Projected Primal-Dual Dynamics for Distributed Constrained Nonsmooth Convex Optimization

A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex opt...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 4; pp. 1776 - 1782
Main Authors Zhu, Yanan, Yu, Wenwu, Wen, Guanghui, Chen, Guanrong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex optimization problem, primal-dual dynamics with projection operation are investigated under optimal conditions. For the nonsmooth convex optimization problem, a framework under the LaSalle's invariance principle from nonsmooth analysis is established, where the asymptotic stability of the primal-dual dynamics at an optimal solution is guaranteed. For the case where inequality and bounded constraints are not involved and the objective function is twice differentiable and strongly convex, the globally exponential convergence of the primal- dual dynamics is established. Finally, two simulations are provided to verify and visualize the theoretical results.
AbstractList A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex optimization problem, primal-dual dynamics with projection operation are investigated under optimal conditions. For the nonsmooth convex optimization problem, a framework under the LaSalle's invariance principle from nonsmooth analysis is established, where the asymptotic stability of the primal-dual dynamics at an optimal solution is guaranteed. For the case where inequality and bounded constraints are not involved and the objective function is twice differentiable and strongly convex, the globally exponential convergence of the primal-dual dynamics is established. Finally, two simulations are provided to verify and visualize the theoretical results.A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex optimization problem, primal-dual dynamics with projection operation are investigated under optimal conditions. For the nonsmooth convex optimization problem, a framework under the LaSalle's invariance principle from nonsmooth analysis is established, where the asymptotic stability of the primal-dual dynamics at an optimal solution is guaranteed. For the case where inequality and bounded constraints are not involved and the objective function is twice differentiable and strongly convex, the globally exponential convergence of the primal-dual dynamics is established. Finally, two simulations are provided to verify and visualize the theoretical results.
A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints, is studied in this paper for a multiagent network with a fixed and connected communication topology. To collectively solve such a complex optimization problem, primal–dual dynamics with projection operation are investigated under optimal conditions. For the nonsmooth convex optimization problem, a framework under the LaSalle’s invariance principle from nonsmooth analysis is established, where the asymptotic stability of the primal–dual dynamics at an optimal solution is guaranteed. For the case where inequality and bounded constraints are not involved and the objective function is twice differentiable and strongly convex, the globally exponential convergence of the primal–dual dynamics is established. Finally, two simulations are provided to verify and visualize the theoretical results.
Author Zhu, Yanan
Yu, Wenwu
Wen, Guanghui
Chen, Guanrong
Author_xml – sequence: 1
  givenname: Yanan
  orcidid: 0000-0001-7980-6282
  surname: Zhu
  fullname: Zhu, Yanan
  email: zhuxiaoyazhuyanan@163.com
  organization: School of Mathematics, Southeast University, Nanjing, China
– sequence: 2
  givenname: Wenwu
  orcidid: 0000-0003-3755-179X
  surname: Yu
  fullname: Yu, Wenwu
  email: wwyu@seu.edu.cn
  organization: School of Mathematics, Southeast University, Nanjing, China
– sequence: 3
  givenname: Guanghui
  surname: Wen
  fullname: Wen, Guanghui
  email: ghwen@seu.edu.cn
  organization: School of Mathematics, Southeast University, Nanjing, China
– sequence: 4
  givenname: Guanrong
  orcidid: 0000-0003-1381-7418
  surname: Chen
  fullname: Chen, Guanrong
  email: eegchen@cityu.edu.hk
  organization: Department of Electronic Engineering, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30530351$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP6zAQhS0E4v0DEBKKxIZNih3HryW0lwsSAhYgwcpy3YlwlcTFThC9vx7ntrBggTcej74zGp-zhzZb3wJCRwSPCMHq_HH8cjkqMJGjQkqKFdtAuwXhMi8KwTa_ay520GGMc5yOTC0lt9EOxYxiysguen4Ifg62g1n2EFxj6nzSmzqbLFvTOBuzyods4mIX3LQfoLFv08O4NtV3qW68716H7jt8ZPeLzjXun-mcbw_QVmXqCIfrex89Xf15HF_nt_d_b8YXt7mlpepyYHZGi2rKKTdGAXBuiZC0UqVVikNVghJVaQzjwliqjBCCl0xWZQkc8AzTfXS2mrsI_q2H2OnGRQt1bVrwfdQFYYyw5AlJ6OkPdO770KbtdEG5JJQyoRJ1sqb6aQMzvRhsCUv95VkCxAqwwccYoNLWdf__PBhTa4L1EJAeAtJDQHodUFKSH8qv4b9pjlcaBwDfvGSCECbpJ4Y9msk
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_automatica_2023_111203
crossref_primary_10_1016_j_jfranklin_2023_12_030
crossref_primary_10_1109_TCNS_2020_2972590
crossref_primary_10_1109_TCYB_2021_3057426
crossref_primary_10_1109_TSMC_2019_2894862
crossref_primary_10_1016_j_automatica_2024_111863
crossref_primary_10_1109_TAC_2021_3075666
crossref_primary_10_1109_TCSII_2023_3324187
crossref_primary_10_1016_j_neucom_2021_06_097
crossref_primary_10_1016_j_jfranklin_2022_03_046
crossref_primary_10_1109_TII_2022_3146165
crossref_primary_10_1109_TNNLS_2021_3127883
crossref_primary_10_1016_j_chaos_2024_115679
crossref_primary_10_1109_ACCESS_2022_3191909
crossref_primary_10_1109_TCYB_2020_3022240
crossref_primary_10_1109_TCYB_2021_3104044
crossref_primary_10_1109_TCYB_2019_2927725
crossref_primary_10_1016_j_jfranklin_2025_107642
crossref_primary_10_1109_TNSE_2021_3070398
crossref_primary_10_1109_TNNLS_2023_3330017
crossref_primary_10_1016_j_neucom_2022_08_035
crossref_primary_10_1109_TCSI_2022_3167790
crossref_primary_10_1109_TIV_2022_3197951
crossref_primary_10_1109_TCYB_2023_3328716
crossref_primary_10_1109_TNSE_2022_3178107
crossref_primary_10_1016_j_neunet_2021_11_013
crossref_primary_10_1016_j_automatica_2022_110547
crossref_primary_10_1016_j_neunet_2023_02_011
crossref_primary_10_1109_TCYB_2021_3099905
crossref_primary_10_1109_TCYB_2023_3284822
crossref_primary_10_1109_TCYB_2022_3233865
crossref_primary_10_1109_LCSYS_2020_3006822
crossref_primary_10_1109_TSMC_2022_3186019
crossref_primary_10_1109_JAS_2024_124935
crossref_primary_10_1109_TCYB_2020_2990796
crossref_primary_10_1109_TNNLS_2022_3184957
crossref_primary_10_1016_j_neunet_2023_12_011
crossref_primary_10_1109_TCYB_2020_3009110
Cites_doi 10.1137/15M1026924
10.1109/TNNLS.2016.2595489
10.1109/TNNLS.2016.2549566
10.1109/TCYB.2016.2632159
10.1109/TAC.2014.2308612
10.1109/TAC.2011.2167817
10.1109/TNN.2010.2045129
10.1109/TNNLS.2018.2814824
10.1016/j.automatica.2010.08.011
10.1007/s11432-016-9114-y
10.1109/TCYB.2015.2464255
10.1109/TSMCB.2011.2140395
10.1016/j.sysconle.2015.06.006
10.1016/j.automatica.2016.08.007
10.1016/j.neunet.2011.09.001
10.1109/TNN.2011.2104979
10.1109/MCS.2008.919306
10.1016/j.sysconle.2005.04.015
10.1109/TAC.2018.2852602
10.2307/1905259
10.1109/TAC.2010.2041686
10.1109/TCYB.2017.2760908
10.1109/TNNLS.2016.2524619
10.1109/81.995659
10.1109/TAC.2015.2416927
10.1109/TNNLS.2014.2334364
10.1515/9781400841059
10.1109/TAC.2017.2778689
10.1016/j.neunet.2014.03.006
10.1109/TAC.2016.2628807
10.1109/TNNLS.2015.2481006
10.1109/TCSI.2004.830694
10.1109/TAC.2008.2009515
10.1109/TNNLS.2015.2500618
10.1162/089976604322860730
10.1109/TAC.2013.2278132
10.1017/CBO9780511804441
10.1109/TNNLS.2013.2244908
10.1016/j.sysconle.2016.07.009
10.1109/TCSII.2018.2878250
10.1016/j.automatica.2016.07.003
10.1109/TNN.2004.824425
10.1016/j.automatica.2015.03.001
10.1109/TAC.2016.2610945
10.1109/TNN.2004.841779
10.1109/TNN.2007.910736
10.1109/TNN.2011.2109735
10.1016/j.sysconle.2015.10.006
10.1109/TNN.2009.2016340
10.1109/TAC.2016.2616646
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2018.2883095
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1782
ExternalDocumentID 30530351
10_1109_TCYB_2018_2883095
8571158
Genre orig-research
Journal Article
GrantInformation_xml – fundername: General Joint Fund of the Equipment Advance Research Program of Ministry of Education
  grantid: 6141A020223
– fundername: Hong Kong Research Grants Council through GRF
  grantid: CityU 11234916
– fundername: Jiangsu Provincial Key Laboratory of Networked Collective Intelligence
  grantid: BM2017002
– fundername: National Ten Thousand Talent Program for Young Top-Notch Talents
  grantid: W2070082
– fundername: National Natural Science Foundation of China
  grantid: 61673107; 61673104
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170079
  funderid: 10.13039/501100004608
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-e5cd32fb636aa9ee66c1783f94c996ef4e97f4aa567ac39a7776458f44e6e0d03
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Jul 10 23:50:07 EDT 2025
Mon Jun 30 06:46:27 EDT 2025
Thu Jan 02 22:59:08 EST 2025
Tue Jul 01 00:53:52 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Aug 27 02:35:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e5cd32fb636aa9ee66c1783f94c996ef4e97f4aa567ac39a7776458f44e6e0d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1381-7418
0000-0001-7980-6282
0000-0003-3755-179X
PMID 30530351
PQID 2368133579
PQPubID 85422
PageCount 7
ParticipantIDs crossref_primary_10_1109_TCYB_2018_2883095
proquest_journals_2368133579
proquest_miscellaneous_2155152271
pubmed_primary_30530351
ieee_primary_8571158
crossref_citationtrail_10_1109_TCYB_2018_2883095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref53
ref10
ref17
ref16
ref19
ref18
liu (ref12) 2011; 41
ref51
ref50
bertsekas (ref1) 1999
ref46
ref45
cortés (ref55) 2008; 28
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
zhu (ref30) 2012; 57
ref4
ref3
arrow (ref36) 1958
ref6
ref5
aubin (ref54) 2012; 264
ref40
ref35
ref34
ref37
ref31
ref33
ref32
ref2
ref39
ref38
gao (ref11) 2010; 21
cortés (ref42) 2018
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
yu (ref52) 2017
liu (ref13) 2011; 22
References_xml – year: 1999
  ident: ref1
  publication-title: Nonlinear Programming
– ident: ref45
  doi: 10.1137/15M1026924
– ident: ref20
  doi: 10.1109/TNNLS.2016.2595489
– year: 1958
  ident: ref36
  publication-title: Studies in Linear and Non-linear Programming
– start-page: 1
  year: 2018
  ident: ref42
  article-title: Distributed coordination for nonsmooth convex optimization via saddle-point dynamics
  publication-title: J Nonlinear Sci
– ident: ref43
  doi: 10.1109/TNNLS.2016.2549566
– ident: ref24
  doi: 10.1109/TCYB.2016.2632159
– ident: ref31
  doi: 10.1109/TAC.2014.2308612
– volume: 57
  start-page: 151
  year: 2012
  ident: ref30
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2011.2167817
– volume: 21
  start-page: 918
  year: 2010
  ident: ref11
  article-title: A new one-layer neural network for linear and quadratic programming
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2045129
– ident: ref23
  doi: 10.1109/TNNLS.2018.2814824
– ident: ref40
  doi: 10.1016/j.automatica.2010.08.011
– ident: ref27
  doi: 10.1007/s11432-016-9114-y
– ident: ref32
  doi: 10.1109/TCYB.2015.2464255
– volume: 41
  start-page: 1323
  year: 2011
  ident: ref12
  article-title: A one-layer recurrent neural network for constrained nonsmooth optimization
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2011.2140395
– ident: ref41
  doi: 10.1016/j.sysconle.2015.06.006
– ident: ref26
  doi: 10.1016/j.automatica.2016.08.007
– ident: ref15
  doi: 10.1016/j.neunet.2011.09.001
– volume: 22
  start-page: 601
  year: 2011
  ident: ref13
  article-title: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2104979
– volume: 28
  start-page: 36
  year: 2008
  ident: ref55
  article-title: Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and stability
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2008.919306
– ident: ref53
  doi: 10.1016/j.sysconle.2005.04.015
– ident: ref51
  doi: 10.1109/TAC.2018.2852602
– ident: ref35
  doi: 10.2307/1905259
– ident: ref29
  doi: 10.1109/TAC.2010.2041686
– ident: ref49
  doi: 10.1109/TCYB.2017.2760908
– ident: ref21
  doi: 10.1109/TNNLS.2016.2524619
– ident: ref4
  doi: 10.1109/81.995659
– ident: ref47
  doi: 10.1109/TAC.2015.2416927
– ident: ref18
  doi: 10.1109/TNNLS.2014.2334364
– ident: ref3
  doi: 10.1515/9781400841059
– ident: ref46
  doi: 10.1109/TAC.2017.2778689
– ident: ref17
  doi: 10.1016/j.neunet.2014.03.006
– ident: ref48
  doi: 10.1109/TAC.2016.2628807
– ident: ref19
  doi: 10.1109/TNNLS.2015.2481006
– ident: ref5
  doi: 10.1109/TCSI.2004.830694
– ident: ref28
  doi: 10.1109/TAC.2008.2009515
– ident: ref22
  doi: 10.1109/TNNLS.2015.2500618
– ident: ref6
  doi: 10.1162/089976604322860730
– ident: ref37
  doi: 10.1109/TAC.2013.2278132
– ident: ref2
  doi: 10.1017/CBO9780511804441
– year: 2017
  ident: ref52
  publication-title: Distributed Cooperative Control of Multi-Agent Systems
– ident: ref16
  doi: 10.1109/TNNLS.2013.2244908
– ident: ref33
  doi: 10.1016/j.sysconle.2016.07.009
– ident: ref39
  doi: 10.1109/TCSII.2018.2878250
– ident: ref25
  doi: 10.1016/j.automatica.2016.07.003
– ident: ref8
  doi: 10.1109/TNN.2004.824425
– ident: ref38
  doi: 10.1016/j.automatica.2015.03.001
– ident: ref50
  doi: 10.1109/TAC.2016.2610945
– ident: ref7
  doi: 10.1109/TNN.2004.841779
– ident: ref9
  doi: 10.1109/TNN.2007.910736
– ident: ref14
  doi: 10.1109/TNN.2011.2109735
– ident: ref44
  doi: 10.1016/j.sysconle.2015.10.006
– volume: 264
  year: 2012
  ident: ref54
  publication-title: Differential Inclusions Set-Valued Maps and Viability Theory
– ident: ref10
  doi: 10.1109/TNN.2009.2016340
– ident: ref34
  doi: 10.1109/TAC.2016.2616646
SSID ssj0000816898
Score 2.4318507
Snippet A distributed nonsmooth convex optimization problem subject to a general type of constraint, including equality and inequality as well as bounded constraints,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1776
SubjectTerms Constraints
Convergence
Convex analysis
Convex functions
Convexity
Cybernetics
Distributed convex optimization
Dynamic stability
Dynamics
Heuristic algorithms
Indexes
Linear programming
multiagent networks
Multiagent systems
nonsmooth analysis
Optimization
primal–dual dynamics
Stability analysis
Topology
Title Projected Primal-Dual Dynamics for Distributed Constrained Nonsmooth Convex Optimization
URI https://ieeexplore.ieee.org/document/8571158
https://www.ncbi.nlm.nih.gov/pubmed/30530351
https://www.proquest.com/docview/2368133579
https://www.proquest.com/docview/2155152271
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PaBegFI-thQUJA6A8DaJYzs-QpeqQmrpoZWWU2Q7kwvtLupuEOLXM-N4I4EAcRsl48TJjJM3HnsewEuFoZDKOaEK1KLSWgmbu1Y41XkC7EHWhjc4n53r06vq41zNt-DtuBcGEePiM5yyGHP57TL0PFV2VCtDAKbehm0K3Ia9WuN8SiSQiNS3JQmCUIVJScwit0eXx5_f8zquesrsugQrduEOebrkPNovf6RIsfJ3tBn_Oif34GzT32GxyZdpv_bT8OO3Uo7_-0D34W6Cn9m7wV_2YAsXD2AvDfBV9ipVoX69D_OLYY4G2-yCK1Jci1lPLWcDg_0qI7CbzbjqLhNmkRIzf0a-CZLPSb5Zkg_w0W_4PftEH6abtOPzIVydfLg8PhWJhkEEWdm1QBVaWXZeS-2cRdQ6FKaWna0CBUvYVWhNVzmntHFBWmeM0ZWqu6pCjXmby0ews1gu8AlkPu-8K0ujvGTcU3gK52TwORrX-TYvJpBvTNGEVKOcu37dxFgltw0bsmFDNsmQE3gzNvk6FOj4l_I-G2FUTO9_AocbezdpCK-aUuqaAnhl7ARejKdp8HFGxS1w2ZMOA05CsIZ6_njwk_HaG_c6-PM9n8JuyaF7XAR0CDvr2x6fEb5Z--fRsX8C-q_zsQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIcFeGGN8dBsQJB4AkS6JYzt5hJWpwFr20EnlKbKdywtbi2iDJv567hw3EggQb1biJE7uHP_O9_EDeC7RpUIaE8sUVZwrJeMyMXVsZGMJsDtRaE5wnkzV-CL_MJfzLXjd58Igog8-wyE3vS-_XrqWt8qOC6kJwBQ34Cat-zLrsrX6HRVPIeHJbzNqxIQrdHBjpkl5PDv5_JYjuYoh8-sSsNiBW6Trgj1pv6xJnmTl73jTrzunuzDZjLgLN_kybNd26H78Vszxf1_pLtwJADR602nMHmzh4h7shSm-il6EOtQv92F-3u3SYB2dc02Ky3jU0pWjjsN-FRHcjUZcd5cps6gTc396xglqT6l9tSQt4KPf8Tr6RL-mq5DzeR8uTt_NTsZxIGKIncjLdYzS1SJrrBLKmBJRKZfqQjRl7shcwibHUje5MVJp40RptNYql0WT56gwqRPxALYXywU-gsgmjTVZpqUVjHxSSwadcDZBbRpbJ-kAko0oKheqlPPQLytvrSRlxYKsWJBVEOQAXvWXfO1KdPyr8z4Loe8Yvv8AjjbyrsIkXlWZUAWZ8FKXA3jWn6bpxz4Vs8BlS30YchKG1TTyh52e9PfeqNfBn5_5FG6PZ5Oz6uz99OMh7GRsyPuQoCPYXn9r8TGhnbV94pX8J9rH9vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+Primal-Dual+Dynamics+for+Distributed+Constrained+Nonsmooth+Convex+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhu%2C+Yanan&rft.au=Yu%2C+Wenwu&rft.au=Wen%2C+Guanghui&rft.au=Chen%2C+Guanrong&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=50&rft.issue=4&rft.spage=1776&rft.epage=1782&rft_id=info:doi/10.1109%2FTCYB.2018.2883095&rft_id=info%3Apmid%2F30530351&rft.externalDocID=8571158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon