 9367_CR32 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2013.04.005 contributor: fullname: KA Ocaña – volume: 2014 start-page: 1 year: 2014 ident: 9367_CR41 publication-title: BioMed Res. Int. doi: 10.1155/2014/348725 contributor: fullname: A Ragothaman – ident: 9367_CR25 doi: 10.1145/1851476.1851538 – ident: 9367_CR11 – volume: 54 start-page: 206 year: 2016 ident: 9367_CR28 publication-title: Fut. Gener. Comput. Syst. doi: 10.1016/j.future.2015.03.017 contributor: fullname: K Maheshwari – volume: PP start-page: 1 issue: 99 year: 2015 ident: 9367_CR43 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2015.2404821 contributor: fullname: I Sadooghi – ident: 9367_CR8 – ident: 9367_CR4 – volume: 18 start-page: 1021 issue: 10 year: 2006 ident: 9367_CR15 publication-title: Concurr. Comput. Pract. Exper. doi: 10.1002/cpe.992 contributor: fullname: D Churches – volume: 128 start-page: 337 issue: 3 year: 2013 ident: 9367_CR51 publication-title: Fundam. Inf. J. contributor: fullname: JM Wozniak – volume: 9 start-page: 531 issue: 4 year: 2011 ident: 9367_CR40 publication-title: J. Grid Comput. doi: 10.1007/s10723-011-9196-x contributor: fullname: R Prodan – volume: 13 start-page: 77+ issue: 1 year: 2012 ident: 9367_CR13 publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-13-77 contributor: fullname: M Abouelhoda – ident: 9367_CR23 – volume: 30 start-page: 817 issue: 7 year: 2004 ident: 9367_CR30 publication-title: Parallel Comput. doi: 10.1016/j.parco.2004.04.001 contributor: fullname: ML Massi – ident: 9367_CR49 doi: 10.1145/1273404.1273411 – ident: 9367_CR10 – volume: 0 start-page: 1 year: 2012 ident: 9367_CR35 publication-title: IEEE 8th Int. Conf. E-Sci. contributor: fullname: KA Ocaña – ident: 9367_CR48 doi: 10.1109/DASC.2009.58 – ident: 9367_CR50 doi: 10.1145/1645164.1645176 – ident: 9367_CR7 – ident: 9367_CR29 doi: 10.1109/SC.2012.38 – ident: 9367_CR38 doi: 10.1109/CLOUD.2010.64 – volume: 12 start-page: 245 issue: 2 year: 2014 ident: 9367_CR46 publication-title: J. Grid Comput. doi: 10.1007/s10723-013-9282-3 contributor: fullname: C Szabo – ident: 9367_CR3 – ident: 9367_CR47 doi: 10.1007/978-1-84628-757-2 – volume: 11 start-page: 407 issue: 3 year: 2013 ident: 9367_CR21 publication-title: J. Grid Comput. doi: 10.1007/s10723-013-9260-9 contributor: fullname: V Emeakaroha – volume: 30 start-page: 4321 issue: 19 year: 2002 ident: 9367_CR27 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf544 contributor: fullname: M Madera – ident: 9367_CR36 doi: 10.1007/978-3-642-31927-3_16 – volume: 29 start-page: 1816 issue: 7 year: 2013 ident: 9367_CR37 publication-title: Fut. Gener. Comput. Syst. doi: 10.1016/j.future.2012.12.019 contributor: fullname: D De Oliveira – volume: 24 start-page: 1107 issue: 6 year: 2013 ident: 9367_CR52 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2012.283 contributor: fullname: Z Xiao |
SSID | ssj0025802 |
Score | 2.1366186 |
Snippet | Usually, scientists need to execute experiments that demand high performance computing environments and parallel techniques. This is the scenario found in many... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 443 |
SubjectTerms | Bioinformatics Cloud computing Clouds Computer Science Costs Dynamics Experiments Genomics Management of Computing and Information Systems Processor Architectures Scientists User Interfaces and Human Computer Interaction Virtual environments Workflow Workflow management systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KXrz4FqtVRvCkROw-som30qpFUDy04C1sk10QayJNi_XfO5NHq6IHr8lmA7MzO9_szH7D2KlDA0M3oLxExtaTvtBeGCjnBcK2VRyMpDMUKN4_-P2hvHtSTw3GF0cX6ctFnZEsNuovd900p9If3wsFGjfixlVFbGiow0PeWQRZKijrDJWmSjkt6kzmb1N890VLgPkjJ1q4mptNtl5hROiUi7rFGjbdZht1_wWozHGHzTvQKxvKQ3eczRLoEVV_Xp6wQqdiCweEpfBoJtQ0ZVx-XNQHAZ2Tu3H2nl-BgS56M6Ciwg94TgFRIXSXvOBwa4vbyzn0slfznO6ywc31oNv3qk4KXixkOPWsji99R1TnIQZElreN00aTuTuBz4yMEyso58gT37fChTLAoFkEjsdookLssZU0S-0-g0RrQx7NBVJKpRAscBybuHjkcxOMdJOd1SKN3kq-jGjJjEzyj6imjOQfzZusVQs9qkwnj3CDCbUiIvwmO1m8RqWnTIZJbTbLozaiLMS1so1jzuvFWk7x5w8P_jX6kK1xUpaioqzFVqaTmT1CCDIdHRc69wkxsdJi priority: 102 providerName: Springer Nature |
Title | A Dynamic Cloud Dimensioning Approach for Parallel Scientific Workflows: a Case Study in the Comparative Genomics Domain |
URI | https://link.springer.com/article/10.1007/s10723-016-9367-x https://www.proquest.com/docview/2259754380 https://search.proquest.com/docview/1893916410 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcumlSZOWbpOGCfTUIFrrYcm9FHdfoaUhlATSk9HaEgS2dhLvku2_z4wfMS20J4MsWzDSaL7RfJph7F1ABUMzoHmhcs9VLA1PrA7cSh_p3C5UcOQofj-LTy_V1yt91R241R2tst8Tm426qHI6I_-A6y4xmvKjf7655VQ1iqKrXQmNp2w7EsaQ82Vn80eHS9uWc6gNseaM7KOa7dU5I4hJFPNE4l6x-dMuDWDzr_hoY3Zmu-x5hxchbSf4BXviyz2209digE4199kmhUlbXB7Gy2pdwITS9tftaSukXeZwQIgK5-6OCqgs248brhDQmXlYVvf1J3AwRssGRDD8DdclIEKE8ZAjHOa-uclcw6T65a7Ll-xiNr0Yn_KuqgLPpUpW3Jv8Yxwo7XmCzpEXkQvGGVL9ILHNqbzwkuKPoohjL0OiLDrQ0gaRo7pK-YptlVXpXzMojHFk3YJVSmmNwEFg3yLki1g4uzAj9r4XaXbT5s7IhizJJP-M-GUk_2wzYoe90LNOjepsmPQRO358jQpAUQ1X-mpdZxEiLsS4KsI-J_1kDb_454Bv_j_gAXsmaHU0dLJDtrW6W_u3iD9Wi6NmkR2x7XT-89sUn1-mZ-c_sPVSpA_SG9nZ |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,41093,41535,42162,42604,43612,43817,52123,52246 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfG9jBe9gmiMOAm8QSyoLEdJ7ygru0o-6gqVKS9RW5iS5NK0jWtVv577hJnEZPGa-LE0tnn-93dz3eMfXCoYGgGFM9karkMheZxpByPhO2qNJpJZ8hRvB6Ho1_y4kbd-IBb6WmVzZlYHdRZkVKM_DPuu1grqo_-bXHHqWsUZVd9C41nbIdKVaHztXM2HE9-PrhcKqpZh0oTb06LJq9ZX57TAXGJQh4LPC02_1qmFm4-ypBWhuf8gO15xAi9eokP2ZbNj9h-040BvHIes00PBnV7eejPi3UGAyrcX9bxVuj52uGAIBUmZkktVOb1xxVbCChq7ubFffkVDPTRtgFRDP_AbQ6IEaHfVgmH77a6y1zCoPhtbvMXbHo-nPZH3PdV4KmQ8YpbnX4JHRU-j9E9skHXOG00Kb8T-MzINLOCMpBBFoZWuFhG6EKLyAUpKqwQL9l2XuT2FYNMa0P2zUVSSqUQOgQ4NnPpLAxMNNMd9rERabKoq2ckbZ1kkn9CDDOSf7LpsJNG6IlXpDJpl73DTh9eowpQXsPktliXSRcxF6Jc2cUxn5rFan_x5ISv_z_he7Y7ml5fJVc_xpdv2POAdkpFLjth26vl2r5FNLKavfNb7i8gn9oT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hRUK9lAJFXcpjkDi1CnRjO064rXZZXi3iQCU4pU5iS4glQSSr0v76zmwStiB6QL0mjpP4Nd94Pn8DsONogpEZUF4mU-vJQGgvCpXzQmF7Kg0T6Qw7it_OgqPv8uRSXTZ5TsuW7d6GJOszDazSlFd7d5nb--vgm_aZBxR4kaCZTiByXrIwUgfm-4dXpwePPpcKa9qh0kyc06INbL5UyVPTNMObz0KkU8szWoQf7TfXhJOb3UmV7Ka_n8k5_sdPvYO3DSrFfj2MlmDO5suw2GZ8wGYBWIGHPg7rFPY4GBeTDIecHKCs93Sx3-iTIwFhPDf3nKZlXD88ZSQh78y7cfGz3EeDA7KfyDTGX3idI-FQHMyUyPHQTs9Llzgsbs11_h4uRgcXgyOvyd3gpUJGlWd1-iVwLK4ekQtm_Z5x2mheYJyga0ammRUc5fSzILDCRTIkN12Ezk9pURBiFTp5kdsPgJnWhm2oC6WUShE88als5tIk8E2Y6C58anstvqsVOuKZFjM3acwsNm7S-KEL622_xs1kLWNa0iKtWHq_C9uPt2macezE5LaYlHGPcB0haRpkXfjcduWsin--cO1Vpbdg4Xw4ir8en51-hDc-D4UpnW0dOtX9xG4Q_qmSzWaM_wG4hvut |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Cloud+Dimensioning+Approach+for+Parallel+Scientific+Workflows%3A+a+Case+Study+in+the+Comparative+Genomics+Domain&rft.jtitle=Journal+of+grid+computing&rft.au=Coutinho%2C+Rafaelli&rft.au=Frota%2C+Yuri&rft.au=Oca%C3%B1a%2C+Kary&rft.au=de+Oliveira%2C+Daniel&rft.date=2016-09-01&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=14&rft.issue=3&rft.spage=443&rft.epage=461&rft_id=info:doi/10.1007%2Fs10723-016-9367-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10723_016_9367_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon |