XGBoost Model for Chronic Kidney Disease Diagnosis
Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart s...
Saved in:
Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 17; no. 6; pp. 2131 - 2140 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively. |
---|---|
AbstractList | Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively. Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively. |
Author | Ogunleye, Adeola Wang, Qing-Guo |
Author_xml | – sequence: 1 givenname: Adeola orcidid: 0000-0001-6463-203X surname: Ogunleye fullname: Ogunleye, Adeola email: wangq@uj.ac.za organization: Institute for Intelligent Systems, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park, South Africa – sequence: 2 givenname: Qing-Guo orcidid: 0000-0002-3672-3716 surname: Wang fullname: Wang, Qing-Guo email: ogunleyeadeola7@gmail.com organization: Institute for Intelligent Systems, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park, South Africa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30998478$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoMotlV_gAiy4MXL1kyS3U2Otn6i4kXBW0g3E41sNzXZHvz3bmnrwYOnGYbnfRmeEdltQ4uEHAMdA1B18TKdTMaMghoz1R8q2CFDKIoqV6oUu6tdFHmhSj4go5Q-KWVCUbFPBpwqJUUlh4S93U5CSF32FCw2mQsxm37E0Po6e_C2xe_syic0Cftp3tuQfDoke840CY8284C83ly_TO_yx-fb--nlY15zobocmQNZArUzMxMVs05YBEYVkxJKLG3JJa0pWOEkcMedQFGbgs_AWVlLYfkBOV_3LmL4WmLq9NynGpvGtBiWSTMGoITiSvXo2R_0Myxj23-nmShlVYHgrKdON9RyNkerF9HPTfzWWxs9UK2BOoaUIjpd-850PrRdNL7RQPXKu1551yvveuO9T8Kf5Lb8v8zJOuMR8ZeXpeJFb-QHBquKag |
CODEN | ITCBCY |
CitedBy_id | crossref_primary_10_3390_s23010194 crossref_primary_10_1016_j_heliyon_2023_e19444 crossref_primary_10_3390_s25061842 crossref_primary_10_3390_cancers15153829 crossref_primary_10_3390_s22249580 crossref_primary_10_1002_hsr2_2104 crossref_primary_10_1155_2022_3452348 crossref_primary_10_1016_j_dcn_2024_101341 crossref_primary_10_3390_children10101638 crossref_primary_10_3390_electronics9030522 crossref_primary_10_1364_JOSAB_448047 crossref_primary_10_3389_fonc_2022_1065468 crossref_primary_10_1186_s12920_022_01184_1 crossref_primary_10_1016_j_ccmp_2021_100016 crossref_primary_10_1007_s40620_023_01573_4 crossref_primary_10_1016_j_imu_2021_100690 crossref_primary_10_1016_j_jobe_2024_108725 crossref_primary_10_1049_ipr2_12740 crossref_primary_10_1016_j_enmm_2024_101000 crossref_primary_10_2196_58423 crossref_primary_10_1021_acs_nanolett_4c04385 crossref_primary_10_1002_elps_202200292 crossref_primary_10_1002_jmv_28747 crossref_primary_10_1016_j_csbr_2024_100013 crossref_primary_10_3389_fmed_2023_1285192 crossref_primary_10_3390_info15070394 crossref_primary_10_3389_fcimb_2020_586054 crossref_primary_10_1111_exsy_13300 crossref_primary_10_1186_s12931_022_02055_0 crossref_primary_10_3390_rs16030464 crossref_primary_10_24003_emitter_v11i1_768 crossref_primary_10_1177_10711813241264252 crossref_primary_10_1016_j_eswa_2024_124371 crossref_primary_10_1016_j_jii_2024_100666 crossref_primary_10_1088_1361_6463_ad73e6 crossref_primary_10_2138_am_2022_8805 crossref_primary_10_3390_ijms25084507 crossref_primary_10_1007_s42835_023_01473_4 crossref_primary_10_3390_app15052847 crossref_primary_10_3390_informatics10030055 crossref_primary_10_1007_s42979_025_03706_x crossref_primary_10_1016_j_ecoenv_2025_117945 crossref_primary_10_1016_j_jag_2024_104117 crossref_primary_10_1016_j_comcom_2022_12_010 crossref_primary_10_7759_cureus_32146 crossref_primary_10_1016_j_dibe_2024_100320 crossref_primary_10_1136_jim_2021_002278 crossref_primary_10_1016_j_eswa_2023_119851 crossref_primary_10_3390_fluids7120371 crossref_primary_10_1111_exsy_13310 crossref_primary_10_1016_j_bspc_2022_103876 crossref_primary_10_1007_s12046_021_01573_9 crossref_primary_10_1016_j_ijbiomac_2024_136940 crossref_primary_10_3389_fonc_2022_833680 crossref_primary_10_1002_jnm_2950 crossref_primary_10_1007_s11517_024_03029_8 crossref_primary_10_2174_1573405620666230508104538 crossref_primary_10_3390_jpm13121713 crossref_primary_10_1016_j_jcyt_2024_05_016 crossref_primary_10_1109_TITS_2022_3166669 crossref_primary_10_1016_j_radi_2022_03_011 crossref_primary_10_3390_cancers13194976 crossref_primary_10_1002_mlf2_12125 crossref_primary_10_1016_j_compag_2024_108745 crossref_primary_10_1016_j_physa_2023_129010 crossref_primary_10_3389_fpubh_2021_793801 crossref_primary_10_1109_TSC_2020_3004627 crossref_primary_10_1016_j_compchemeng_2024_108929 crossref_primary_10_1016_j_scs_2022_104028 crossref_primary_10_1097_TP_0000000000004510 crossref_primary_10_3390_genes13050716 crossref_primary_10_1038_s41598_024_67973_z crossref_primary_10_1109_JBHI_2024_3384696 crossref_primary_10_1002_anie_202316766 crossref_primary_10_1007_s42979_024_02700_z crossref_primary_10_1016_j_engappai_2023_107568 crossref_primary_10_1007_s12652_021_03601_2 crossref_primary_10_1089_dia_2023_0532 crossref_primary_10_2147_CMAR_S330591 crossref_primary_10_3390_metabo13121204 crossref_primary_10_1089_dia_2024_0226 crossref_primary_10_3390_inventions7040126 crossref_primary_10_1088_1361_6501_ad8f56 crossref_primary_10_3390_electronics10192443 crossref_primary_10_7232_JKIIE_2021_47_6_504 crossref_primary_10_3390_s23073679 crossref_primary_10_1016_j_ymeth_2024_09_014 crossref_primary_10_1016_j_jtrangeo_2024_103921 crossref_primary_10_25046_aj090306 crossref_primary_10_4018_IJIIT_334557 crossref_primary_10_11603_mie_1996_1960_2023_3_4_14471 crossref_primary_10_1016_j_future_2022_02_005 crossref_primary_10_1093_mnras_stac484 crossref_primary_10_1109_ACCESS_2020_3040650 crossref_primary_10_1007_s00330_020_06958_8 crossref_primary_10_1007_s00595_022_02571_y crossref_primary_10_1080_17538947_2022_2088874 crossref_primary_10_2174_1386207326666230602161939 crossref_primary_10_3390_info15110725 crossref_primary_10_1109_TCOMM_2024_3455243 crossref_primary_10_1038_s41598_020_78060_4 crossref_primary_10_1080_02726351_2022_2135470 crossref_primary_10_1615_IntJMultCompEng_2023050288 crossref_primary_10_1016_j_cherd_2022_09_025 crossref_primary_10_1016_j_compbiomed_2021_104813 crossref_primary_10_2139_ssrn_3983701 crossref_primary_10_3389_fimmu_2023_1078731 crossref_primary_10_3390_electronics11142204 crossref_primary_10_1111_tbed_14548 crossref_primary_10_2196_29226 crossref_primary_10_1002_asna_20240057 crossref_primary_10_3390_biomedinformatics3040062 crossref_primary_10_1007_s41939_024_00542_z crossref_primary_10_1109_ACCESS_2023_3312183 crossref_primary_10_1007_s44174_022_00027_y crossref_primary_10_1155_2021_1004767 crossref_primary_10_3390_ma16155381 crossref_primary_10_1002_pro_5097 crossref_primary_10_1111_jssr_12916 crossref_primary_10_1007_s00330_023_09404_7 crossref_primary_10_3389_fendo_2022_876559 crossref_primary_10_3390_s24196313 crossref_primary_10_1016_j_anaerobe_2022_102628 crossref_primary_10_1038_s41598_023_43943_9 crossref_primary_10_1038_s41598_024_65545_9 crossref_primary_10_1016_j_geoen_2024_213071 crossref_primary_10_1016_j_eswa_2022_117761 crossref_primary_10_1038_s41598_023_28163_5 crossref_primary_10_1038_s41598_024_76502_x crossref_primary_10_1016_j_biosystems_2021_104585 crossref_primary_10_1007_s00330_022_08943_9 crossref_primary_10_1007_s10489_023_05030_4 crossref_primary_10_1515_hsz_2024_0023 crossref_primary_10_3390_en16052405 crossref_primary_10_1007_s40747_021_00340_x crossref_primary_10_2139_ssrn_4117344 crossref_primary_10_1016_j_ress_2022_108622 crossref_primary_10_1097_WNP_0000000000001042 crossref_primary_10_1109_TCBB_2021_3061300 crossref_primary_10_1186_s12967_022_03340_8 crossref_primary_10_3390_pr12010125 crossref_primary_10_1109_ACCESS_2025_3536034 crossref_primary_10_3389_fcvm_2022_920399 crossref_primary_10_1007_s42243_023_01085_2 crossref_primary_10_1016_j_ecolind_2024_112672 crossref_primary_10_1007_s11600_022_00928_y crossref_primary_10_1016_j_isci_2021_103617 crossref_primary_10_3390_math10224173 crossref_primary_10_1007_s00261_024_04667_0 crossref_primary_10_1016_j_fraope_2023_100069 crossref_primary_10_1007_s10614_024_10703_4 crossref_primary_10_3390_healthcare10010149 crossref_primary_10_2196_29806 crossref_primary_10_1038_s41591_023_02482_6 crossref_primary_10_1093_bib_bbac555 crossref_primary_10_3389_fnins_2023_1287053 crossref_primary_10_1016_j_multra_2024_100135 crossref_primary_10_1016_j_orp_2023_100292 crossref_primary_10_1080_0144929X_2023_2260894 crossref_primary_10_2196_38053 crossref_primary_10_3390_s22093510 crossref_primary_10_1016_j_oregeorev_2024_106107 crossref_primary_10_1145_3580800 crossref_primary_10_3390_aerospace10070639 crossref_primary_10_1016_j_matdes_2022_110735 crossref_primary_10_3390_s22239428 crossref_primary_10_3389_fphys_2025_1542240 crossref_primary_10_1016_j_heliyon_2024_e37182 crossref_primary_10_1097_JCMA_0000000000001066 crossref_primary_10_4236_ojs_2024_143011 crossref_primary_10_1007_s42485_024_00131_1 crossref_primary_10_1016_j_compeleceng_2024_109644 crossref_primary_10_1093_nar_gkab1133 crossref_primary_10_1038_s41598_023_30381_w crossref_primary_10_3934_mbe_2022166 crossref_primary_10_1016_j_scitotenv_2022_159798 crossref_primary_10_1080_1062936X_2024_2440903 crossref_primary_10_1038_s43016_022_00587_8 crossref_primary_10_1109_ACCESS_2021_3109168 crossref_primary_10_1111_jep_13324 crossref_primary_10_3390_app13042698 crossref_primary_10_1007_s10614_024_10688_0 crossref_primary_10_1016_j_enbenv_2023_08_001 crossref_primary_10_1016_j_future_2024_06_053 crossref_primary_10_1016_j_eswa_2024_123696 crossref_primary_10_1007_s42979_023_01835_9 crossref_primary_10_1186_s12913_025_12552_9 crossref_primary_10_12688_wellcomeopenres_19599_1 crossref_primary_10_3390_s21124187 crossref_primary_10_1007_s10489_023_04846_4 crossref_primary_10_32604_csse_2023_036552 crossref_primary_10_1016_j_jpha_2025_101263 crossref_primary_10_1002_cpe_7182 crossref_primary_10_1016_j_bspc_2023_105368 crossref_primary_10_1016_j_surg_2024_03_051 crossref_primary_10_3934_DSFE_2023021 crossref_primary_10_1002_ange_202316766 crossref_primary_10_1021_acs_cgd_4c01327 crossref_primary_10_19127_mbsjohs_1142542 crossref_primary_10_1109_JBHI_2022_3219213 crossref_primary_10_1109_ACCESS_2023_3284678 crossref_primary_10_1109_ACCESS_2022_3210347 crossref_primary_10_1016_j_petrol_2022_110517 crossref_primary_10_1007_s10238_022_00858_5 crossref_primary_10_32604_iasc_2023_037823 crossref_primary_10_1016_j_ins_2023_119480 crossref_primary_10_3389_fimmu_2021_762120 crossref_primary_10_54097_hset_v49i_8533 crossref_primary_10_1002_apj_2921 crossref_primary_10_1016_j_rineng_2024_102218 crossref_primary_10_1016_j_jaacop_2024_11_003 crossref_primary_10_1142_S1758825124500509 crossref_primary_10_1063_5_0228503 crossref_primary_10_1007_s10439_024_03470_8 crossref_primary_10_1088_1752_7163_ac4916 crossref_primary_10_1186_s13040_024_00399_5 crossref_primary_10_32604_cmc_2023_034417 crossref_primary_10_3389_fimmu_2022_797640 crossref_primary_10_1016_j_aap_2024_107792 crossref_primary_10_1016_j_bspc_2022_104316 crossref_primary_10_1089_neur_2020_0009 crossref_primary_10_3390_math12142231 crossref_primary_10_1007_s00167_020_06418_2 crossref_primary_10_1016_j_mtcomm_2023_106545 crossref_primary_10_3390_math10152772 crossref_primary_10_1016_j_ymeth_2024_07_001 crossref_primary_10_1080_02664763_2024_2315451 crossref_primary_10_1016_j_compbiomed_2022_106188 crossref_primary_10_1016_j_eswa_2023_122778 crossref_primary_10_1109_TCE_2024_3371440 crossref_primary_10_3390_s24113564 crossref_primary_10_1007_s11042_023_15188_1 crossref_primary_10_1016_j_compchemeng_2024_108747 crossref_primary_10_1007_s00595_023_02696_8 crossref_primary_10_1038_s41598_021_99628_8 crossref_primary_10_1016_j_geomorph_2022_108405 crossref_primary_10_1371_journal_pone_0312915 crossref_primary_10_1007_s11042_024_18404_8 crossref_primary_10_1177_09287329251316447 crossref_primary_10_3390_jcm12134375 crossref_primary_10_1038_s41598_021_87171_5 crossref_primary_10_1016_j_bspc_2022_104451 crossref_primary_10_1111_iwj_14815 crossref_primary_10_1016_j_jag_2023_103383 crossref_primary_10_1096_fj_202300245R crossref_primary_10_1016_j_compbiomed_2024_108722 crossref_primary_10_1016_j_atmosres_2023_106961 crossref_primary_10_1016_j_jacasi_2024_09_010 crossref_primary_10_1111_iwj_13723 crossref_primary_10_56977_jicce_2024_22_4_310 crossref_primary_10_1021_acs_jcim_3c00999 crossref_primary_10_31590_ejosat_743652 crossref_primary_10_1208_s12249_024_02973_w crossref_primary_10_1016_j_labinv_2023_100320 crossref_primary_10_3389_fdata_2024_1406365 crossref_primary_10_3390_jpm14030316 crossref_primary_10_1016_j_foodchem_2024_141053 crossref_primary_10_1016_j_ins_2021_04_063 crossref_primary_10_1016_j_jtrangeo_2023_103594 crossref_primary_10_3390_drones7110650 crossref_primary_10_3390_pr12091788 crossref_primary_10_1111_ffe_13997 crossref_primary_10_1109_TCC_2022_3142009 crossref_primary_10_32604_cmc_2023_046424 crossref_primary_10_1109_ACCESS_2025_3527151 crossref_primary_10_1111_tgis_12992 crossref_primary_10_3904_kjim_2020_020 crossref_primary_10_1016_j_jocd_2022_06_002 crossref_primary_10_1186_s13619_022_00143_6 crossref_primary_10_3390_diagnostics12102538 crossref_primary_10_1109_JIOT_2023_3303429 crossref_primary_10_3389_fimmu_2023_1267755 crossref_primary_10_1016_j_compag_2022_107338 crossref_primary_10_1109_LGRS_2021_3091700 crossref_primary_10_1038_s41598_024_78225_5 crossref_primary_10_1016_j_epsr_2023_109427 crossref_primary_10_1109_ACCESS_2024_3351188 crossref_primary_10_1007_s11042_024_19637_3 crossref_primary_10_1016_j_cageo_2022_105242 crossref_primary_10_1038_s41598_021_97218_2 crossref_primary_10_1111_exsy_13048 crossref_primary_10_2147_CEOR_S456968 crossref_primary_10_34133_2021_9819851 crossref_primary_10_37989_gumussagbil_1366530 crossref_primary_10_1007_s11227_024_06166_x crossref_primary_10_1016_j_mlwa_2023_100516 crossref_primary_10_3389_fcimb_2023_1289124 crossref_primary_10_3390_en17102330 crossref_primary_10_1016_j_ces_2024_120513 crossref_primary_10_1021_acsomega_2c07609 crossref_primary_10_1016_j_engappai_2024_109531 crossref_primary_10_1016_j_measurement_2025_116762 crossref_primary_10_1038_s41467_024_48618_1 crossref_primary_10_1016_j_ecolind_2024_111715 crossref_primary_10_1016_j_osnem_2023_100274 crossref_primary_10_1109_TPWRS_2023_3289400 crossref_primary_10_3390_land14030564 crossref_primary_10_3934_mbe_2023613 crossref_primary_10_3389_fonc_2023_1207175 crossref_primary_10_2147_IJGM_S365725 crossref_primary_10_1016_j_envsoft_2024_106194 crossref_primary_10_2147_NSS_S467111 crossref_primary_10_1109_JTEHM_2023_3234207 crossref_primary_10_1177_03091333221134192 crossref_primary_10_3389_fdgth_2024_1506071 crossref_primary_10_1016_j_specom_2023_01_005 crossref_primary_10_1016_j_energy_2025_134859 crossref_primary_10_1080_08839514_2022_2074129 crossref_primary_10_1111_jcmm_18156 crossref_primary_10_3390_pathogens13080687 crossref_primary_10_1016_j_bspc_2024_106653 crossref_primary_10_1016_j_clineuro_2024_108209 crossref_primary_10_3390_electronics12010015 crossref_primary_10_1016_j_compbiomed_2022_106432 crossref_primary_10_1016_j_heliyon_2023_e14518 crossref_primary_10_1038_s41598_020_75473_z crossref_primary_10_3389_fneur_2022_791547 crossref_primary_10_1177_21925682211019361 crossref_primary_10_1155_2021_3514821 crossref_primary_10_2174_1574893617666220524123825 crossref_primary_10_3390_en15165780 crossref_primary_10_1038_s41598_024_53459_5 crossref_primary_10_1371_journal_pwat_0000259 crossref_primary_10_1016_j_eclinm_2024_102617 crossref_primary_10_2139_ssrn_4017219 crossref_primary_10_3390_healthcare10091624 crossref_primary_10_1007_s13753_023_00465_2 crossref_primary_10_1016_j_ymeth_2024_10_012 crossref_primary_10_1007_s43762_023_00077_y crossref_primary_10_3390_ijms21197271 crossref_primary_10_3389_fphy_2024_1476618 crossref_primary_10_1109_TSE_2024_3350019 crossref_primary_10_3389_fmars_2023_1065123 crossref_primary_10_3390_healthcare10020371 crossref_primary_10_1109_ACCESS_2021_3100408 crossref_primary_10_1038_s41598_022_12574_x crossref_primary_10_1142_S2047684123500367 crossref_primary_10_3390_genes15060676 crossref_primary_10_1007_s44230_023_00020_8 crossref_primary_10_1016_j_apt_2021_09_020 crossref_primary_10_1007_s10916_025_02141_y crossref_primary_10_3233_JIFS_213022 crossref_primary_10_1016_j_bspc_2024_106997 crossref_primary_10_1016_j_engappai_2021_104604 crossref_primary_10_3389_fmed_2022_930541 crossref_primary_10_1016_j_compbiomed_2023_106619 crossref_primary_10_1161_JAHA_120_017316 crossref_primary_10_1021_acs_jpca_4c00936 crossref_primary_10_1016_j_csbj_2025_01_003 crossref_primary_10_1016_j_comnet_2023_109868 crossref_primary_10_1002_jnm_3168 crossref_primary_10_9728_dcs_2021_22_7_1115 crossref_primary_10_2139_ssrn_4118862 crossref_primary_10_1021_acs_jcim_1c00175 crossref_primary_10_3390_biomimetics9070440 crossref_primary_10_1007_s00034_021_01889_1 crossref_primary_10_1371_journal_pone_0262523 crossref_primary_10_3390_mi14091673 crossref_primary_10_3390_app13137355 crossref_primary_10_1016_j_heliyon_2024_e29181 crossref_primary_10_1177_19322968241286907 crossref_primary_10_3390_en15165981 crossref_primary_10_31491_APT_2021_09_064 crossref_primary_10_1186_s12889_024_17929_9 crossref_primary_10_3389_fped_2022_951439 crossref_primary_10_3389_fonc_2022_785684 crossref_primary_10_1093_bioinformatics_btad577 crossref_primary_10_1016_j_eswa_2022_118310 crossref_primary_10_3389_fonc_2022_973307 crossref_primary_10_3390_ijerph182111347 crossref_primary_10_1109_TFUZZ_2024_3482282 crossref_primary_10_11648_j_ajai_20240802_11 crossref_primary_10_3389_frai_2023_1339988 crossref_primary_10_3390_cancers14153742 crossref_primary_10_3390_biomedinformatics5010001 crossref_primary_10_1016_j_ifacol_2023_10_925 crossref_primary_10_1186_s12911_022_01951_1 crossref_primary_10_1007_s40846_021_00642_y crossref_primary_10_3389_fbioe_2021_649221 |
Cites_doi | 10.1109/AEECT.2013.6716440 10.1109/EMBC.2016.7591186 10.1007/s10994-006-6226-1 10.1109/MIPRO.2015.7160458 10.1109/TFUZZ.2015.2501439 10.1109/ICCCI.2016.7479940 10.1109/TBME.2007.893500 10.1016/S1386-5056(01)00160-5 10.1109/GHTC.2015.7344002 10.1016/j.amc.2006.08.020 10.1109/CCAA.2016.7813730 10.22490/24629448.1712 10.1109/IEMBS.2007.4353151 10.1109/ICACCI.2014.6968460 10.1109/SCES.2014.6880051 10.1145/2939672.2939785 10.1109/ICMLC.2016.7873005 10.1109/JSEN.2011.2129506 10.1109/CITSM.2014.7042180 10.1109/TCBB.2016.2607717 10.1109/ICECC.2011.6066708 10.1109/CCA.2009.5280945 10.1109/TSMCB.2010.2048899 10.7196/SAMJ.9535 10.1109/ISBI.2018.8363854 10.1109/ICABME.2015.7323241 10.1007/978-3-319-28437-8 10.1109/ICHI.2016.36 10.1109/second.2006.1629329 10.1046/j.1523-1755.63.s83.25.x |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TCBB.2019.2911071 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-9964 |
EndPage | 2140 |
ExternalDocumentID | 30998478 10_1109_TCBB_2019_2911071 8693581 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ernest Oppenheimer Memorial Trust; Oppenheimer Memorial Trust funderid: 10.13039/501100009978 – fundername: National Research Foundation of South Africa grantid: 113340 |
GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-e2f18610dbab472df4de120928816e6d6380c01d4f813f3f4e4ca53b1fd8c84d3 |
IEDL.DBID | RIE |
ISSN | 1545-5963 1557-9964 |
IngestDate | Thu Jul 10 18:15:13 EDT 2025 Sun Jun 29 12:29:33 EDT 2025 Mon Jul 21 06:05:29 EDT 2025 Thu Apr 24 22:55:42 EDT 2025 Tue Jul 01 00:47:51 EDT 2025 Wed Aug 27 02:28:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-e2f18610dbab472df4de120928816e6d6380c01d4f813f3f4e4ca53b1fd8c84d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3672-3716 0000-0001-6463-203X |
PMID | 30998478 |
PQID | 2468771432 |
PQPubID | 85499 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2468771432 proquest_miscellaneous_2211949399 crossref_citationtrail_10_1109_TCBB_2019_2911071 crossref_primary_10_1109_TCBB_2019_2911071 ieee_primary_8693581 pubmed_primary_30998478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Nov.-Dec.-1 2020-11-1 2020 Nov-Dec 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-Dec.-1 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
PublicationTitleAbbrev | TCBB |
PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref31 sharma (ref38) 2018 ref30 birkett (ref37) 2017 ref11 ref10 herrmannsen (ref26) 2015 ref2 ref17 ref16 naicker (ref25) 2003; 63 ref19 ref18 go (ref32) 2013; 10 lee (ref1) 2011; 41 pacheco (ref14) 2015; 13 ref24 palace (ref23) 2016; 36 ref20 (ref8) 2013; 2 ref21 pedregosa (ref33) 2011; 12 ref28 ref27 ref29 pippa (ref22) 2015 ref7 xuan (ref40) 2018 ref9 ref4 ref3 ref6 ref5 azeez (ref39) 2018 |
References_xml | – ident: ref27 doi: 10.1109/AEECT.2013.6716440 – ident: ref6 doi: 10.1109/EMBC.2016.7591186 – start-page: 1 year: 2015 ident: ref22 article-title: Chronic kidney disease on the rise in SA publication-title: Health and Life – ident: ref34 doi: 10.1007/s10994-006-6226-1 – ident: ref35 doi: 10.1109/MIPRO.2015.7160458 – ident: ref12 doi: 10.1109/TFUZZ.2015.2501439 – ident: ref5 doi: 10.1109/ICCCI.2016.7479940 – start-page: 1 year: 2015 ident: ref26 article-title: Thousands may die without life-saving dialysis publication-title: HealthDay News – ident: ref11 doi: 10.1109/TBME.2007.893500 – ident: ref16 doi: 10.1016/S1386-5056(01)00160-5 – ident: ref2 doi: 10.1109/GHTC.2015.7344002 – ident: ref21 doi: 10.1016/j.amc.2006.08.020 – ident: ref31 doi: 10.1109/CCAA.2016.7813730 – volume: 13 start-page: 7 year: 2015 ident: ref14 article-title: A Web-based fuzzy inference system based tool for cardiovascular disease risk assessment publication-title: NOVA doi: 10.22490/24629448.1712 – ident: ref20 doi: 10.1109/IEMBS.2007.4353151 – ident: ref13 doi: 10.1109/ICACCI.2014.6968460 – ident: ref17 doi: 10.1109/SCES.2014.6880051 – ident: ref36 doi: 10.1145/2939672.2939785 – ident: ref15 doi: 10.1109/ICMLC.2016.7873005 – ident: ref3 doi: 10.1109/JSEN.2011.2129506 – ident: ref19 doi: 10.1109/CITSM.2014.7042180 – ident: ref28 doi: 10.1109/TCBB.2016.2607717 – ident: ref7 doi: 10.1109/ICECC.2011.6066708 – year: 2017 ident: ref37 article-title: How to deal with outliers in your data – ident: ref4 doi: 10.1109/CCA.2009.5280945 – volume: 41 start-page: 139 year: 2011 ident: ref1 article-title: A fuzzy expert system for diabetes decision support application publication-title: IEEE Trans Syst Man Cybern B Cybernetics doi: 10.1109/TSMCB.2010.2048899 – ident: ref24 doi: 10.7196/SAMJ.9535 – volume: 36 start-page: 3 year: 2016 ident: ref23 article-title: Advances in chronic kidney disease publication-title: Int J Molecular Sci – ident: ref30 doi: 10.1109/ISBI.2018.8363854 – ident: ref18 doi: 10.1109/ICABME.2015.7323241 – start-page: 1 year: 2018 ident: ref40 article-title: Multi-view generative adversarial network and its application in pearl classification publication-title: IEEE Trans Ind Electronics – start-page: 805 year: 2018 ident: ref39 article-title: Enhanced XGBoost-based automatic diagnosis system for chronic kidney disease publication-title: Proc 14th IEEE Int Conf Control Autom – volume: 10 start-page: 39 year: 2013 ident: ref32 article-title: Application of the recursive feature elimination and the relaxed linear separability feature selection algorithms to gene expression data analysis publication-title: Advances Comput Sci Res Appl – year: 2018 ident: ref38 article-title: Ways to detect and remove the outliers – ident: ref9 doi: 10.1007/978-3-319-28437-8 – ident: ref29 doi: 10.1109/ICHI.2016.36 – ident: ref10 doi: 10.1109/second.2006.1629329 – volume: 12 start-page: 2825 year: 2011 ident: ref33 article-title: Scikit-learn: Machine learning in python publication-title: J Mach Learn Res – volume: 2 start-page: 1 year: 2013 ident: ref8 article-title: Hybrid intelligent system for the diagnosis of typhoid fever publication-title: Journal of Computer Engineering and Information Technology – volume: 63 start-page: 119 year: 2003 ident: ref25 article-title: End-stage renal disease in sub-saharan and South Africa publication-title: Kidney International Supplements doi: 10.1046/j.1523-1755.63.s83.25.x |
SSID | ssj0024904 |
Score | 2.6783729 |
Snippet | Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2131 |
SubjectTerms | Accuracy Algorithms Artificial intelligence chronic kidney disease clinical decision support system Computational modeling Decision support systems Diagnosis Diseases extreme gradient boosting Feature extraction Feature selection Kidney Kidney diseases Kidneys Medical diagnosis Sensitivity Sensitivity analysis World population |
Title | XGBoost Model for Chronic Kidney Disease Diagnosis |
URI | https://ieeexplore.ieee.org/document/8693581 https://www.ncbi.nlm.nih.gov/pubmed/30998478 https://www.proquest.com/docview/2468771432 https://www.proquest.com/docview/2211949399 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC4AKU8AgUFiRMi29ieJM6x21IqEJxaaW9RbI-lqlWC2Oyh_Ho8TjaIChCnRMrk5RnH32QeH8Db4KzVnkhlKGSZoXFV1mqtMuWMKaQTZWVjguzX8vwSP62K1Q68n2thiCgmn9GCd2Ms3_V2w7_KjnQZ23Xtwm5w3MZarV999epIFciIICuCVU0RTJHXRxcnyyUncdULWbO7w-wwKiCj8GHWvy1HkV_l71AzLjlnD-HL9mHHTJPrxWYwC_vjTh_H_32bR_Bgwp7p8Wgs-7BD3WO4N7JR3h6AXH1c9v16SJkf7SYNaDadWuemn69cR7fp6RjNCduYn3e1fgKXZx8uTs6ziVIhswrrISPphQ6IyZnWYCWdR0dcPSu1FiWVLszG3ObCoddCeeWR0LaFMsI7bTU69RT2ur6j55Ci915gRTkVEqs2iDlEa3TecrGvxATy7cg2duo3zrQXN030O_K6Yb00rJdm0ksC7-ZTvo3NNv4lfMBjOgtOw5nA4VZ9zTQd143EUlfM9C4TeDMfDhOJoyNtR_0myHCvO6wDYEvg2aj2-dpba3nx53u-hPuS3fBYongIe8P3Db0KWGUwr6OR_gSP19_k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61RahcKFAKoQWCxKki29ieJM6RLZQtfZy20t6i2B5LFVWC2Oyh_HpsJ5sKRBGnRMrk5RnH32QeH8B756yVlkgkyHieoDJFUkspEmGUyrhheaFDguxlPrvCr4tssQEfxloYIgrJZzTxuyGWb1q98r_KjmQe2nVtwgO37mesr9a666xXBrJAjwmSzNnVEMNkaXk0P55OfRpXOeGld3g8P4xw2Mh9muVvC1JgWLkfbIZF52QHLtaP2-eafJusOjXRP__o5Pi_7_MEHg_oM_7Ym8tT2KDmGTzs-Shvd4EvvkzbdtnFniHtJnZ4Nh6a58Zn16ah2_hTH89x25Chd718Dlcnn-fHs2QgVUi0wLJLiFsmHWYyqlZYcGPRkK-f5VKynHLj5mOqU2bQSiassEio60woZo3UEo3Yg62mbeglxGitZVhQShnHonZiBlErmda-3JdjBOl6ZCs9dBz3xBc3VfA80rLyeqm8XqpBLxEcjqd879tt_Et414_pKDgMZwQHa_VVw4RcVhxzWXiudx7Bu_Gwm0o-PlI31K6cjO92h6WDbBG86NU-XnttLa_-fs-3sD2bX5xX56eXZ_vwiHunPBQsHsBW92NFrx1y6dSbYLC_AGyg4y0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XGBoost+Model+for+Chronic+Kidney+Disease+Diagnosis&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Ogunleye%2C+Adeola&rft.au=Wang%2C+Qing-Guo&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=1545-5963&rft.volume=17&rft.issue=6&rft.spage=2131&rft.epage=2140&rft_id=info:doi/10.1109%2FTCBB.2019.2911071&rft_id=info%3Apmid%2F30998478&rft.externalDocID=8693581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |