Robust change point detection method via adaptive LAD-LASSO
Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine t...
Saved in:
Published in | Statistical papers (Berlin, Germany) Vol. 61; no. 1; pp. 109 - 121 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize. |
---|---|
AbstractList | Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize. |
Author | Li, Qiang Wang, Liming |
Author_xml | – sequence: 1 givenname: Qiang surname: Li fullname: Li, Qiang email: liqiangtsu@163.com organization: School of Mathematics and Statistics, Taishan University – sequence: 2 givenname: Liming surname: Wang fullname: Wang, Liming organization: School of Statistics and Management, Shanghai University of Finance and Economics |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnqOTZLvJ4qnUTygUrJ5DvtZuaTdrkhb89-6ygiDoaS7vM-_MM0GjxjcOoUsC1wSA30QAVlAMhGMoKcfsBI1JQRgueSlGaAwlo3gGtDhDkxi3AEQIAWN0--L1IabMbFTz7rLW103KrEvOpNo32d6ljbfZsVaZsqpN9dFly_kdXs7X69U5Oq3ULrqL7zlFbw_3r4snvFw9Pi_mS2xYXibseMEMCKeZFkpUM0PLrp4TpZx1VnPr6MxpnVc210A0yw2DklumQZjKqoJN0dWwtw3-4-Biklt_CE1XKSnLOQHKaJ_iQ8oEH2NwlTR1Uv0XKah6JwnI3pQcTMnuAtmbkqwjyS-yDfVehc9_GTowsct25sLPTX9DXyw2fCg |
CitedBy_id | crossref_primary_10_1007_s42952_022_00194_0 crossref_primary_10_1016_j_iref_2022_03_003 crossref_primary_10_3390_sym14102161 crossref_primary_10_1016_j_cie_2023_108986 crossref_primary_10_1093_imaiai_iaab015 crossref_primary_10_1007_s00362_019_01104_z crossref_primary_10_1080_03610926_2024_2446396 crossref_primary_10_1007_s00211_019_01051_9 crossref_primary_10_1007_s00362_022_01341_9 crossref_primary_10_1080_09593330_2024_2415722 |
Cites_doi | 10.1080/01621459.1977.10479935 10.1093/bioinformatics/bti646 10.1198/jasa.2010.tm09181 10.1007/s00362-009-0236-6 10.1080/01621459.1995.10476626 10.1198/073500106000000251 10.1214/009053604000000067 10.2307/1910133 10.1098/rspa.2010.0674 10.1111/1467-9892.00172 10.1098/rspa.2010.0671 10.1007/s10463-008-0184-2 10.1214/09-AOS729 10.1214/aos/1015957397 10.1214/07-AOS558 10.1016/j.csda.2011.11.022 10.1017/S026646660000935X 10.1198/016214506000000735 10.1016/j.jmva.2013.04.001 10.1111/j.1467-9868.2008.00674.x 10.1007/s00362-012-0482-x 10.1080/01621459.2013.866566 10.1016/S0378-3758(98)00082-2 10.1198/016214501753382273 10.1111/j.2517-6161.1996.tb02080.x |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany 2017 Statistical Papers is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany 2017 – notice: Statistical Papers is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AO 8C1 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ L.- L6V L7M L~C L~D M0C M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s00362-017-0927-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics |
EISSN | 1613-9798 |
EndPage | 121 |
ExternalDocumentID | 10_1007_s00362_017_0927_3 |
GrantInformation_xml | – fundername: the Talent Research Fund of Taishan University grantid: Y-01-2016002 – fundername: the Natural Science Foundation of Shandong Province in China grantid: ZR2014AL006 – fundername: the National Natural Science Foundation of China grantid: 71540038; 71271128 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 88I 8AO 8C1 8FE 8FG 8FL 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBA EBLON EBO EBR EBS EBU EIOEI EJD EMK EOH EPL ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV L6V LAS LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RIG ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c349t-e763c08eb3b8a8f5c2900171aaededb7de25ebb4fd4b01b34c3097d3b08cfda63 |
IEDL.DBID | BENPR |
ISSN | 0932-5026 |
IngestDate | Fri Jul 25 19:44:00 EDT 2025 Tue Jul 01 03:01:33 EDT 2025 Thu Apr 24 22:53:26 EDT 2025 Fri Feb 21 02:34:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Screening Change point detection 62J07 Robustness 62F35 Adaptive LAD-LASSO Variable selection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-e763c08eb3b8a8f5c2900171aaededb7de25ebb4fd4b01b34c3097d3b08cfda63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2347102326 |
PQPubID | 31177 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2347102326 crossref_citationtrail_10_1007_s00362_017_0927_3 crossref_primary_10_1007_s00362_017_0927_3 springer_journals_10_1007_s00362_017_0927_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200200 2020-2-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Statistical papers (Berlin, Germany) |
PublicationTitleAbbrev | Stat Papers |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Chan, Yau, Zhang (CR6) 2014; 109 Hawkins (CR18) 1977; 72 Little, Jones (CR23) 2011; 467 Huang, Wu, Lizardi, Zhao (CR19) 2005; 21 Xu, Ying (CR27) 2010; 62 Tibshirani (CR24) 1996; 58 Ciuperca (CR8) 2011; 52 Bai (CR4) 1998; 74 Chow (CR7) 1960; 28 Knight, Fu (CR20) 2000; 28 Wang, Li, Jiang (CR26) 2007; 25 Efron, Hastie, Johnstone, Tibshirani (CR11) 2004; 32 Harchaoui, Lévy-Leduc (CR16) 2008; 20 Little, Jones (CR22) 2011; 467 Wang (CR25) 2013; 120 Arslan (CR2) 2012; 56 Bai (CR3) 1995; 11 Zhang, Geng, Lai (CR30) 2015; 63 Lavielle, Moulines (CR21) 2000; 21 Yao, Au (CR28) 1989; 51 Donoho, Johnstone (CR10) 1995; 90 Fan, Lv (CR13) 2008; 70 Gao, Huang (CR14) 2010; 20 Zhao, Yu (CR31) 2006; 7 Boysen, Kempe, Liebscher, Munk, Wittich (CR5) 2009; 37 Angelosante, Giannakis (CR1) 2012; 70 Fan, Li (CR12) 2001; 96 Harchaoui, Lévy-Leduc (CR17) 2010; 105 Zou (CR32) 2006; 101 Ciuperca (CR9) 2014; 55 Gao, Huang (CR15) 2010; 11 Zhang (CR29) 2010; 38 H Zou (927_CR32) 2006; 101 X Gao (927_CR14) 2010; 20 X Gao (927_CR15) 2010; 11 G Ciuperca (927_CR8) 2011; 52 H Wang (927_CR26) 2007; 25 NH Chan (927_CR6) 2014; 109 P Zhao (927_CR31) 2006; 7 Y Yao (927_CR28) 1989; 51 DM Hawkins (927_CR18) 1977; 72 J Bai (927_CR3) 1995; 11 Z Harchaoui (927_CR16) 2008; 20 L Wang (927_CR25) 2013; 120 R Tibshirani (927_CR24) 1996; 58 O Arslan (927_CR2) 2012; 56 J Fan (927_CR13) 2008; 70 M Lavielle (927_CR21) 2000; 21 K Knight (927_CR20) 2000; 28 J Bai (927_CR4) 1998; 74 L Boysen (927_CR5) 2009; 37 T Huang (927_CR19) 2005; 21 GC Chow (927_CR7) 1960; 28 C Zhang (927_CR29) 2010; 38 D Angelosante (927_CR1) 2012; 70 B Efron (927_CR11) 2004; 32 MA Little (927_CR22) 2011; 467 J Fan (927_CR12) 2001; 96 Z Harchaoui (927_CR17) 2010; 105 D Donoho (927_CR10) 1995; 90 G Ciuperca (927_CR9) 2014; 55 J Xu (927_CR27) 2010; 62 B Zhang (927_CR30) 2015; 63 MA Little (927_CR23) 2011; 467 |
References_xml | – volume: 72 start-page: 180 issue: 357 year: 1977 end-page: 186 ident: CR18 article-title: Testing a sequence of observations for a shift in location publication-title: J Am Stat Assoc doi: 10.1080/01621459.1977.10479935 – volume: 51 start-page: 370 issue: 3 year: 1989 end-page: 381 ident: CR28 article-title: Least-squares estimation of a step function publication-title: Sankhya – volume: 20 start-page: 1485 year: 2010 end-page: 1506 ident: CR14 article-title: Asymptotic analysis of high-dimensional LAD regression with lasso publication-title: Stat Sin – volume: 21 start-page: 3811 issue: 20 year: 2005 end-page: 3817 ident: CR19 article-title: Detection of DNA copy number alterations using penalized least squares regression publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti646 – volume: 105 start-page: 1480 issue: 492 year: 2010 end-page: 1493 ident: CR17 article-title: Multiple change-point estimation with a total variation penalty publication-title: J Am Stat Assoc doi: 10.1198/jasa.2010.tm09181 – volume: 7 start-page: 2541 year: 2006 end-page: 2563 ident: CR31 article-title: On model selection consistency of Lasso publication-title: J Mach Learn Res – volume: 52 start-page: 371 issue: 2 year: 2011 end-page: 390 ident: CR8 article-title: Penalized least absolute deviations estimation for nonlinear model with change-points publication-title: Stat Pap doi: 10.1007/s00362-009-0236-6 – volume: 90 start-page: 1200 issue: 432 year: 1995 end-page: 1224 ident: CR10 article-title: Adapting to unknown smoothness via wavelet shrinkage publication-title: J Am Stat Assoc doi: 10.1080/01621459.1995.10476626 – volume: 20 start-page: 161 year: 2008 end-page: 168 ident: CR16 article-title: Catching change-points with lasso publication-title: Adv Neural Inf Process Syst – volume: 25 start-page: 347 issue: 3 year: 2007 end-page: 355 ident: CR26 article-title: Robust regression shrinkage and consistent variable selection through the LAD-Lasso publication-title: J Bus Econ Stat doi: 10.1198/073500106000000251 – volume: 32 start-page: 407 issue: 2 year: 2004 end-page: 451 ident: CR11 article-title: Least angle regression publication-title: Ann Stat doi: 10.1214/009053604000000067 – volume: 28 start-page: 591 issue: 3 year: 1960 end-page: 605 ident: CR7 article-title: Tests of equality between sets of coefficients in two linear regressions publication-title: Econometrica doi: 10.2307/1910133 – volume: 467 start-page: 3115 year: 2011 end-page: 3140 ident: CR23 article-title: Generalized methods and solvers for noise removal from piecewise constant signals. II. New methods publication-title: Proc R Soc A doi: 10.1098/rspa.2010.0674 – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 ident: CR24 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc Ser B – volume: 21 start-page: 33 issue: 1 year: 2000 end-page: 59 ident: CR21 article-title: Least-squares estimation of an unknown number of shifts in a time series publication-title: J Time Ser Anal doi: 10.1111/1467-9892.00172 – volume: 467 start-page: 3088 year: 2011 end-page: 3114 ident: CR22 article-title: Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory publication-title: Proc R Soc A doi: 10.1098/rspa.2010.0671 – volume: 62 start-page: 487 year: 2010 end-page: 514 ident: CR27 article-title: Simultaneous estimation and variable selection in median regression using Lasso-type penalty publication-title: Ann Inst Stat Math doi: 10.1007/s10463-008-0184-2 – volume: 38 start-page: 894 issue: 2 year: 2010 end-page: 942 ident: CR29 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann Stat doi: 10.1214/09-AOS729 – volume: 28 start-page: 1356 issue: 5 year: 2000 end-page: 1378 ident: CR20 article-title: Asymptotics for Lasso-type estimators publication-title: Ann Stat doi: 10.1214/aos/1015957397 – volume: 37 start-page: 157 issue: 1 year: 2009 end-page: 183 ident: CR5 article-title: Consistencies and rates of convergence of jump penalized least squares estimators publication-title: Ann Stat doi: 10.1214/07-AOS558 – volume: 11 start-page: 1 issue: 517 year: 2010 end-page: 10 ident: CR15 article-title: A robust penalized method for the analysis of noisy DNA copy number data publication-title: BMC Genomics – volume: 56 start-page: 1952 year: 2012 end-page: 1965 ident: CR2 article-title: Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2011.11.022 – volume: 11 start-page: 403 issue: 3 year: 1995 end-page: 436 ident: CR3 article-title: Least absolute deviation estimation of s shift publication-title: Econom Theory doi: 10.1017/S026646660000935X – volume: 101 start-page: 1418 issue: 476 year: 2006 end-page: 1429 ident: CR32 article-title: The adaptive Lasso and its oracle properties publication-title: J Am Stat Assoc doi: 10.1198/016214506000000735 – volume: 63 start-page: 2209 issue: 9 year: 2015 end-page: 2224 ident: CR30 article-title: Multiple change-points estimation in linear regression models via sparse group Lasso publication-title: Signal Process – volume: 120 start-page: 135 year: 2013 end-page: 151 ident: CR25 article-title: The penalized LAD estimator for high dimensional linear regression publication-title: J Multivar Anal doi: 10.1016/j.jmva.2013.04.001 – volume: 70 start-page: 849 issue: 5 year: 2008 end-page: 911 ident: CR13 article-title: Sure independence screening for ultrahigh dimensional feature space publication-title: J R Stat Soc Ser B doi: 10.1111/j.1467-9868.2008.00674.x – volume: 55 start-page: 349 issue: 4 year: 2014 end-page: 374 ident: CR9 article-title: Model selection by LASSO methods in a change-point model publication-title: Stat Pap doi: 10.1007/s00362-012-0482-x – volume: 70 start-page: 1 issue: 1 year: 2012 end-page: 16 ident: CR1 article-title: Group lassoing change-points in piecewise-constant AR processes publication-title: EURASIP J Adv Signal Process – volume: 109 start-page: 590 issue: 506 year: 2014 end-page: 599 ident: CR6 article-title: Group LASSO for structural break time series publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.866566 – volume: 74 start-page: 103 issue: 1 year: 1998 end-page: 134 ident: CR4 article-title: Estimation of multiple-regime regressions with least absolutes deviation publication-title: J Stat Plan Inference doi: 10.1016/S0378-3758(98)00082-2 – volume: 96 start-page: 1348 issue: 456 year: 2001 end-page: 1360 ident: CR12 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J Am Stat Assoc doi: 10.1198/016214501753382273 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 927_CR24 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 25 start-page: 347 issue: 3 year: 2007 ident: 927_CR26 publication-title: J Bus Econ Stat doi: 10.1198/073500106000000251 – volume: 96 start-page: 1348 issue: 456 year: 2001 ident: 927_CR12 publication-title: J Am Stat Assoc doi: 10.1198/016214501753382273 – volume: 467 start-page: 3088 year: 2011 ident: 927_CR22 publication-title: Proc R Soc A doi: 10.1098/rspa.2010.0671 – volume: 52 start-page: 371 issue: 2 year: 2011 ident: 927_CR8 publication-title: Stat Pap doi: 10.1007/s00362-009-0236-6 – volume: 70 start-page: 1 issue: 1 year: 2012 ident: 927_CR1 publication-title: EURASIP J Adv Signal Process – volume: 105 start-page: 1480 issue: 492 year: 2010 ident: 927_CR17 publication-title: J Am Stat Assoc doi: 10.1198/jasa.2010.tm09181 – volume: 11 start-page: 1 issue: 517 year: 2010 ident: 927_CR15 publication-title: BMC Genomics – volume: 467 start-page: 3115 year: 2011 ident: 927_CR23 publication-title: Proc R Soc A doi: 10.1098/rspa.2010.0674 – volume: 51 start-page: 370 issue: 3 year: 1989 ident: 927_CR28 publication-title: Sankhya – volume: 21 start-page: 3811 issue: 20 year: 2005 ident: 927_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti646 – volume: 101 start-page: 1418 issue: 476 year: 2006 ident: 927_CR32 publication-title: J Am Stat Assoc doi: 10.1198/016214506000000735 – volume: 63 start-page: 2209 issue: 9 year: 2015 ident: 927_CR30 publication-title: Signal Process – volume: 28 start-page: 1356 issue: 5 year: 2000 ident: 927_CR20 publication-title: Ann Stat doi: 10.1214/aos/1015957397 – volume: 55 start-page: 349 issue: 4 year: 2014 ident: 927_CR9 publication-title: Stat Pap doi: 10.1007/s00362-012-0482-x – volume: 37 start-page: 157 issue: 1 year: 2009 ident: 927_CR5 publication-title: Ann Stat doi: 10.1214/07-AOS558 – volume: 120 start-page: 135 year: 2013 ident: 927_CR25 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2013.04.001 – volume: 74 start-page: 103 issue: 1 year: 1998 ident: 927_CR4 publication-title: J Stat Plan Inference doi: 10.1016/S0378-3758(98)00082-2 – volume: 32 start-page: 407 issue: 2 year: 2004 ident: 927_CR11 publication-title: Ann Stat doi: 10.1214/009053604000000067 – volume: 21 start-page: 33 issue: 1 year: 2000 ident: 927_CR21 publication-title: J Time Ser Anal doi: 10.1111/1467-9892.00172 – volume: 62 start-page: 487 year: 2010 ident: 927_CR27 publication-title: Ann Inst Stat Math doi: 10.1007/s10463-008-0184-2 – volume: 20 start-page: 1485 year: 2010 ident: 927_CR14 publication-title: Stat Sin – volume: 11 start-page: 403 issue: 3 year: 1995 ident: 927_CR3 publication-title: Econom Theory doi: 10.1017/S026646660000935X – volume: 72 start-page: 180 issue: 357 year: 1977 ident: 927_CR18 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1977.10479935 – volume: 7 start-page: 2541 year: 2006 ident: 927_CR31 publication-title: J Mach Learn Res – volume: 20 start-page: 161 year: 2008 ident: 927_CR16 publication-title: Adv Neural Inf Process Syst – volume: 109 start-page: 590 issue: 506 year: 2014 ident: 927_CR6 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.866566 – volume: 56 start-page: 1952 year: 2012 ident: 927_CR2 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2011.11.022 – volume: 38 start-page: 894 issue: 2 year: 2010 ident: 927_CR29 publication-title: Ann Stat doi: 10.1214/09-AOS729 – volume: 28 start-page: 591 issue: 3 year: 1960 ident: 927_CR7 publication-title: Econometrica doi: 10.2307/1910133 – volume: 90 start-page: 1200 issue: 432 year: 1995 ident: 927_CR10 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1995.10476626 – volume: 70 start-page: 849 issue: 5 year: 2008 ident: 927_CR13 publication-title: J R Stat Soc Ser B doi: 10.1111/j.1467-9868.2008.00674.x |
SSID | ssj0018880 |
Score | 2.2644818 |
Snippet | Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109 |
SubjectTerms | Algorithms Basic converters Change detection Computer simulation Econometrics Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Insurance Management Mathematics and Statistics Operations Research/Decision Theory Outliers (statistics) Probability Theory and Stochastic Processes Regular Article Robustness Signal processing Statistics Statistics for Business |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3oRrYrVKjl4UgLZPPaBp6KWItWDWOhtyWuhINvibv39JtnNFkUFz3ksTHYm32RmvgHgSsUmi4giiBbGIEZJgUSWYqQ4E2mcijSirsD56TmezNjjnM_bOu4qZLuHkKS31F2xm6dOQc6q4oxYzdgGO9y67i6Pa0ZGXejAunT-YcUCE8SthxFCmT9t8fUy2iDMb0FRf9eMD8B-CxLhqDnVQ7Blyj7YDTXEVR_sOYzYUCwfgduXpVxXNWxqeOFquShrqE3tk6xK2PSIhh8LAYUWK2fe4HR0j6aO0fEYzMYPr3cT1PZEQIqyrEbG2gOFU-sCSyvIgiuSecobIYw2WibaEG6kZIVmEkeSMkVxlmgqcaoKLWJ6AnrlsjSnAFplTrhWWEcqYVhrKYTkiZCUy0RQSQcAB-HkqiUMd30r3vKO6tjLM7ffz508c7vkuluyatgy_po8DBLPW8WpckKZwzwWVA7ATTiFzfCvm539a_Y52CPOb_bZ10PQq9_X5sKCi1pe-p_pE4xFxDU priority: 102 providerName: Springer Nature |
Title | Robust change point detection method via adaptive LAD-LASSO |
URI | https://link.springer.com/article/10.1007/s00362-017-0927-3 https://www.proquest.com/docview/2347102326 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5oe-lFXHGpZQ6elMHJzKSZ4EFqbRU3RCzUU5gtUJC02tTf70yWFgW95JBkJvAmb3_vewAnumvjgGqKWWot5oymWMaCYB1yKbpCioD5BufHp-7tiN-Nw3EVcJtXZZW1TCwEtZlqHyM_p4x7ZeisjcvZB_ZTo3x2tRqhsQ5NJ4KFaEDzavD0_LLMIzj_roiyOCsFh87dqPOapIAR9R1DXkqTmDpO-6mZVubmrwxpoXiGm7BRWYyoVx7xFqzZbBta3kgsMZZ34OJlqhbzHJVNvGg2nWQ5MjYvqqwyVA6JRl8TiaSRMy_f0EPvGj94SMddGA0Hr_1bXA1FwJrxOMfWCQRNhPOBlaNkGmoaF5g3UlpjjYqMpaFViqeGKxIoxjUjcWSYIkKnRnbZHjSyaWb3ATlujkKjiQl0xIkxSkoVRlKxUEWSKXYApCZIoivEcD-44j1ZYh0XNEzc9xNPw8QtOV0umZVwGf-93K6pnFScM09W53wAZzXlV4__3Ozw_82OoEW9p1zUW7ehkX8u7LEzJ3LVgXXRD_x1eNOBZu_m7X7Qqf4jd3dEe9-6Dsl4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGOMAF8RSDATnABRSRJenaCiGEgDFg7IBA4lbyqjQJdYN1IP4Uv5EkXTeBBDfObdzKcfyI7c8Au6pp4gZVFLPUGMwZTbGII4JVwEXUjETUYK7B-bbbbD_w68fgsQKfZS-MK6ssdaJX1Lqv3B35IWXcGUPrbZwMXrCbGuWyq-UIjUIsbszHuw3ZhsdX53Z_9yhtXdyftfF4qgBWjMc5NvZEKRLZIFLaX0kDRWMPGiOE0UbLUBsaGCl5qrkkDcm4YiQONZMkUqkWTWbpzsAsZ9aSu8701uUka2GjSX-nY30iHNjgpsyiEg9a6vqTnE0gMbXn-rsdnDq3P_Kx3sy1FmFh7J-i00KglqBismWYdy5pgei8Akd3fTka5qhoGUaDfi_LkTa5r-nKUDGSGr31BBJaDJw2RZ3Tc9xxAJKr8PAvzFqDatbPzDogqzvCQCuiGyrkRGsphAxCIVkgQ8EkqwEpGZKoMT65G5PxnEyQlT0PE_v9xPEwsUv2J0sGBTjHXy_XSy4n43M6TKZSVYODkvPTx78S2_ib2A7Mte9vO0nnqnuzCfPUxei-0rsO1fx1ZLasI5PLbS89CJ7-W1y_AJaKAxc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50BfEiPnF11Rz0ogTTJN22iIi4Lj5WEVHwVvMqCNJd3ar41_x1Jmm7i4LePLdJy2SemZlvALZU2yQBVRSzzBjMGc2wSGKCVchF3I5FHDDX4Hx51T694-f34f0EfNa9MK6sstaJXlHrvnJ35HuUcWcMrbexl1VlEded7uHgGbsJUi7TWo_TKFnkwny82_BteHDWsWe9TWn35Pb4FFcTBrBiPCmwsdKlSGwDSml_KwsVTTyAjBBGGy0jbWhopOSZ5pIEknHFSBJpJkmsMi3azO47CVMRi2InY_HxqLwksJGlv9-x_hEObaBTZ1SJBzB1vUrOPpCEWhn_bhPHju6P3Kw3ed05mK18VXRUMtc8TJh8AWace1qiOy_C_k1fvg4LVLYPo0H_MS-QNoWv78pROZ4avT0KJLQYOM2Kekcd3HNgkktw9y_EWoZG3s_NCiCrR6JQK6IDFXGitRRChpGQLJSRYJI1gdQESVWFVe5GZjylI5RlT8PUfj91NEztkp3RkkEJ1PHXy62aymkls8N0zGFN2K0pP37862arf2-2CdOWUdPe2dXFGsxQF677ou8WNIqXV7NufZpCbnjmQfDw39z6BTPrBxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+change+point+detection+method+via+adaptive+LAD-LASSO&rft.jtitle=Statistical+papers+%28Berlin%2C+Germany%29&rft.au=Li%2C+Qiang&rft.au=Wang%2C+Liming&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-5026&rft.eissn=1613-9798&rft.volume=61&rft.issue=1&rft.spage=109&rft.epage=121&rft_id=info:doi/10.1007%2Fs00362-017-0927-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-5026&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-5026&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-5026&client=summon |