A Dynamic Cloud Dimensioning Approach for Parallel Scientific Workflows: a Case Study in the Comparative Genomics Domain

Usually, scientists need to execute experiments that demand high performance computing environments and parallel techniques. This is the scenario found in many bioinformatics experiments modeled as scientific workflows, such as phylogenetic and phylogenomic analyses. To execute these experiments, sc...

Full description

Saved in:
Bibliographic Details
Published inJournal of grid computing Vol. 14; no. 3; pp. 443 - 461
Main Authors Coutinho, Rafaelli, Frota, Yuri, Ocaña, Kary, de Oliveira, Daniel, Drummond, Lúcia M. A.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Usually, scientists need to execute experiments that demand high performance computing environments and parallel techniques. This is the scenario found in many bioinformatics experiments modeled as scientific workflows, such as phylogenetic and phylogenomic analyses. To execute these experiments, scientists have adopted virtual machines (VMs) instantiated in clouds. Estimating the number of VMs to instantiate is a crucial task to avoid negative impacts on the execution performance and on the financial costs with under or overestimations. Previously, the necessary number of VMs to execute bioinformatics workflows have been estimated by a GRASP heuristic and have been coupled to a Cloud-based Parallel Scientific Workflow Management System. Although this work was a step forward, this approach only provided a static dimensioning. If the characteristics of the environment change (processing capacity, network speed), this static dimensioning may not be suitable. In this way, it is of interest that the dimensioning is adjusted at runtime. To achieve this, we developed a novel framework for monitoring and dynamically dimensioning resources during the execution of parallel scientific workflows in clouds, called Dynamic Dimensioning of Cloud Computing Framework (DDC-F). We have evaluated DDC-F in real executions of bioinformatics workflows. Experiments showed that DDC-F is able to efficiently calculate the number of VMs necessary to execute bioinformatics workflows of Comparative Genomics (CG), also reducing the financial costs, when compared with other works of the related literature.
AbstractList Usually, scientists need to execute experiments that demand high performance computing environments and parallel techniques. This is the scenario found in many bioinformatics experiments modeled as scientific workflows, such as phylogenetic and phylogenomic analyses. To execute these experiments, scientists have adopted virtual machines (VMs) instantiated in clouds. Estimating the number of VMs to instantiate is a crucial task to avoid negative impacts on the execution performance and on the financial costs with under or overestimations. Previously, the necessary number of VMs to execute bioinformatics workflows have been estimated by a GRASP heuristic and have been coupled to a Cloud-based Parallel Scientific Workflow Management System. Although this work was a step forward, this approach only provided a static dimensioning. If the characteristics of the environment change (processing capacity, network speed), this static dimensioning may not be suitable. In this way, it is of interest that the dimensioning is adjusted at runtime. To achieve this, we developed a novel framework for monitoring and dynamically dimensioning resources during the execution of parallel scientific workflows in clouds, called Dynamic Dimensioning of Cloud Computing Framework (DDC-F). We have evaluated DDC-F in real executions of bioinformatics workflows. Experiments showed that DDC-F is able to efficiently calculate the number of VMs necessary to execute bioinformatics workflows of Comparative Genomics (CG), also reducing the financial costs, when compared with other works of the related literature.
Author Drummond, Lúcia M. A.
de Oliveira, Daniel
Ocaña, Kary
Coutinho, Rafaelli
Frota, Yuri
Author_xml – sequence: 1
  givenname: Rafaelli
  surname: Coutinho
  fullname: Coutinho, Rafaelli
  email: rcoutinho@ic.uff.br
  organization: Federal Center of Technological Education, CEFET
– sequence: 2
  givenname: Yuri
  surname: Frota
  fullname: Frota, Yuri
  organization: Institute of Computing, Fluminense Federal University
– sequence: 3
  givenname: Kary
  surname: Ocaña
  fullname: Ocaña, Kary
  organization: National Laboratory of Scientific Computing, LNCC
– sequence: 4
  givenname: Daniel
  surname: de Oliveira
  fullname: de Oliveira, Daniel
  organization: Institute of Computing, Fluminense Federal University
– sequence: 5
  givenname: Lúcia M. A.
  surname: Drummond
  fullname: Drummond, Lúcia M. A.
  organization: Institute of Computing, Fluminense Federal University
BookMark eNp1kU1r3DAQhkVIIR_ND8hNkEsvbkeSbVm9Ld58FAIJJJCjENpRosSWtpLd7v77arOBQqGnGYbnmZF4T8hhiAEJOWfwlQHIb5mB5KIC1lZKtLLaHJBj1kheKdbVh-89VLKT4oic5PwKwJsO-DHZLOhyG8zoLe2HOK_o0o8Yso_Bh2e6WK9TNPaFupjovUlmGHCgD9ZjmLwrzlNMb26Iv_N3amhvMtKHaV5tqQ90ekHax3FdrMn_QnqNIZYzmS7jaHz4TD45M2Q8-6in5PHq8rG_qW7vrn_0i9vKilpNFUoLrYOG1apWDXJmnDRSgAQnyszUdoUCeKf4qm1ROFV3CqToHLeCKSFOyZf92vKRnzPmSY8-WxwGEzDOWbNOCcXamkFBL_5BX-OcQnmc5rxRsqlFt6PYnrIp5pzQ6XXyo0lbzUDvotD7KHSJQu-i0Jvi8L2TCxueMf3d_H_pD_xfjRM
CitedBy_id crossref_primary_10_1109_TSC_2020_2975774
Cites_doi 10.1109/CLOUD.2015.130
10.1007/s10723-012-9219-2
10.1145/2503210.2503244
10.1109/ICEBE.2011.42
10.1109/CLUSTER.2014.6968789
10.1002/0471250953.bia01es00
10.1145/2371536.2371547
10.1007/978-3-642-22825-4_9
10.1145/2110497.2110501
10.1016/j.future.2014.10.009
10.1145/1985500.1985510
10.1145/2465848.2465852
10.1145/2038916.2038921
10.1016/j.future.2013.04.005
10.1155/2014/348725
10.1145/1851476.1851538
10.1016/j.future.2015.03.017
10.1109/TCC.2015.2404821
10.1002/cpe.992
10.1007/s10723-011-9196-x
10.1186/1471-2105-13-77
10.1016/j.parco.2004.04.001
10.1145/1273404.1273411
10.1109/DASC.2009.58
10.1145/1645164.1645176
10.1109/SC.2012.38
10.1109/CLOUD.2010.64
10.1007/s10723-013-9282-3
10.1007/978-1-84628-757-2
10.1007/s10723-013-9260-9
10.1093/nar/gkf544
10.1007/978-3-642-31927-3_16
10.1016/j.future.2012.12.019
10.1109/TPDS.2012.283
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2016
Journal of Grid Computing is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2016
– notice: Journal of Grid Computing is a copyright of Springer, (2016). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10723-016-9367-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Advanced Technologies & Aerospace Collection
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1572-9184
EndPage 461
ExternalDocumentID 10_1007_s10723_016_9367_x
GroupedDBID -59
-5G
-BR
-D3
-D4
-D8
-DT
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KZ1
LAK
LLZTM
LMP
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z88
ZMTXR
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
7SC
8FD
AAYZH
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-e7c06f05149495e21af7a73070f3149a4cde302892d66e3f94890738f2c31933
IEDL.DBID 8FG
ISSN 1570-7873
IngestDate Sat Oct 26 00:44:56 EDT 2024
Thu Oct 10 17:00:14 EDT 2024
Thu Sep 12 17:33:23 EDT 2024
Sat Dec 16 12:02:21 EST 2023
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Cloud computing
Virtual machine allocation
Scientific workflows
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e7c06f05149495e21af7a73070f3149a4cde302892d66e3f94890738f2c31933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2259754380
PQPubID 2043852
PageCount 19
ParticipantIDs proquest_miscellaneous_1893916410
proquest_journals_2259754380
crossref_primary_10_1007_s10723_016_9367_x
springer_journals_10_1007_s10723_016_9367_x
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle From Grids to Cloud Federations
PublicationTitle Journal of grid computing
PublicationTitleAbbrev J Grid Computing
PublicationYear 2016
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References FASTA. www.ncbi.nlm.nih.gov/blast/fasta.shtml
OcañaKADe OliveiraDDiasJOgasawaraEMattosoMDesigning a parallel cloud based comparative genomics workflow to improve phylogenetic analysesFuture Generation Computer Systems20132982205221910.1016/j.future.2013.04.005
Coutinho, R., Drummond, L., Frota, Y., De Oliveira, D., Ocaña, K.: Evaluating Grasp-Based Cloud Dimensioning for Comparative Genomics: a Practical Approach. In: IEEE International Conference on Cluster Computing (CLUSTER), pp 371–379 (2014)
Xu, L., Zeng, Z., Ye, X.: Multi-Objective Optimization Based Virtual Resource Allocation Strategy for Cloud Computing. In: Proceedings of the 11Th International Conference on Computer and Information Science, ICIS ’12, pp 56–61. IEEE Computer Society, DC, USA (2012)
Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and Deadline-constrained Provisioning for Scientific Workflow Ensembles in IaaS Clouds. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, pp 22:1–22:11. IEEE Computer Society Press, CA, USA (2012)
ProbCons. http://probcons.stanford.edu
EmeakarohaVMaurerMSternPAbajPBrandicIKreilDManaging and optimizing bioinformatics workflows for data analysis in cloudsJ. Grid Comput.201311340742810.1007/s10723-013-9260-9
RoderoIViswanathanHLeeEKGamellMPompiliDParasharMEnergy-efficient thermal-aware autonomic management of virtualized hpc cloud infrastructureJ. Grid Comput.201210344747310.1007/s10723-012-9219-2
Tian, W.: Adaptive Dimensioning of Cloud Data Centers. In: Proceedings of the 8Th International Conference on Dependable, Autonomic and Secure Computing, DASC ’09, pp 5–10. IEEE Computer Society, DC, USA (2009)
Foster, I., Kesselman, C.: The Grid 2, Second Edition: Blueprint for a New Computing Infrastructure (The Elsevier Series in Grid Computing), 2nd edn. Morgan Kaufmann (2003)
Taylor, I.J., Deelman, E., Gannon, D.B.: Workflows for e-Science: Scientific Workflows for Grids. Springer (2007)
OcañaKADe OliveiraDDiasJOgasawaraEMattosoMDiscovering drug targets for neglected diseases using a pharmacophylogenomic cloud workflowIEEE 8th Int. Conf. E-Sci.2012018
ProdanRWieczorekMFardHDouble auction-based scheduling of scientific applications in distributed grid and cloud environmentsJ. Grid Comput.20119453154810.1007/s10723-011-9196-x
WozniakJMArmstrongTGMaheshwariKLuskELKatzDSWildeMFosterITTurbine: A distributed memory dataflow engine for high performance many-task applicationsFundam. Inf. J.20131283337366
Kalign. http://msa.sbc.su.se/cgi-bin/msa.cgi
Lama, P., Zhou, X.: AROMA: Automated Resource Allocation and Configuration of MapReduce Environment in the Cloud. In: Proceedings of the 9th International Conference on Autonomic Computing, ICAC ’12, pp 63–72. ACM, NY, USA (2012)
OcañaKAde OliveiraDDiasJOgasawaraEMattosoMOptimizing Phylogenetic Analysis Using Scihmm Cloud-based Scientific WorkflowIEEE 9th Int. Conf. e-Sci.201106269
MaderaMGoughJA comparison of profile hidden markov model procedures for remote homology detectionNucleic Acids Res.200230194321432810.1093/nar/gkf544
SadooghiIHernandez MartinJLiTBrandstatterKZhaoYMaheshwariKPais Pitta de Lacerda RuivoTTimmSGarzoglioGRaicuIUnderstanding the performance and potential of cloud computing for scientific applicationsIEEE Trans. Cloud Comput.2015PP991110.1109/TCC.2015.2404821
Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: Elastic Resource Scaling for Multi-tenant Cloud Systems. In: Proceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC ’11, pp 5:1–5:14. ACM, NY, USA (2011)
Wang, J., Crawl, D., Altintas, I.: Kepler + Hadoop: A General Architecture Facilitating Data-intensive Applications in Scientific Workflow Systems. In: Proceedings of the 4Th Workshop on Workflows in Support of Large-Scale Science, WORKS ’09, pp 12:1–12:8. ACM, NY, USA (2009)
ChurchesDGombasGHarrisonAMaassenJRobinsonCShieldsMTaylorIWangIProgramming scientific and distributed workflow with Triana servicesConcurr. Comput. Pract. Exper.200618101021103710.1002/cpe.992
Deng, K., Song, J., Ren, K., Iosup, A.: Exploring Portfolio Scheduling forLong-term Execution of Scientific Workloads in IaaS Clouds. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’13, pp 55:1–55:12. ACM, NY, USA (2013)
MaheshwariKJungESMengJMorozovVVishwanathVKettimuthuRWorkflow performance improvement using model-based scheduling over multiple clusters and cloudsFut. Gener. Comput. Syst.20165420621810.1016/j.future.2015.03.017
Ocaña, K.A., de Oliveira, D., Horta, F., Dias, J., Ogasawara, E., Mattoso, M.: Exploring Molecular Evolution Reconstruction Using a Parallel Cloud Based Scientific Workflow. In: Advances in Bioinformatics and Computational Biology, Lecture Notes in Computer Science, Vol. 7409, pp 179–191. Springer, Berlin Heidelberg (2012)
ReadSeq. https://sourceforge.net/projects/readseq
Sun, X., Fan, L., Yan, L., Kong, L., Ding, Y., Guo, C., Sun, W.: Deliver Bioinformatics Services in Public Cloud: Challenges and Research Framework. In: Proceedings of the 2011 IEEE 8Th International Conference on E-Business Engineering, ICEBE ’11, pp 352–357. IEEE Computer Society, DC, USA (2011)
RAxML. http://sco.h-its.org/exelixis/web/software/raxml/index.html
RefSeq database. http://www.ncbi.nlm.nih.gov/refseq
Crawl, D., Wang, J., Altintas, I.: Provenance for MapReduce-based Data-intensive Workflows. In: Proceedings of the 6Th Workshop on Workflows in Support of Large-Scale Science, WORKS ’11, pp 21–30. ACM, NY, USA (2011)
CoutinhoRDrummondLFrotaYDe OliveiraDOptimizing virtual machine allocation for parallel scientific workflows in federated cloudsFut. Gener. Comput. Syst.2015460516810.1016/j.future.2014.10.009
Gilbert, D.: Sequence file format conversion with commandline readseq. Current Protocols in Bioinformatics Appendix 1, Appendix 1E (2003)
Walker, E., Guiang, C.: Challenges in Executing Large Parameter Sweep Studies across Widely Distributed Computing Environments. In: Proceedings of the 5Th IEEE Workshop on Challenges of Large Applications in Distributed Environments, CLADE ’07, pp 11–18. ACM, NY, USA (2007)
Muscle. http://www.drive5.com/muscle
MAFFT. http://mafft.cbrc.jp/alignment/software
Jackson, K.R., Ramakrishnan, L., Runge, K.J., Thomas, R.C.: Seeking Supernovae in the Clouds: a Performance Study. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10, pp 421–429. ACM, NY, USA (2010)
XiaoZSongWChenQDynamic resource allocation using virtual machines for cloud computing environmentIEEE Trans. Parallel Distrib. Syst.20132461107111710.1109/TPDS.2012.283
Ocaña, K., de Oliveira, D., Ogasawara, E.S., Dv̈ila, A.M.R., Lima, A.A.B., Mattoso, M.: Sciphy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug Targets in Protozoan Genomes. In: De Souza, O.N., Telles, G.P., Palakal, M.J. (eds.) BSB, Lecture Notes in Computer Science, vol. 6832, pp 66–70. Springer (2011)
AbouelhodaMIssaSGhanemMTavaxy: Integrating Taverna and Galaxy workflows with cloud computing supportBMC Bioinforma.201213177+10.1186/1471-2105-13-77
Clustal. http://clustal.org/clustal2
De OliveiraDOcañaKAOgasawaraEDiasJGonlvesJBaioFMattosoMPerformance evaluation of parallel strategies in public clouds: a study with phylogenomic workflowsFut. Gener. Comput. Syst.20132971816182510.1016/j.future.2012.12.019
RagothamanABodduSCKimNFeinsteinWBrylinskiMJhaSKimJDeveloping eThread Pipeline Using SAGA-pilot Abstraction for Large-Scale Structural BioinformaticsBioMed Res. Int.2014201411210.1155/2014/348725
Chard, R., Chard, K., Bubendorfer, K., Lacinski, L., Madduri, R., Foster, I.: Cost-Aware Elastic Cloud Provisioning for Scientific Workloads. In: 2015 IEEE 8Th International Conference On Cloud Computing (CLOUD), pp 971–974 (2015)
hmmbuild/hmmsearch (HMMER3). http://hmmer.org
EddySA new generation of homology search tools based on probabilistic inference. Genome InformaticsInt. Conf. Genome Inf.200923520511
Nguyen, P., Halem, M.: A MapReduce Workflow System for Architecting Scientific Data Intensive Applications. In: Proceedings of the 2Nd International Workshop on Software Engineering for Cloud Computing, SECLOUD ’11, pp 57–63. ACM, NY, USA (2011)
De Oliveira, D., Viana, V., Ogasawara, E., Ocaña, K., Mattoso, M.: Dimensioning the Virtual Cluster for Parallel Scientific Workflows in Clouds. In: Proceedings of the 4Th ACM Workshop on Scientific Cloud Computing, Science Cloud ’13, pp 5–12. ACM, NY, USA (2013)
FelsensteinJPHYLIP - Phylogeny inference package (version 3.2)Cladistics19895164166
ModelGenerator. http://mcinerneylab.com/software/modelgenerator
MassiMLChunBNCullerDEThe ganglia distributed monitoring system: design, implementation and experienceParallel Comput.200430781784010.1016/j.parco.2004.04.001
De Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: Scicumulus: a Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in Scientific Workflows. In: 3Rd International Conference on Cloud Computing, pp 378–385 (2010)
SzaboCShengQKroegerTZhangYYuJScience in the cloud: Allocation and execution of data-intensive scientific workflowsJ. Grid Comput.201412224526410.1007/s10723-013-9282-3
codeml(PAML). http://abacus.gene.ucl.ac.uk/software/paml.html
9367_CR29
KA Ocaña (9367_CR34) 2011; 0
C Szabo (9367_CR46) 2014; 12
9367_CR25
9367_CR26
9367_CR23
9367_CR24
J Felsenstein (9367_CR22) 1989; 5
I Sadooghi (9367_CR43) 2015; PP
D De Oliveira (9367_CR37) 2013; 29
9367_CR4
9367_CR3
9367_CR6
9367_CR5
R Coutinho (9367_CR16) 2015; 46
9367_CR8
9367_CR7
9367_CR9
JM Wozniak (9367_CR51) 2013; 128
Z Xiao (9367_CR52) 2013; 24
M Madera (9367_CR27) 2002; 30
9367_CR38
9367_CR39
9367_CR36
A Ragothaman (9367_CR41) 2014; 2014
9367_CR33
9367_CR31
M Abouelhoda (9367_CR13) 2012; 13
KA Ocaña (9367_CR35) 2012; 0
R Prodan (9367_CR40) 2011; 9
9367_CR49
9367_CR47
9367_CR48
9367_CR45
I Rodero (9367_CR42) 2012; 10
9367_CR44
D Churches (9367_CR15) 2006; 18
S Eddy (9367_CR20) 2009; 23
ML Massi (9367_CR30) 2004; 30
K Maheshwari (9367_CR28) 2016; 54
V Emeakaroha (9367_CR21) 2013; 11
9367_CR18
9367_CR19
9367_CR2
9367_CR1
9367_CR17
9367_CR14
9367_CR12
9367_CR10
9367_CR11
9367_CR53
9367_CR50
KA Ocaña (9367_CR32) 2013; 29
References_xml – ident: 9367_CR6
– volume: 23
  start-page: 205
  issue: 5
  year: 2009
  ident: 9367_CR20
  publication-title: Int. Conf. Genome Inf.
  contributor:
    fullname: S Eddy
– ident: 9367_CR14
  doi: 10.1109/CLOUD.2015.130
– ident: 9367_CR2
– volume: 10
  start-page: 447
  issue: 3
  year: 2012
  ident: 9367_CR42
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-012-9219-2
  contributor:
    fullname: I Rodero
– volume: 5
  start-page: 164
  year: 1989
  ident: 9367_CR22
  publication-title: Cladistics
  contributor:
    fullname: J Felsenstein
– ident: 9367_CR19
  doi: 10.1145/2503210.2503244
– volume: 0
  start-page: 62
  year: 2011
  ident: 9367_CR34
  publication-title: IEEE 9th Int. Conf. e-Sci.
  contributor:
    fullname: KA Ocaña
– ident: 9367_CR45
  doi: 10.1109/ICEBE.2011.42
– ident: 9367_CR17
  doi: 10.1109/CLUSTER.2014.6968789
– ident: 9367_CR24
  doi: 10.1002/0471250953.bia01es00
– ident: 9367_CR26
  doi: 10.1145/2371536.2371547
– ident: 9367_CR12
– ident: 9367_CR5
– ident: 9367_CR33
  doi: 10.1007/978-3-642-22825-4_9
– ident: 9367_CR1
– ident: 9367_CR9
– ident: 9367_CR18
  doi: 10.1145/2110497.2110501
– volume: 46
  start-page: 51
  issue: 0
  year: 2015
  ident: 9367_CR16
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2014.10.009
  contributor:
    fullname: R Coutinho
– ident: 9367_CR31
  doi: 10.1145/1985500.1985510
– ident: 9367_CR39
  doi: 10.1145/2465848.2465852
– ident: 9367_CR53
– ident: 9367_CR44
  doi: 10.1145/2038916.2038921
– volume: 29
  start-page: 2205
  issue: 8
  year: 2013
  ident: 9367_CR32
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2013.04.005
  contributor:
    fullname: KA Ocaña
– volume: 2014
  start-page: 1
  year: 2014
  ident: 9367_CR41
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/348725
  contributor:
    fullname: A Ragothaman
– ident: 9367_CR25
  doi: 10.1145/1851476.1851538
– ident: 9367_CR11
– volume: 54
  start-page: 206
  year: 2016
  ident: 9367_CR28
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2015.03.017
  contributor:
    fullname: K Maheshwari
– volume: PP
  start-page: 1
  issue: 99
  year: 2015
  ident: 9367_CR43
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2015.2404821
  contributor:
    fullname: I Sadooghi
– ident: 9367_CR8
– ident: 9367_CR4
– volume: 18
  start-page: 1021
  issue: 10
  year: 2006
  ident: 9367_CR15
  publication-title: Concurr. Comput. Pract. Exper.
  doi: 10.1002/cpe.992
  contributor:
    fullname: D Churches
– volume: 128
  start-page: 337
  issue: 3
  year: 2013
  ident: 9367_CR51
  publication-title: Fundam. Inf. J.
  contributor:
    fullname: JM Wozniak
– volume: 9
  start-page: 531
  issue: 4
  year: 2011
  ident: 9367_CR40
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-011-9196-x
  contributor:
    fullname: R Prodan
– volume: 13
  start-page: 77+
  issue: 1
  year: 2012
  ident: 9367_CR13
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-13-77
  contributor:
    fullname: M Abouelhoda
– ident: 9367_CR23
– volume: 30
  start-page: 817
  issue: 7
  year: 2004
  ident: 9367_CR30
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2004.04.001
  contributor:
    fullname: ML Massi
– ident: 9367_CR49
  doi: 10.1145/1273404.1273411
– ident: 9367_CR10
– volume: 0
  start-page: 1
  year: 2012
  ident: 9367_CR35
  publication-title: IEEE 8th Int. Conf. E-Sci.
  contributor:
    fullname: KA Ocaña
– ident: 9367_CR48
  doi: 10.1109/DASC.2009.58
– ident: 9367_CR50
  doi: 10.1145/1645164.1645176
– ident: 9367_CR7
– ident: 9367_CR29
  doi: 10.1109/SC.2012.38
– ident: 9367_CR38
  doi: 10.1109/CLOUD.2010.64
– volume: 12
  start-page: 245
  issue: 2
  year: 2014
  ident: 9367_CR46
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-013-9282-3
  contributor:
    fullname: C Szabo
– ident: 9367_CR3
– ident: 9367_CR47
  doi: 10.1007/978-1-84628-757-2
– volume: 11
  start-page: 407
  issue: 3
  year: 2013
  ident: 9367_CR21
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-013-9260-9
  contributor:
    fullname: V Emeakaroha
– volume: 30
  start-page: 4321
  issue: 19
  year: 2002
  ident: 9367_CR27
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf544
  contributor:
    fullname: M Madera
– ident: 9367_CR36
  doi: 10.1007/978-3-642-31927-3_16
– volume: 29
  start-page: 1816
  issue: 7
  year: 2013
  ident: 9367_CR37
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2012.12.019
  contributor:
    fullname: D De Oliveira
– volume: 24
  start-page: 1107
  issue: 6
  year: 2013
  ident: 9367_CR52
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2012.283
  contributor:
    fullname: Z Xiao
SSID ssj0025802
Score 2.1366186
Snippet Usually, scientists need to execute experiments that demand high performance computing environments and parallel techniques. This is the scenario found in many...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 443
SubjectTerms Bioinformatics
Cloud computing
Clouds
Computer Science
Costs
Dynamics
Experiments
Genomics
Management of Computing and Information Systems
Processor Architectures
Scientists
User Interfaces and Human Computer Interaction
Virtual environments
Workflow
Workflow management systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KXrz4FqtVRvCkROw-som30qpFUDy04C1sk10QayJNi_XfO5NHq6IHr8lmA7MzO9_szH7D2KlDA0M3oLxExtaTvtBeGCjnBcK2VRyMpDMUKN4_-P2hvHtSTw3GF0cX6ctFnZEsNuovd900p9If3wsFGjfixlVFbGiow0PeWQRZKijrDJWmSjkt6kzmb1N890VLgPkjJ1q4mptNtl5hROiUi7rFGjbdZht1_wWozHGHzTvQKxvKQ3eczRLoEVV_Xp6wQqdiCweEpfBoJtQ0ZVx-XNQHAZ2Tu3H2nl-BgS56M6Ciwg94TgFRIXSXvOBwa4vbyzn0slfznO6ywc31oNv3qk4KXixkOPWsji99R1TnIQZElreN00aTuTuBz4yMEyso58gT37fChTLAoFkEjsdookLssZU0S-0-g0RrQx7NBVJKpRAscBybuHjkcxOMdJOd1SKN3kq-jGjJjEzyj6imjOQfzZusVQs9qkwnj3CDCbUiIvwmO1m8RqWnTIZJbTbLozaiLMS1so1jzuvFWk7x5w8P_jX6kK1xUpaioqzFVqaTmT1CCDIdHRc69wkxsdJi
  priority: 102
  providerName: Springer Nature
Title A Dynamic Cloud Dimensioning Approach for Parallel Scientific Workflows: a Case Study in the Comparative Genomics Domain
URI https://link.springer.com/article/10.1007/s10723-016-9367-x
https://www.proquest.com/docview/2259754380
https://search.proquest.com/docview/1893916410
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcumlSZOWbpOGCfTUIFrrYcm9FHdfoaUhlATSk9HaEgS2dhLvku2_z4wfMS20J4MsWzDSaL7RfJph7F1ABUMzoHmhcs9VLA1PrA7cSh_p3C5UcOQofj-LTy_V1yt91R241R2tst8Tm426qHI6I_-A6y4xmvKjf7655VQ1iqKrXQmNp2w7EsaQ82Vn80eHS9uWc6gNseaM7KOa7dU5I4hJFPNE4l6x-dMuDWDzr_hoY3Zmu-x5hxchbSf4BXviyz2209digE4199kmhUlbXB7Gy2pdwITS9tftaSukXeZwQIgK5-6OCqgs248brhDQmXlYVvf1J3AwRssGRDD8DdclIEKE8ZAjHOa-uclcw6T65a7Ll-xiNr0Yn_KuqgLPpUpW3Jv8Yxwo7XmCzpEXkQvGGVL9ILHNqbzwkuKPoohjL0OiLDrQ0gaRo7pK-YptlVXpXzMojHFk3YJVSmmNwEFg3yLki1g4uzAj9r4XaXbT5s7IhizJJP-M-GUk_2wzYoe90LNOjepsmPQRO358jQpAUQ1X-mpdZxEiLsS4KsI-J_1kDb_454Bv_j_gAXsmaHU0dLJDtrW6W_u3iD9Wi6NmkR2x7XT-89sUn1-mZ-c_sPVSpA_SG9nZ
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,41093,41535,42162,42604,43612,43817,52123,52246
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfG9jBe9gmiMOAm8QSyoLEdJ7ygru0o-6gqVKS9RW5iS5NK0jWtVv577hJnEZPGa-LE0tnn-93dz3eMfXCoYGgGFM9karkMheZxpByPhO2qNJpJZ8hRvB6Ho1_y4kbd-IBb6WmVzZlYHdRZkVKM_DPuu1grqo_-bXHHqWsUZVd9C41nbIdKVaHztXM2HE9-PrhcKqpZh0oTb06LJq9ZX57TAXGJQh4LPC02_1qmFm4-ypBWhuf8gO15xAi9eokP2ZbNj9h-040BvHIes00PBnV7eejPi3UGAyrcX9bxVuj52uGAIBUmZkktVOb1xxVbCChq7ubFffkVDPTRtgFRDP_AbQ6IEaHfVgmH77a6y1zCoPhtbvMXbHo-nPZH3PdV4KmQ8YpbnX4JHRU-j9E9skHXOG00Kb8T-MzINLOCMpBBFoZWuFhG6EKLyAUpKqwQL9l2XuT2FYNMa0P2zUVSSqUQOgQ4NnPpLAxMNNMd9rERabKoq2ckbZ1kkn9CDDOSf7LpsJNG6IlXpDJpl73DTh9eowpQXsPktliXSRcxF6Jc2cUxn5rFan_x5ISv_z_he7Y7ml5fJVc_xpdv2POAdkpFLjth26vl2r5FNLKavfNb7i8gn9oT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hRUK9lAJFXcpjkDi1CnRjO064rXZZXi3iQCU4pU5iS4glQSSr0v76zmwStiB6QL0mjpP4Nd94Pn8DsONogpEZUF4mU-vJQGgvCpXzQmF7Kg0T6Qw7it_OgqPv8uRSXTZ5TsuW7d6GJOszDazSlFd7d5nb--vgm_aZBxR4kaCZTiByXrIwUgfm-4dXpwePPpcKa9qh0kyc06INbL5UyVPTNMObz0KkU8szWoQf7TfXhJOb3UmV7Ka_n8k5_sdPvYO3DSrFfj2MlmDO5suw2GZ8wGYBWIGHPg7rFPY4GBeTDIecHKCs93Sx3-iTIwFhPDf3nKZlXD88ZSQh78y7cfGz3EeDA7KfyDTGX3idI-FQHMyUyPHQTs9Llzgsbs11_h4uRgcXgyOvyd3gpUJGlWd1-iVwLK4ekQtm_Z5x2mheYJyga0ammRUc5fSzILDCRTIkN12Ezk9pURBiFTp5kdsPgJnWhm2oC6WUShE88als5tIk8E2Y6C58anstvqsVOuKZFjM3acwsNm7S-KEL622_xs1kLWNa0iKtWHq_C9uPt2macezE5LaYlHGPcB0haRpkXfjcduWsin--cO1Vpbdg4Xw4ir8en51-hDc-D4UpnW0dOtX9xG4Q_qmSzWaM_wG4hvut
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Cloud+Dimensioning+Approach+for+Parallel+Scientific+Workflows%3A+a+Case+Study+in+the+Comparative+Genomics+Domain&rft.jtitle=Journal+of+grid+computing&rft.au=Coutinho%2C+Rafaelli&rft.au=Frota%2C+Yuri&rft.au=Oca%C3%B1a%2C+Kary&rft.au=de+Oliveira%2C+Daniel&rft.date=2016-09-01&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=14&rft.issue=3&rft.spage=443&rft.epage=461&rft_id=info:doi/10.1007%2Fs10723-016-9367-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10723_016_9367_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon