Projected Primal-Dual Dynamics for Distributed Constrained Nonsmooth Convex Optimization
A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex opt...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 4; pp. 1776 - 1782 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex optimization problem, primal-dual dynamics with projection operation are investigated under optimal conditions. For the nonsmooth convex optimization problem, a framework under the LaSalle's invariance principle from nonsmooth analysis is established, where the asymptotic stability of the primal-dual dynamics at an optimal solution is guaranteed. For the case where inequality and bounded constraints are not involved and the objective function is twice differentiable and strongly convex, the globally exponential convergence of the primal- dual dynamics is established. Finally, two simulations are provided to verify and visualize the theoretical results. |
---|---|
AbstractList | A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex optimization problem, primal-dual dynamics with projection operation are investigated under optimal conditions. For the nonsmooth convex optimization problem, a framework under the LaSalle's invariance principle from nonsmooth analysis is established, where the asymptotic stability of the primal-dual dynamics at an optimal solution is guaranteed. For the case where inequality and bounded constraints are not involved and the objective function is twice differentiable and strongly convex, the globally exponential convergence of the primal-dual dynamics is established. Finally, two simulations are provided to verify and visualize the theoretical results.A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex optimization problem, primal-dual dynamics with projection operation are investigated under optimal conditions. For the nonsmooth convex optimization problem, a framework under the LaSalle's invariance principle from nonsmooth analysis is established, where the asymptotic stability of the primal-dual dynamics at an optimal solution is guaranteed. For the case where inequality and bounded constraints are not involved and the objective function is twice differentiable and strongly convex, the globally exponential convergence of the primal-dual dynamics is established. Finally, two simulations are provided to verify and visualize the theoretical results. A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex optimization problem, primal–dual dynamics with projection operation are investigated under optimal conditions. For the nonsmooth convex optimization problem, a framework under the LaSalle’s invariance principle from nonsmooth analysis is established, where the asymptotic stability of the primal–dual dynamics at an optimal solution is guaranteed. For the case where inequality and bounded constraints are not involved and the objective function is twice differentiable and strongly convex, the globally exponential convergence of the primal–dual dynamics is established. Finally, two simulations are provided to verify and visualize the theoretical results. |
Author | Zhu, Yanan Yu, Wenwu Wen, Guanghui Chen, Guanrong |
Author_xml | – sequence: 1 givenname: Yanan orcidid: 0000-0001-7980-6282 surname: Zhu fullname: Zhu, Yanan email: zhuxiaoyazhuyanan@163.com organization: School of Mathematics, Southeast University, Nanjing, China – sequence: 2 givenname: Wenwu orcidid: 0000-0003-3755-179X surname: Yu fullname: Yu, Wenwu email: wwyu@seu.edu.cn organization: School of Mathematics, Southeast University, Nanjing, China – sequence: 3 givenname: Guanghui surname: Wen fullname: Wen, Guanghui email: ghwen@seu.edu.cn organization: School of Mathematics, Southeast University, Nanjing, China – sequence: 4 givenname: Guanrong orcidid: 0000-0003-1381-7418 surname: Chen fullname: Chen, Guanrong email: eegchen@cityu.edu.hk organization: Department of Electronic Engineering, City University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30530351$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP6zAQhS0E4v0DEBKKxIZNih3HryW0lwsSAhYgwcpy3YlwlcTFThC9vx7ntrBggTcej74zGp-zhzZb3wJCRwSPCMHq_HH8cjkqMJGjQkqKFdtAuwXhMi8KwTa_ay520GGMc5yOTC0lt9EOxYxiysguen4Ifg62g1n2EFxj6nzSmzqbLFvTOBuzyods4mIX3LQfoLFv08O4NtV3qW68716H7jt8ZPeLzjXun-mcbw_QVmXqCIfrex89Xf15HF_nt_d_b8YXt7mlpepyYHZGi2rKKTdGAXBuiZC0UqVVikNVghJVaQzjwliqjBCCl0xWZQkc8AzTfXS2mrsI_q2H2OnGRQt1bVrwfdQFYYyw5AlJ6OkPdO770KbtdEG5JJQyoRJ1sqb6aQMzvRhsCUv95VkCxAqwwccYoNLWdf__PBhTa4L1EJAeAtJDQHodUFKSH8qv4b9pjlcaBwDfvGSCECbpJ4Y9msk |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_automatica_2023_111203 crossref_primary_10_1016_j_jfranklin_2023_12_030 crossref_primary_10_1109_TCNS_2020_2972590 crossref_primary_10_1109_TCYB_2021_3057426 crossref_primary_10_1109_TSMC_2019_2894862 crossref_primary_10_1016_j_automatica_2024_111863 crossref_primary_10_1109_TAC_2021_3075666 crossref_primary_10_1109_TCSII_2023_3324187 crossref_primary_10_1016_j_neucom_2021_06_097 crossref_primary_10_1016_j_jfranklin_2022_03_046 crossref_primary_10_1109_TII_2022_3146165 crossref_primary_10_1109_TNNLS_2021_3127883 crossref_primary_10_1016_j_chaos_2024_115679 crossref_primary_10_1109_ACCESS_2022_3191909 crossref_primary_10_1109_TCYB_2020_3022240 crossref_primary_10_1109_TCYB_2021_3104044 crossref_primary_10_1109_TCYB_2019_2927725 crossref_primary_10_1016_j_jfranklin_2025_107642 crossref_primary_10_1109_TNSE_2021_3070398 crossref_primary_10_1109_TNNLS_2023_3330017 crossref_primary_10_1016_j_neucom_2022_08_035 crossref_primary_10_1109_TCSI_2022_3167790 crossref_primary_10_1109_TIV_2022_3197951 crossref_primary_10_1109_TCYB_2023_3328716 crossref_primary_10_1109_TNSE_2022_3178107 crossref_primary_10_1016_j_neunet_2021_11_013 crossref_primary_10_1016_j_automatica_2022_110547 crossref_primary_10_1016_j_neunet_2023_02_011 crossref_primary_10_1109_TCYB_2021_3099905 crossref_primary_10_1109_TCYB_2023_3284822 crossref_primary_10_1109_TCYB_2022_3233865 crossref_primary_10_1109_LCSYS_2020_3006822 crossref_primary_10_1109_TSMC_2022_3186019 crossref_primary_10_1109_JAS_2024_124935 crossref_primary_10_1109_TCYB_2020_2990796 crossref_primary_10_1109_TNNLS_2022_3184957 crossref_primary_10_1016_j_neunet_2023_12_011 crossref_primary_10_1109_TCYB_2020_3009110 |
Cites_doi | 10.1137/15M1026924 10.1109/TNNLS.2016.2595489 10.1109/TNNLS.2016.2549566 10.1109/TCYB.2016.2632159 10.1109/TAC.2014.2308612 10.1109/TAC.2011.2167817 10.1109/TNN.2010.2045129 10.1109/TNNLS.2018.2814824 10.1016/j.automatica.2010.08.011 10.1007/s11432-016-9114-y 10.1109/TCYB.2015.2464255 10.1109/TSMCB.2011.2140395 10.1016/j.sysconle.2015.06.006 10.1016/j.automatica.2016.08.007 10.1016/j.neunet.2011.09.001 10.1109/TNN.2011.2104979 10.1109/MCS.2008.919306 10.1016/j.sysconle.2005.04.015 10.1109/TAC.2018.2852602 10.2307/1905259 10.1109/TAC.2010.2041686 10.1109/TCYB.2017.2760908 10.1109/TNNLS.2016.2524619 10.1109/81.995659 10.1109/TAC.2015.2416927 10.1109/TNNLS.2014.2334364 10.1515/9781400841059 10.1109/TAC.2017.2778689 10.1016/j.neunet.2014.03.006 10.1109/TAC.2016.2628807 10.1109/TNNLS.2015.2481006 10.1109/TCSI.2004.830694 10.1109/TAC.2008.2009515 10.1109/TNNLS.2015.2500618 10.1162/089976604322860730 10.1109/TAC.2013.2278132 10.1017/CBO9780511804441 10.1109/TNNLS.2013.2244908 10.1016/j.sysconle.2016.07.009 10.1109/TCSII.2018.2878250 10.1016/j.automatica.2016.07.003 10.1109/TNN.2004.824425 10.1016/j.automatica.2015.03.001 10.1109/TAC.2016.2610945 10.1109/TNN.2004.841779 10.1109/TNN.2007.910736 10.1109/TNN.2011.2109735 10.1016/j.sysconle.2015.10.006 10.1109/TNN.2009.2016340 10.1109/TAC.2016.2616646 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2018.2883095 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 1782 |
ExternalDocumentID | 30530351 10_1109_TCYB_2018_2883095 8571158 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: General Joint Fund of the Equipment Advance Research Program of Ministry of Education grantid: 6141A020223 – fundername: Hong Kong Research Grants Council through GRF grantid: CityU 11234916 – fundername: Jiangsu Provincial Key Laboratory of Networked Collective Intelligence grantid: BM2017002 – fundername: National Ten Thousand Talent Program for Young Top-Notch Talents grantid: W2070082 – fundername: National Natural Science Foundation of China grantid: 61673107; 61673104 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20170079 funderid: 10.13039/501100004608 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-e5cd32fb636aa9ee66c1783f94c996ef4e97f4aa567ac39a7776458f44e6e0d03 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 23:50:07 EDT 2025 Mon Jun 30 06:46:27 EDT 2025 Thu Jan 02 22:59:08 EST 2025 Tue Jul 01 00:53:52 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Wed Aug 27 02:35:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-e5cd32fb636aa9ee66c1783f94c996ef4e97f4aa567ac39a7776458f44e6e0d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1381-7418 0000-0001-7980-6282 0000-0003-3755-179X |
PMID | 30530351 |
PQID | 2368133579 |
PQPubID | 85422 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2018_2883095 proquest_journals_2368133579 proquest_miscellaneous_2155152271 pubmed_primary_30530351 ieee_primary_8571158 crossref_citationtrail_10_1109_TCYB_2018_2883095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 ref14 ref53 ref10 ref17 ref16 ref19 ref18 liu (ref12) 2011; 41 ref51 ref50 bertsekas (ref1) 1999 ref46 ref45 cortés (ref55) 2008; 28 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 zhu (ref30) 2012; 57 ref4 ref3 arrow (ref36) 1958 ref6 ref5 aubin (ref54) 2012; 264 ref40 ref35 ref34 ref37 ref31 ref33 ref32 ref2 ref39 ref38 gao (ref11) 2010; 21 cortés (ref42) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 yu (ref52) 2017 liu (ref13) 2011; 22 |
References_xml | – year: 1999 ident: ref1 publication-title: Nonlinear Programming – ident: ref45 doi: 10.1137/15M1026924 – ident: ref20 doi: 10.1109/TNNLS.2016.2595489 – year: 1958 ident: ref36 publication-title: Studies in Linear and Non-linear Programming – start-page: 1 year: 2018 ident: ref42 article-title: Distributed coordination for nonsmooth convex optimization via saddle-point dynamics publication-title: J Nonlinear Sci – ident: ref43 doi: 10.1109/TNNLS.2016.2549566 – ident: ref24 doi: 10.1109/TCYB.2016.2632159 – ident: ref31 doi: 10.1109/TAC.2014.2308612 – volume: 57 start-page: 151 year: 2012 ident: ref30 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2011.2167817 – volume: 21 start-page: 918 year: 2010 ident: ref11 article-title: A new one-layer neural network for linear and quadratic programming publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2045129 – ident: ref23 doi: 10.1109/TNNLS.2018.2814824 – ident: ref40 doi: 10.1016/j.automatica.2010.08.011 – ident: ref27 doi: 10.1007/s11432-016-9114-y – ident: ref32 doi: 10.1109/TCYB.2015.2464255 – volume: 41 start-page: 1323 year: 2011 ident: ref12 article-title: A one-layer recurrent neural network for constrained nonsmooth optimization publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2011.2140395 – ident: ref41 doi: 10.1016/j.sysconle.2015.06.006 – ident: ref26 doi: 10.1016/j.automatica.2016.08.007 – ident: ref15 doi: 10.1016/j.neunet.2011.09.001 – volume: 22 start-page: 601 year: 2011 ident: ref13 article-title: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2104979 – volume: 28 start-page: 36 year: 2008 ident: ref55 article-title: Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and stability publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2008.919306 – ident: ref53 doi: 10.1016/j.sysconle.2005.04.015 – ident: ref51 doi: 10.1109/TAC.2018.2852602 – ident: ref35 doi: 10.2307/1905259 – ident: ref29 doi: 10.1109/TAC.2010.2041686 – ident: ref49 doi: 10.1109/TCYB.2017.2760908 – ident: ref21 doi: 10.1109/TNNLS.2016.2524619 – ident: ref4 doi: 10.1109/81.995659 – ident: ref47 doi: 10.1109/TAC.2015.2416927 – ident: ref18 doi: 10.1109/TNNLS.2014.2334364 – ident: ref3 doi: 10.1515/9781400841059 – ident: ref46 doi: 10.1109/TAC.2017.2778689 – ident: ref17 doi: 10.1016/j.neunet.2014.03.006 – ident: ref48 doi: 10.1109/TAC.2016.2628807 – ident: ref19 doi: 10.1109/TNNLS.2015.2481006 – ident: ref5 doi: 10.1109/TCSI.2004.830694 – ident: ref28 doi: 10.1109/TAC.2008.2009515 – ident: ref22 doi: 10.1109/TNNLS.2015.2500618 – ident: ref6 doi: 10.1162/089976604322860730 – ident: ref37 doi: 10.1109/TAC.2013.2278132 – ident: ref2 doi: 10.1017/CBO9780511804441 – year: 2017 ident: ref52 publication-title: Distributed Cooperative Control of Multi-Agent Systems – ident: ref16 doi: 10.1109/TNNLS.2013.2244908 – ident: ref33 doi: 10.1016/j.sysconle.2016.07.009 – ident: ref39 doi: 10.1109/TCSII.2018.2878250 – ident: ref25 doi: 10.1016/j.automatica.2016.07.003 – ident: ref8 doi: 10.1109/TNN.2004.824425 – ident: ref38 doi: 10.1016/j.automatica.2015.03.001 – ident: ref50 doi: 10.1109/TAC.2016.2610945 – ident: ref7 doi: 10.1109/TNN.2004.841779 – ident: ref9 doi: 10.1109/TNN.2007.910736 – ident: ref14 doi: 10.1109/TNN.2011.2109735 – ident: ref44 doi: 10.1016/j.sysconle.2015.10.006 – volume: 264 year: 2012 ident: ref54 publication-title: Differential Inclusions Set-Valued Maps and Viability Theory – ident: ref10 doi: 10.1109/TNN.2009.2016340 – ident: ref34 doi: 10.1109/TAC.2016.2616646 |
SSID | ssj0000816898 |
Score | 2.4318507 |
Snippet | A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1776 |
SubjectTerms | Constraints Convergence Convex analysis Convex functions Convexity Cybernetics Distributed convex optimization Dynamic stability Dynamics Heuristic algorithms Indexes Linear programming multiagent networks Multiagent systems nonsmooth analysis Optimization primal–dual dynamics Stability analysis Topology |
Title | Projected Primal-Dual Dynamics for Distributed Constrained Nonsmooth Convex Optimization |
URI | https://ieeexplore.ieee.org/document/8571158 https://www.ncbi.nlm.nih.gov/pubmed/30530351 https://www.proquest.com/docview/2368133579 https://www.proquest.com/docview/2155152271 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PaBegFI-thQUJA6A8DaJYzs-QpeqQmrpoZWWU2Q7kwvtLupuEOLXM-N4I4EAcRsl48TJjJM3HnsewEuFoZDKOaEK1KLSWgmbu1Y41XkC7EHWhjc4n53r06vq41zNt-DtuBcGEePiM5yyGHP57TL0PFV2VCtDAKbehm0K3Ia9WuN8SiSQiNS3JQmCUIVJScwit0eXx5_f8zquesrsugQrduEOebrkPNovf6RIsfJ3tBn_Oif34GzT32GxyZdpv_bT8OO3Uo7_-0D34W6Cn9m7wV_2YAsXD2AvDfBV9ipVoX69D_OLYY4G2-yCK1Jci1lPLWcDg_0qI7CbzbjqLhNmkRIzf0a-CZLPSb5Zkg_w0W_4PftEH6abtOPzIVydfLg8PhWJhkEEWdm1QBVaWXZeS-2cRdQ6FKaWna0CBUvYVWhNVzmntHFBWmeM0ZWqu6pCjXmby0ews1gu8AlkPu-8K0ujvGTcU3gK52TwORrX-TYvJpBvTNGEVKOcu37dxFgltw0bsmFDNsmQE3gzNvk6FOj4l_I-G2FUTO9_AocbezdpCK-aUuqaAnhl7ARejKdp8HFGxS1w2ZMOA05CsIZ6_njwk_HaG_c6-PM9n8JuyaF7XAR0CDvr2x6fEb5Z--fRsX8C-q_zsQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIcFeGGN8dBsQJB4AkS6JYzt5hJWpwFr20EnlKbKdywtbi2iDJv567hw3EggQb1biJE7uHP_O9_EDeC7RpUIaE8sUVZwrJeMyMXVsZGMJsDtRaE5wnkzV-CL_MJfzLXjd58Igog8-wyE3vS-_XrqWt8qOC6kJwBQ34Cat-zLrsrX6HRVPIeHJbzNqxIQrdHBjpkl5PDv5_JYjuYoh8-sSsNiBW6Trgj1pv6xJnmTl73jTrzunuzDZjLgLN_kybNd26H78Vszxf1_pLtwJADR602nMHmzh4h7shSm-il6EOtQv92F-3u3SYB2dc02Ky3jU0pWjjsN-FRHcjUZcd5cps6gTc396xglqT6l9tSQt4KPf8Tr6RL-mq5DzeR8uTt_NTsZxIGKIncjLdYzS1SJrrBLKmBJRKZfqQjRl7shcwibHUje5MVJp40RptNYql0WT56gwqRPxALYXywU-gsgmjTVZpqUVjHxSSwadcDZBbRpbJ-kAko0oKheqlPPQLytvrSRlxYKsWJBVEOQAXvWXfO1KdPyr8z4Loe8Yvv8AjjbyrsIkXlWZUAWZ8FKXA3jWn6bpxz4Vs8BlS30YchKG1TTyh52e9PfeqNfBn5_5FG6PZ5Oz6uz99OMh7GRsyPuQoCPYXn9r8TGhnbV94pX8J9rH9vs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+Primal-Dual+Dynamics+for+Distributed+Constrained+Nonsmooth+Convex+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhu%2C+Yanan&rft.au=Yu%2C+Wenwu&rft.au=Wen%2C+Guanghui&rft.au=Chen%2C+Guanrong&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=50&rft.issue=4&rft.spage=1776&rft.epage=1782&rft_id=info:doi/10.1109%2FTCYB.2018.2883095&rft_id=info%3Apmid%2F30530351&rft.externalDocID=8571158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |