Robust change point detection method via adaptive LAD-LASSO

Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine t...

Full description

Saved in:
Bibliographic Details
Published inStatistical papers (Berlin, Germany) Vol. 61; no. 1; pp. 109 - 121
Main Authors Li, Qiang, Wang, Liming
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize.
AbstractList Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize.
Author Li, Qiang
Wang, Liming
Author_xml – sequence: 1
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  email: liqiangtsu@163.com
  organization: School of Mathematics and Statistics, Taishan University
– sequence: 2
  givenname: Liming
  surname: Wang
  fullname: Wang, Liming
  organization: School of Statistics and Management, Shanghai University of Finance and Economics
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnqOTZLvJ4qnUTygUrJ5DvtZuaTdrkhb89-6ygiDoaS7vM-_MM0GjxjcOoUsC1wSA30QAVlAMhGMoKcfsBI1JQRgueSlGaAwlo3gGtDhDkxi3AEQIAWN0--L1IabMbFTz7rLW103KrEvOpNo32d6ljbfZsVaZsqpN9dFly_kdXs7X69U5Oq3ULrqL7zlFbw_3r4snvFw9Pi_mS2xYXibseMEMCKeZFkpUM0PLrp4TpZx1VnPr6MxpnVc210A0yw2DklumQZjKqoJN0dWwtw3-4-Biklt_CE1XKSnLOQHKaJ_iQ8oEH2NwlTR1Uv0XKah6JwnI3pQcTMnuAtmbkqwjyS-yDfVehc9_GTowsct25sLPTX9DXyw2fCg
CitedBy_id crossref_primary_10_1007_s42952_022_00194_0
crossref_primary_10_1016_j_iref_2022_03_003
crossref_primary_10_3390_sym14102161
crossref_primary_10_1016_j_cie_2023_108986
crossref_primary_10_1093_imaiai_iaab015
crossref_primary_10_1007_s00362_019_01104_z
crossref_primary_10_1080_03610926_2024_2446396
crossref_primary_10_1007_s00211_019_01051_9
crossref_primary_10_1007_s00362_022_01341_9
crossref_primary_10_1080_09593330_2024_2415722
Cites_doi 10.1080/01621459.1977.10479935
10.1093/bioinformatics/bti646
10.1198/jasa.2010.tm09181
10.1007/s00362-009-0236-6
10.1080/01621459.1995.10476626
10.1198/073500106000000251
10.1214/009053604000000067
10.2307/1910133
10.1098/rspa.2010.0674
10.1111/1467-9892.00172
10.1098/rspa.2010.0671
10.1007/s10463-008-0184-2
10.1214/09-AOS729
10.1214/aos/1015957397
10.1214/07-AOS558
10.1016/j.csda.2011.11.022
10.1017/S026646660000935X
10.1198/016214506000000735
10.1016/j.jmva.2013.04.001
10.1111/j.1467-9868.2008.00674.x
10.1007/s00362-012-0482-x
10.1080/01621459.2013.866566
10.1016/S0378-3758(98)00082-2
10.1198/016214501753382273
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany 2017
Statistical Papers is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany 2017
– notice: Statistical Papers is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AO
8C1
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
L.-
L6V
L7M
L~C
L~D
M0C
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00362-017-0927-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
EISSN 1613-9798
EndPage 121
ExternalDocumentID 10_1007_s00362_017_0927_3
GrantInformation_xml – fundername: the Talent Research Fund of Taishan University
  grantid: Y-01-2016002
– fundername: the Natural Science Foundation of Shandong Province in China
  grantid: ZR2014AL006
– fundername: the National Natural Science Foundation of China
  grantid: 71540038; 71271128
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8C1
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBA
EBLON
EBO
EBR
EBS
EBU
EIOEI
EJD
EMK
EOH
EPL
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c349t-e763c08eb3b8a8f5c2900171aaededb7de25ebb4fd4b01b34c3097d3b08cfda63
IEDL.DBID BENPR
ISSN 0932-5026
IngestDate Fri Jul 25 19:44:00 EDT 2025
Tue Jul 01 03:01:33 EDT 2025
Thu Apr 24 22:53:26 EDT 2025
Fri Feb 21 02:34:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Screening
Change point detection
62J07
Robustness
62F35
Adaptive LAD-LASSO
Variable selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e763c08eb3b8a8f5c2900171aaededb7de25ebb4fd4b01b34c3097d3b08cfda63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2347102326
PQPubID 31177
PageCount 13
ParticipantIDs proquest_journals_2347102326
crossref_citationtrail_10_1007_s00362_017_0927_3
crossref_primary_10_1007_s00362_017_0927_3
springer_journals_10_1007_s00362_017_0927_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200200
2020-2-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Statistical papers (Berlin, Germany)
PublicationTitleAbbrev Stat Papers
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Chan, Yau, Zhang (CR6) 2014; 109
Hawkins (CR18) 1977; 72
Little, Jones (CR23) 2011; 467
Huang, Wu, Lizardi, Zhao (CR19) 2005; 21
Xu, Ying (CR27) 2010; 62
Tibshirani (CR24) 1996; 58
Ciuperca (CR8) 2011; 52
Bai (CR4) 1998; 74
Chow (CR7) 1960; 28
Knight, Fu (CR20) 2000; 28
Wang, Li, Jiang (CR26) 2007; 25
Efron, Hastie, Johnstone, Tibshirani (CR11) 2004; 32
Harchaoui, Lévy-Leduc (CR16) 2008; 20
Little, Jones (CR22) 2011; 467
Wang (CR25) 2013; 120
Arslan (CR2) 2012; 56
Bai (CR3) 1995; 11
Zhang, Geng, Lai (CR30) 2015; 63
Lavielle, Moulines (CR21) 2000; 21
Yao, Au (CR28) 1989; 51
Donoho, Johnstone (CR10) 1995; 90
Fan, Lv (CR13) 2008; 70
Gao, Huang (CR14) 2010; 20
Zhao, Yu (CR31) 2006; 7
Boysen, Kempe, Liebscher, Munk, Wittich (CR5) 2009; 37
Angelosante, Giannakis (CR1) 2012; 70
Fan, Li (CR12) 2001; 96
Harchaoui, Lévy-Leduc (CR17) 2010; 105
Zou (CR32) 2006; 101
Ciuperca (CR9) 2014; 55
Gao, Huang (CR15) 2010; 11
Zhang (CR29) 2010; 38
H Zou (927_CR32) 2006; 101
X Gao (927_CR14) 2010; 20
X Gao (927_CR15) 2010; 11
G Ciuperca (927_CR8) 2011; 52
H Wang (927_CR26) 2007; 25
NH Chan (927_CR6) 2014; 109
P Zhao (927_CR31) 2006; 7
Y Yao (927_CR28) 1989; 51
DM Hawkins (927_CR18) 1977; 72
J Bai (927_CR3) 1995; 11
Z Harchaoui (927_CR16) 2008; 20
L Wang (927_CR25) 2013; 120
R Tibshirani (927_CR24) 1996; 58
O Arslan (927_CR2) 2012; 56
J Fan (927_CR13) 2008; 70
M Lavielle (927_CR21) 2000; 21
K Knight (927_CR20) 2000; 28
J Bai (927_CR4) 1998; 74
L Boysen (927_CR5) 2009; 37
T Huang (927_CR19) 2005; 21
GC Chow (927_CR7) 1960; 28
C Zhang (927_CR29) 2010; 38
D Angelosante (927_CR1) 2012; 70
B Efron (927_CR11) 2004; 32
MA Little (927_CR22) 2011; 467
J Fan (927_CR12) 2001; 96
Z Harchaoui (927_CR17) 2010; 105
D Donoho (927_CR10) 1995; 90
G Ciuperca (927_CR9) 2014; 55
J Xu (927_CR27) 2010; 62
B Zhang (927_CR30) 2015; 63
MA Little (927_CR23) 2011; 467
References_xml – volume: 72
  start-page: 180
  issue: 357
  year: 1977
  end-page: 186
  ident: CR18
  article-title: Testing a sequence of observations for a shift in location
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1977.10479935
– volume: 51
  start-page: 370
  issue: 3
  year: 1989
  end-page: 381
  ident: CR28
  article-title: Least-squares estimation of a step function
  publication-title: Sankhya
– volume: 20
  start-page: 1485
  year: 2010
  end-page: 1506
  ident: CR14
  article-title: Asymptotic analysis of high-dimensional LAD regression with lasso
  publication-title: Stat Sin
– volume: 21
  start-page: 3811
  issue: 20
  year: 2005
  end-page: 3817
  ident: CR19
  article-title: Detection of DNA copy number alterations using penalized least squares regression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti646
– volume: 105
  start-page: 1480
  issue: 492
  year: 2010
  end-page: 1493
  ident: CR17
  article-title: Multiple change-point estimation with a total variation penalty
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2010.tm09181
– volume: 7
  start-page: 2541
  year: 2006
  end-page: 2563
  ident: CR31
  article-title: On model selection consistency of Lasso
  publication-title: J Mach Learn Res
– volume: 52
  start-page: 371
  issue: 2
  year: 2011
  end-page: 390
  ident: CR8
  article-title: Penalized least absolute deviations estimation for nonlinear model with change-points
  publication-title: Stat Pap
  doi: 10.1007/s00362-009-0236-6
– volume: 90
  start-page: 1200
  issue: 432
  year: 1995
  end-page: 1224
  ident: CR10
  article-title: Adapting to unknown smoothness via wavelet shrinkage
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1995.10476626
– volume: 20
  start-page: 161
  year: 2008
  end-page: 168
  ident: CR16
  article-title: Catching change-points with lasso
  publication-title: Adv Neural Inf Process Syst
– volume: 25
  start-page: 347
  issue: 3
  year: 2007
  end-page: 355
  ident: CR26
  article-title: Robust regression shrinkage and consistent variable selection through the LAD-Lasso
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500106000000251
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  end-page: 451
  ident: CR11
  article-title: Least angle regression
  publication-title: Ann Stat
  doi: 10.1214/009053604000000067
– volume: 28
  start-page: 591
  issue: 3
  year: 1960
  end-page: 605
  ident: CR7
  article-title: Tests of equality between sets of coefficients in two linear regressions
  publication-title: Econometrica
  doi: 10.2307/1910133
– volume: 467
  start-page: 3115
  year: 2011
  end-page: 3140
  ident: CR23
  article-title: Generalized methods and solvers for noise removal from piecewise constant signals. II. New methods
  publication-title: Proc R Soc A
  doi: 10.1098/rspa.2010.0674
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  ident: CR24
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc Ser B
– volume: 21
  start-page: 33
  issue: 1
  year: 2000
  end-page: 59
  ident: CR21
  article-title: Least-squares estimation of an unknown number of shifts in a time series
  publication-title: J Time Ser Anal
  doi: 10.1111/1467-9892.00172
– volume: 467
  start-page: 3088
  year: 2011
  end-page: 3114
  ident: CR22
  article-title: Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory
  publication-title: Proc R Soc A
  doi: 10.1098/rspa.2010.0671
– volume: 62
  start-page: 487
  year: 2010
  end-page: 514
  ident: CR27
  article-title: Simultaneous estimation and variable selection in median regression using Lasso-type penalty
  publication-title: Ann Inst Stat Math
  doi: 10.1007/s10463-008-0184-2
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  end-page: 942
  ident: CR29
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann Stat
  doi: 10.1214/09-AOS729
– volume: 28
  start-page: 1356
  issue: 5
  year: 2000
  end-page: 1378
  ident: CR20
  article-title: Asymptotics for Lasso-type estimators
  publication-title: Ann Stat
  doi: 10.1214/aos/1015957397
– volume: 37
  start-page: 157
  issue: 1
  year: 2009
  end-page: 183
  ident: CR5
  article-title: Consistencies and rates of convergence of jump penalized least squares estimators
  publication-title: Ann Stat
  doi: 10.1214/07-AOS558
– volume: 11
  start-page: 1
  issue: 517
  year: 2010
  end-page: 10
  ident: CR15
  article-title: A robust penalized method for the analysis of noisy DNA copy number data
  publication-title: BMC Genomics
– volume: 56
  start-page: 1952
  year: 2012
  end-page: 1965
  ident: CR2
  article-title: Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.11.022
– volume: 11
  start-page: 403
  issue: 3
  year: 1995
  end-page: 436
  ident: CR3
  article-title: Least absolute deviation estimation of s shift
  publication-title: Econom Theory
  doi: 10.1017/S026646660000935X
– volume: 101
  start-page: 1418
  issue: 476
  year: 2006
  end-page: 1429
  ident: CR32
  article-title: The adaptive Lasso and its oracle properties
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000735
– volume: 63
  start-page: 2209
  issue: 9
  year: 2015
  end-page: 2224
  ident: CR30
  article-title: Multiple change-points estimation in linear regression models via sparse group Lasso
  publication-title: Signal Process
– volume: 120
  start-page: 135
  year: 2013
  end-page: 151
  ident: CR25
  article-title: The penalized LAD estimator for high dimensional linear regression
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2013.04.001
– volume: 70
  start-page: 849
  issue: 5
  year: 2008
  end-page: 911
  ident: CR13
  article-title: Sure independence screening for ultrahigh dimensional feature space
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.1467-9868.2008.00674.x
– volume: 55
  start-page: 349
  issue: 4
  year: 2014
  end-page: 374
  ident: CR9
  article-title: Model selection by LASSO methods in a change-point model
  publication-title: Stat Pap
  doi: 10.1007/s00362-012-0482-x
– volume: 70
  start-page: 1
  issue: 1
  year: 2012
  end-page: 16
  ident: CR1
  article-title: Group lassoing change-points in piecewise-constant AR processes
  publication-title: EURASIP J Adv Signal Process
– volume: 109
  start-page: 590
  issue: 506
  year: 2014
  end-page: 599
  ident: CR6
  article-title: Group LASSO for structural break time series
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.866566
– volume: 74
  start-page: 103
  issue: 1
  year: 1998
  end-page: 134
  ident: CR4
  article-title: Estimation of multiple-regime regressions with least absolutes deviation
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(98)00082-2
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  end-page: 1360
  ident: CR12
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 927_CR24
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 25
  start-page: 347
  issue: 3
  year: 2007
  ident: 927_CR26
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500106000000251
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 927_CR12
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume: 467
  start-page: 3088
  year: 2011
  ident: 927_CR22
  publication-title: Proc R Soc A
  doi: 10.1098/rspa.2010.0671
– volume: 52
  start-page: 371
  issue: 2
  year: 2011
  ident: 927_CR8
  publication-title: Stat Pap
  doi: 10.1007/s00362-009-0236-6
– volume: 70
  start-page: 1
  issue: 1
  year: 2012
  ident: 927_CR1
  publication-title: EURASIP J Adv Signal Process
– volume: 105
  start-page: 1480
  issue: 492
  year: 2010
  ident: 927_CR17
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2010.tm09181
– volume: 11
  start-page: 1
  issue: 517
  year: 2010
  ident: 927_CR15
  publication-title: BMC Genomics
– volume: 467
  start-page: 3115
  year: 2011
  ident: 927_CR23
  publication-title: Proc R Soc A
  doi: 10.1098/rspa.2010.0674
– volume: 51
  start-page: 370
  issue: 3
  year: 1989
  ident: 927_CR28
  publication-title: Sankhya
– volume: 21
  start-page: 3811
  issue: 20
  year: 2005
  ident: 927_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti646
– volume: 101
  start-page: 1418
  issue: 476
  year: 2006
  ident: 927_CR32
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000735
– volume: 63
  start-page: 2209
  issue: 9
  year: 2015
  ident: 927_CR30
  publication-title: Signal Process
– volume: 28
  start-page: 1356
  issue: 5
  year: 2000
  ident: 927_CR20
  publication-title: Ann Stat
  doi: 10.1214/aos/1015957397
– volume: 55
  start-page: 349
  issue: 4
  year: 2014
  ident: 927_CR9
  publication-title: Stat Pap
  doi: 10.1007/s00362-012-0482-x
– volume: 37
  start-page: 157
  issue: 1
  year: 2009
  ident: 927_CR5
  publication-title: Ann Stat
  doi: 10.1214/07-AOS558
– volume: 120
  start-page: 135
  year: 2013
  ident: 927_CR25
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2013.04.001
– volume: 74
  start-page: 103
  issue: 1
  year: 1998
  ident: 927_CR4
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(98)00082-2
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  ident: 927_CR11
  publication-title: Ann Stat
  doi: 10.1214/009053604000000067
– volume: 21
  start-page: 33
  issue: 1
  year: 2000
  ident: 927_CR21
  publication-title: J Time Ser Anal
  doi: 10.1111/1467-9892.00172
– volume: 62
  start-page: 487
  year: 2010
  ident: 927_CR27
  publication-title: Ann Inst Stat Math
  doi: 10.1007/s10463-008-0184-2
– volume: 20
  start-page: 1485
  year: 2010
  ident: 927_CR14
  publication-title: Stat Sin
– volume: 11
  start-page: 403
  issue: 3
  year: 1995
  ident: 927_CR3
  publication-title: Econom Theory
  doi: 10.1017/S026646660000935X
– volume: 72
  start-page: 180
  issue: 357
  year: 1977
  ident: 927_CR18
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1977.10479935
– volume: 7
  start-page: 2541
  year: 2006
  ident: 927_CR31
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 161
  year: 2008
  ident: 927_CR16
  publication-title: Adv Neural Inf Process Syst
– volume: 109
  start-page: 590
  issue: 506
  year: 2014
  ident: 927_CR6
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.866566
– volume: 56
  start-page: 1952
  year: 2012
  ident: 927_CR2
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.11.022
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  ident: 927_CR29
  publication-title: Ann Stat
  doi: 10.1214/09-AOS729
– volume: 28
  start-page: 591
  issue: 3
  year: 1960
  ident: 927_CR7
  publication-title: Econometrica
  doi: 10.2307/1910133
– volume: 90
  start-page: 1200
  issue: 432
  year: 1995
  ident: 927_CR10
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1995.10476626
– volume: 70
  start-page: 849
  issue: 5
  year: 2008
  ident: 927_CR13
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.1467-9868.2008.00674.x
SSID ssj0018880
Score 2.2644818
Snippet Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Algorithms
Basic converters
Change detection
Computer simulation
Econometrics
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Operations Research/Decision Theory
Outliers (statistics)
Probability Theory and Stochastic Processes
Regular Article
Robustness
Signal processing
Statistics
Statistics for Business
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3oRrYrVKjl4UgLZPPaBp6KWItWDWOhtyWuhINvibv39JtnNFkUFz3ksTHYm32RmvgHgSsUmi4giiBbGIEZJgUSWYqQ4E2mcijSirsD56TmezNjjnM_bOu4qZLuHkKS31F2xm6dOQc6q4oxYzdgGO9y67i6Pa0ZGXejAunT-YcUCE8SthxFCmT9t8fUy2iDMb0FRf9eMD8B-CxLhqDnVQ7Blyj7YDTXEVR_sOYzYUCwfgduXpVxXNWxqeOFquShrqE3tk6xK2PSIhh8LAYUWK2fe4HR0j6aO0fEYzMYPr3cT1PZEQIqyrEbG2gOFU-sCSyvIgiuSecobIYw2WibaEG6kZIVmEkeSMkVxlmgqcaoKLWJ6AnrlsjSnAFplTrhWWEcqYVhrKYTkiZCUy0RQSQcAB-HkqiUMd30r3vKO6tjLM7ffz508c7vkuluyatgy_po8DBLPW8WpckKZwzwWVA7ATTiFzfCvm539a_Y52CPOb_bZ10PQq9_X5sKCi1pe-p_pE4xFxDU
  priority: 102
  providerName: Springer Nature
Title Robust change point detection method via adaptive LAD-LASSO
URI https://link.springer.com/article/10.1007/s00362-017-0927-3
https://www.proquest.com/docview/2347102326
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5oe-lFXHGpZQ6elMHJzKSZ4EFqbRU3RCzUU5gtUJC02tTf70yWFgW95JBkJvAmb3_vewAnumvjgGqKWWot5oymWMaCYB1yKbpCioD5BufHp-7tiN-Nw3EVcJtXZZW1TCwEtZlqHyM_p4x7ZeisjcvZB_ZTo3x2tRqhsQ5NJ4KFaEDzavD0_LLMIzj_roiyOCsFh87dqPOapIAR9R1DXkqTmDpO-6mZVubmrwxpoXiGm7BRWYyoVx7xFqzZbBta3kgsMZZ34OJlqhbzHJVNvGg2nWQ5MjYvqqwyVA6JRl8TiaSRMy_f0EPvGj94SMddGA0Hr_1bXA1FwJrxOMfWCQRNhPOBlaNkGmoaF5g3UlpjjYqMpaFViqeGKxIoxjUjcWSYIkKnRnbZHjSyaWb3ATlujkKjiQl0xIkxSkoVRlKxUEWSKXYApCZIoivEcD-44j1ZYh0XNEzc9xNPw8QtOV0umZVwGf-93K6pnFScM09W53wAZzXlV4__3Ozw_82OoEW9p1zUW7ehkX8u7LEzJ3LVgXXRD_x1eNOBZu_m7X7Qqf4jd3dEe9-6Dsl4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGOMAF8RSDATnABRSRJenaCiGEgDFg7IBA4lbyqjQJdYN1IP4Uv5EkXTeBBDfObdzKcfyI7c8Au6pp4gZVFLPUGMwZTbGII4JVwEXUjETUYK7B-bbbbD_w68fgsQKfZS-MK6ssdaJX1Lqv3B35IWXcGUPrbZwMXrCbGuWyq-UIjUIsbszHuw3ZhsdX53Z_9yhtXdyftfF4qgBWjMc5NvZEKRLZIFLaX0kDRWMPGiOE0UbLUBsaGCl5qrkkDcm4YiQONZMkUqkWTWbpzsAsZ9aSu8701uUka2GjSX-nY30iHNjgpsyiEg9a6vqTnE0gMbXn-rsdnDq3P_Kx3sy1FmFh7J-i00KglqBismWYdy5pgei8Akd3fTka5qhoGUaDfi_LkTa5r-nKUDGSGr31BBJaDJw2RZ3Tc9xxAJKr8PAvzFqDatbPzDogqzvCQCuiGyrkRGsphAxCIVkgQ8EkqwEpGZKoMT65G5PxnEyQlT0PE_v9xPEwsUv2J0sGBTjHXy_XSy4n43M6TKZSVYODkvPTx78S2_ib2A7Mte9vO0nnqnuzCfPUxei-0rsO1fx1ZLasI5PLbS89CJ7-W1y_AJaKAxc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50BfEiPnF11Rz0ogTTJN22iIi4Lj5WEVHwVvMqCNJd3ar41_x1Jmm7i4LePLdJy2SemZlvALZU2yQBVRSzzBjMGc2wSGKCVchF3I5FHDDX4Hx51T694-f34f0EfNa9MK6sstaJXlHrvnJ35HuUcWcMrbexl1VlEded7uHgGbsJUi7TWo_TKFnkwny82_BteHDWsWe9TWn35Pb4FFcTBrBiPCmwsdKlSGwDSml_KwsVTTyAjBBGGy0jbWhopOSZ5pIEknHFSBJpJkmsMi3azO47CVMRi2InY_HxqLwksJGlv9-x_hEObaBTZ1SJBzB1vUrOPpCEWhn_bhPHju6P3Kw3ed05mK18VXRUMtc8TJh8AWace1qiOy_C_k1fvg4LVLYPo0H_MS-QNoWv78pROZ4avT0KJLQYOM2Kekcd3HNgkktw9y_EWoZG3s_NCiCrR6JQK6IDFXGitRRChpGQLJSRYJI1gdQESVWFVe5GZjylI5RlT8PUfj91NEztkp3RkkEJ1PHXy62aymkls8N0zGFN2K0pP37862arf2-2CdOWUdPe2dXFGsxQF677ou8WNIqXV7NufZpCbnjmQfDw39z6BTPrBxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+change+point+detection+method+via+adaptive+LAD-LASSO&rft.jtitle=Statistical+papers+%28Berlin%2C+Germany%29&rft.au=Li%2C+Qiang&rft.au=Wang%2C+Liming&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-5026&rft.eissn=1613-9798&rft.volume=61&rft.issue=1&rft.spage=109&rft.epage=121&rft_id=info:doi/10.1007%2Fs00362-017-0927-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-5026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-5026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-5026&client=summon