XGBoost Model for Chronic Kidney Disease Diagnosis

Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart s...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 17; no. 6; pp. 2131 - 2140
Main Authors Ogunleye, Adeola, Wang, Qing-Guo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.
AbstractList Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.
Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.
Author Ogunleye, Adeola
Wang, Qing-Guo
Author_xml – sequence: 1
  givenname: Adeola
  orcidid: 0000-0001-6463-203X
  surname: Ogunleye
  fullname: Ogunleye, Adeola
  email: wangq@uj.ac.za
  organization: Institute for Intelligent Systems, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park, South Africa
– sequence: 2
  givenname: Qing-Guo
  orcidid: 0000-0002-3672-3716
  surname: Wang
  fullname: Wang, Qing-Guo
  email: ogunleyeadeola7@gmail.com
  organization: Institute for Intelligent Systems, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park, South Africa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30998478$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoMotlV_gAiy4MXL1kyS3U2Otn6i4kXBW0g3E41sNzXZHvz3bmnrwYOnGYbnfRmeEdltQ4uEHAMdA1B18TKdTMaMghoz1R8q2CFDKIoqV6oUu6tdFHmhSj4go5Q-KWVCUbFPBpwqJUUlh4S93U5CSF32FCw2mQsxm37E0Po6e_C2xe_syic0Cftp3tuQfDoke840CY8284C83ly_TO_yx-fb--nlY15zobocmQNZArUzMxMVs05YBEYVkxJKLG3JJa0pWOEkcMedQFGbgs_AWVlLYfkBOV_3LmL4WmLq9NynGpvGtBiWSTMGoITiSvXo2R_0Myxj23-nmShlVYHgrKdON9RyNkerF9HPTfzWWxs9UK2BOoaUIjpd-850PrRdNL7RQPXKu1551yvveuO9T8Kf5Lb8v8zJOuMR8ZeXpeJFb-QHBquKag
CODEN ITCBCY
CitedBy_id crossref_primary_10_3390_s23010194
crossref_primary_10_1016_j_heliyon_2023_e19444
crossref_primary_10_3390_s25061842
crossref_primary_10_3390_cancers15153829
crossref_primary_10_3390_s22249580
crossref_primary_10_1002_hsr2_2104
crossref_primary_10_1155_2022_3452348
crossref_primary_10_1016_j_dcn_2024_101341
crossref_primary_10_3390_children10101638
crossref_primary_10_3390_electronics9030522
crossref_primary_10_1364_JOSAB_448047
crossref_primary_10_3389_fonc_2022_1065468
crossref_primary_10_1186_s12920_022_01184_1
crossref_primary_10_1016_j_ccmp_2021_100016
crossref_primary_10_1007_s40620_023_01573_4
crossref_primary_10_1016_j_imu_2021_100690
crossref_primary_10_1016_j_jobe_2024_108725
crossref_primary_10_1049_ipr2_12740
crossref_primary_10_1016_j_enmm_2024_101000
crossref_primary_10_2196_58423
crossref_primary_10_1021_acs_nanolett_4c04385
crossref_primary_10_1002_elps_202200292
crossref_primary_10_1002_jmv_28747
crossref_primary_10_1016_j_csbr_2024_100013
crossref_primary_10_3389_fmed_2023_1285192
crossref_primary_10_3390_info15070394
crossref_primary_10_3389_fcimb_2020_586054
crossref_primary_10_1111_exsy_13300
crossref_primary_10_1186_s12931_022_02055_0
crossref_primary_10_3390_rs16030464
crossref_primary_10_24003_emitter_v11i1_768
crossref_primary_10_1177_10711813241264252
crossref_primary_10_1016_j_eswa_2024_124371
crossref_primary_10_1016_j_jii_2024_100666
crossref_primary_10_1088_1361_6463_ad73e6
crossref_primary_10_2138_am_2022_8805
crossref_primary_10_3390_ijms25084507
crossref_primary_10_1007_s42835_023_01473_4
crossref_primary_10_3390_app15052847
crossref_primary_10_3390_informatics10030055
crossref_primary_10_1007_s42979_025_03706_x
crossref_primary_10_1016_j_ecoenv_2025_117945
crossref_primary_10_1016_j_jag_2024_104117
crossref_primary_10_1016_j_comcom_2022_12_010
crossref_primary_10_7759_cureus_32146
crossref_primary_10_1016_j_dibe_2024_100320
crossref_primary_10_1136_jim_2021_002278
crossref_primary_10_1016_j_eswa_2023_119851
crossref_primary_10_3390_fluids7120371
crossref_primary_10_1111_exsy_13310
crossref_primary_10_1016_j_bspc_2022_103876
crossref_primary_10_1007_s12046_021_01573_9
crossref_primary_10_1016_j_ijbiomac_2024_136940
crossref_primary_10_3389_fonc_2022_833680
crossref_primary_10_1002_jnm_2950
crossref_primary_10_1007_s11517_024_03029_8
crossref_primary_10_2174_1573405620666230508104538
crossref_primary_10_3390_jpm13121713
crossref_primary_10_1016_j_jcyt_2024_05_016
crossref_primary_10_1109_TITS_2022_3166669
crossref_primary_10_1016_j_radi_2022_03_011
crossref_primary_10_3390_cancers13194976
crossref_primary_10_1002_mlf2_12125
crossref_primary_10_1016_j_compag_2024_108745
crossref_primary_10_1016_j_physa_2023_129010
crossref_primary_10_3389_fpubh_2021_793801
crossref_primary_10_1109_TSC_2020_3004627
crossref_primary_10_1016_j_compchemeng_2024_108929
crossref_primary_10_1016_j_scs_2022_104028
crossref_primary_10_1097_TP_0000000000004510
crossref_primary_10_3390_genes13050716
crossref_primary_10_1038_s41598_024_67973_z
crossref_primary_10_1109_JBHI_2024_3384696
crossref_primary_10_1002_anie_202316766
crossref_primary_10_1007_s42979_024_02700_z
crossref_primary_10_1016_j_engappai_2023_107568
crossref_primary_10_1007_s12652_021_03601_2
crossref_primary_10_1089_dia_2023_0532
crossref_primary_10_2147_CMAR_S330591
crossref_primary_10_3390_metabo13121204
crossref_primary_10_1089_dia_2024_0226
crossref_primary_10_3390_inventions7040126
crossref_primary_10_1088_1361_6501_ad8f56
crossref_primary_10_3390_electronics10192443
crossref_primary_10_7232_JKIIE_2021_47_6_504
crossref_primary_10_3390_s23073679
crossref_primary_10_1016_j_ymeth_2024_09_014
crossref_primary_10_1016_j_jtrangeo_2024_103921
crossref_primary_10_25046_aj090306
crossref_primary_10_4018_IJIIT_334557
crossref_primary_10_11603_mie_1996_1960_2023_3_4_14471
crossref_primary_10_1016_j_future_2022_02_005
crossref_primary_10_1093_mnras_stac484
crossref_primary_10_1109_ACCESS_2020_3040650
crossref_primary_10_1007_s00330_020_06958_8
crossref_primary_10_1007_s00595_022_02571_y
crossref_primary_10_1080_17538947_2022_2088874
crossref_primary_10_2174_1386207326666230602161939
crossref_primary_10_3390_info15110725
crossref_primary_10_1109_TCOMM_2024_3455243
crossref_primary_10_1038_s41598_020_78060_4
crossref_primary_10_1080_02726351_2022_2135470
crossref_primary_10_1615_IntJMultCompEng_2023050288
crossref_primary_10_1016_j_cherd_2022_09_025
crossref_primary_10_1016_j_compbiomed_2021_104813
crossref_primary_10_2139_ssrn_3983701
crossref_primary_10_3389_fimmu_2023_1078731
crossref_primary_10_3390_electronics11142204
crossref_primary_10_1111_tbed_14548
crossref_primary_10_2196_29226
crossref_primary_10_1002_asna_20240057
crossref_primary_10_3390_biomedinformatics3040062
crossref_primary_10_1007_s41939_024_00542_z
crossref_primary_10_1109_ACCESS_2023_3312183
crossref_primary_10_1007_s44174_022_00027_y
crossref_primary_10_1155_2021_1004767
crossref_primary_10_3390_ma16155381
crossref_primary_10_1002_pro_5097
crossref_primary_10_1111_jssr_12916
crossref_primary_10_1007_s00330_023_09404_7
crossref_primary_10_3389_fendo_2022_876559
crossref_primary_10_3390_s24196313
crossref_primary_10_1016_j_anaerobe_2022_102628
crossref_primary_10_1038_s41598_023_43943_9
crossref_primary_10_1038_s41598_024_65545_9
crossref_primary_10_1016_j_geoen_2024_213071
crossref_primary_10_1016_j_eswa_2022_117761
crossref_primary_10_1038_s41598_023_28163_5
crossref_primary_10_1038_s41598_024_76502_x
crossref_primary_10_1016_j_biosystems_2021_104585
crossref_primary_10_1007_s00330_022_08943_9
crossref_primary_10_1007_s10489_023_05030_4
crossref_primary_10_1515_hsz_2024_0023
crossref_primary_10_3390_en16052405
crossref_primary_10_1007_s40747_021_00340_x
crossref_primary_10_2139_ssrn_4117344
crossref_primary_10_1016_j_ress_2022_108622
crossref_primary_10_1097_WNP_0000000000001042
crossref_primary_10_1109_TCBB_2021_3061300
crossref_primary_10_1186_s12967_022_03340_8
crossref_primary_10_3390_pr12010125
crossref_primary_10_1109_ACCESS_2025_3536034
crossref_primary_10_3389_fcvm_2022_920399
crossref_primary_10_1007_s42243_023_01085_2
crossref_primary_10_1016_j_ecolind_2024_112672
crossref_primary_10_1007_s11600_022_00928_y
crossref_primary_10_1016_j_isci_2021_103617
crossref_primary_10_3390_math10224173
crossref_primary_10_1007_s00261_024_04667_0
crossref_primary_10_1016_j_fraope_2023_100069
crossref_primary_10_1007_s10614_024_10703_4
crossref_primary_10_3390_healthcare10010149
crossref_primary_10_2196_29806
crossref_primary_10_1038_s41591_023_02482_6
crossref_primary_10_1093_bib_bbac555
crossref_primary_10_3389_fnins_2023_1287053
crossref_primary_10_1016_j_multra_2024_100135
crossref_primary_10_1016_j_orp_2023_100292
crossref_primary_10_1080_0144929X_2023_2260894
crossref_primary_10_2196_38053
crossref_primary_10_3390_s22093510
crossref_primary_10_1016_j_oregeorev_2024_106107
crossref_primary_10_1145_3580800
crossref_primary_10_3390_aerospace10070639
crossref_primary_10_1016_j_matdes_2022_110735
crossref_primary_10_3390_s22239428
crossref_primary_10_3389_fphys_2025_1542240
crossref_primary_10_1016_j_heliyon_2024_e37182
crossref_primary_10_1097_JCMA_0000000000001066
crossref_primary_10_4236_ojs_2024_143011
crossref_primary_10_1007_s42485_024_00131_1
crossref_primary_10_1016_j_compeleceng_2024_109644
crossref_primary_10_1093_nar_gkab1133
crossref_primary_10_1038_s41598_023_30381_w
crossref_primary_10_3934_mbe_2022166
crossref_primary_10_1016_j_scitotenv_2022_159798
crossref_primary_10_1080_1062936X_2024_2440903
crossref_primary_10_1038_s43016_022_00587_8
crossref_primary_10_1109_ACCESS_2021_3109168
crossref_primary_10_1111_jep_13324
crossref_primary_10_3390_app13042698
crossref_primary_10_1007_s10614_024_10688_0
crossref_primary_10_1016_j_enbenv_2023_08_001
crossref_primary_10_1016_j_future_2024_06_053
crossref_primary_10_1016_j_eswa_2024_123696
crossref_primary_10_1007_s42979_023_01835_9
crossref_primary_10_1186_s12913_025_12552_9
crossref_primary_10_12688_wellcomeopenres_19599_1
crossref_primary_10_3390_s21124187
crossref_primary_10_1007_s10489_023_04846_4
crossref_primary_10_32604_csse_2023_036552
crossref_primary_10_1016_j_jpha_2025_101263
crossref_primary_10_1002_cpe_7182
crossref_primary_10_1016_j_bspc_2023_105368
crossref_primary_10_1016_j_surg_2024_03_051
crossref_primary_10_3934_DSFE_2023021
crossref_primary_10_1002_ange_202316766
crossref_primary_10_1021_acs_cgd_4c01327
crossref_primary_10_19127_mbsjohs_1142542
crossref_primary_10_1109_JBHI_2022_3219213
crossref_primary_10_1109_ACCESS_2023_3284678
crossref_primary_10_1109_ACCESS_2022_3210347
crossref_primary_10_1016_j_petrol_2022_110517
crossref_primary_10_1007_s10238_022_00858_5
crossref_primary_10_32604_iasc_2023_037823
crossref_primary_10_1016_j_ins_2023_119480
crossref_primary_10_3389_fimmu_2021_762120
crossref_primary_10_54097_hset_v49i_8533
crossref_primary_10_1002_apj_2921
crossref_primary_10_1016_j_rineng_2024_102218
crossref_primary_10_1016_j_jaacop_2024_11_003
crossref_primary_10_1142_S1758825124500509
crossref_primary_10_1063_5_0228503
crossref_primary_10_1007_s10439_024_03470_8
crossref_primary_10_1088_1752_7163_ac4916
crossref_primary_10_1186_s13040_024_00399_5
crossref_primary_10_32604_cmc_2023_034417
crossref_primary_10_3389_fimmu_2022_797640
crossref_primary_10_1016_j_aap_2024_107792
crossref_primary_10_1016_j_bspc_2022_104316
crossref_primary_10_1089_neur_2020_0009
crossref_primary_10_3390_math12142231
crossref_primary_10_1007_s00167_020_06418_2
crossref_primary_10_1016_j_mtcomm_2023_106545
crossref_primary_10_3390_math10152772
crossref_primary_10_1016_j_ymeth_2024_07_001
crossref_primary_10_1080_02664763_2024_2315451
crossref_primary_10_1016_j_compbiomed_2022_106188
crossref_primary_10_1016_j_eswa_2023_122778
crossref_primary_10_1109_TCE_2024_3371440
crossref_primary_10_3390_s24113564
crossref_primary_10_1007_s11042_023_15188_1
crossref_primary_10_1016_j_compchemeng_2024_108747
crossref_primary_10_1007_s00595_023_02696_8
crossref_primary_10_1038_s41598_021_99628_8
crossref_primary_10_1016_j_geomorph_2022_108405
crossref_primary_10_1371_journal_pone_0312915
crossref_primary_10_1007_s11042_024_18404_8
crossref_primary_10_1177_09287329251316447
crossref_primary_10_3390_jcm12134375
crossref_primary_10_1038_s41598_021_87171_5
crossref_primary_10_1016_j_bspc_2022_104451
crossref_primary_10_1111_iwj_14815
crossref_primary_10_1016_j_jag_2023_103383
crossref_primary_10_1096_fj_202300245R
crossref_primary_10_1016_j_compbiomed_2024_108722
crossref_primary_10_1016_j_atmosres_2023_106961
crossref_primary_10_1016_j_jacasi_2024_09_010
crossref_primary_10_1111_iwj_13723
crossref_primary_10_56977_jicce_2024_22_4_310
crossref_primary_10_1021_acs_jcim_3c00999
crossref_primary_10_31590_ejosat_743652
crossref_primary_10_1208_s12249_024_02973_w
crossref_primary_10_1016_j_labinv_2023_100320
crossref_primary_10_3389_fdata_2024_1406365
crossref_primary_10_3390_jpm14030316
crossref_primary_10_1016_j_foodchem_2024_141053
crossref_primary_10_1016_j_ins_2021_04_063
crossref_primary_10_1016_j_jtrangeo_2023_103594
crossref_primary_10_3390_drones7110650
crossref_primary_10_3390_pr12091788
crossref_primary_10_1111_ffe_13997
crossref_primary_10_1109_TCC_2022_3142009
crossref_primary_10_32604_cmc_2023_046424
crossref_primary_10_1109_ACCESS_2025_3527151
crossref_primary_10_1111_tgis_12992
crossref_primary_10_3904_kjim_2020_020
crossref_primary_10_1016_j_jocd_2022_06_002
crossref_primary_10_1186_s13619_022_00143_6
crossref_primary_10_3390_diagnostics12102538
crossref_primary_10_1109_JIOT_2023_3303429
crossref_primary_10_3389_fimmu_2023_1267755
crossref_primary_10_1016_j_compag_2022_107338
crossref_primary_10_1109_LGRS_2021_3091700
crossref_primary_10_1038_s41598_024_78225_5
crossref_primary_10_1016_j_epsr_2023_109427
crossref_primary_10_1109_ACCESS_2024_3351188
crossref_primary_10_1007_s11042_024_19637_3
crossref_primary_10_1016_j_cageo_2022_105242
crossref_primary_10_1038_s41598_021_97218_2
crossref_primary_10_1111_exsy_13048
crossref_primary_10_2147_CEOR_S456968
crossref_primary_10_34133_2021_9819851
crossref_primary_10_37989_gumussagbil_1366530
crossref_primary_10_1007_s11227_024_06166_x
crossref_primary_10_1016_j_mlwa_2023_100516
crossref_primary_10_3389_fcimb_2023_1289124
crossref_primary_10_3390_en17102330
crossref_primary_10_1016_j_ces_2024_120513
crossref_primary_10_1021_acsomega_2c07609
crossref_primary_10_1016_j_engappai_2024_109531
crossref_primary_10_1016_j_measurement_2025_116762
crossref_primary_10_1038_s41467_024_48618_1
crossref_primary_10_1016_j_ecolind_2024_111715
crossref_primary_10_1016_j_osnem_2023_100274
crossref_primary_10_1109_TPWRS_2023_3289400
crossref_primary_10_3390_land14030564
crossref_primary_10_3934_mbe_2023613
crossref_primary_10_3389_fonc_2023_1207175
crossref_primary_10_2147_IJGM_S365725
crossref_primary_10_1016_j_envsoft_2024_106194
crossref_primary_10_2147_NSS_S467111
crossref_primary_10_1109_JTEHM_2023_3234207
crossref_primary_10_1177_03091333221134192
crossref_primary_10_3389_fdgth_2024_1506071
crossref_primary_10_1016_j_specom_2023_01_005
crossref_primary_10_1016_j_energy_2025_134859
crossref_primary_10_1080_08839514_2022_2074129
crossref_primary_10_1111_jcmm_18156
crossref_primary_10_3390_pathogens13080687
crossref_primary_10_1016_j_bspc_2024_106653
crossref_primary_10_1016_j_clineuro_2024_108209
crossref_primary_10_3390_electronics12010015
crossref_primary_10_1016_j_compbiomed_2022_106432
crossref_primary_10_1016_j_heliyon_2023_e14518
crossref_primary_10_1038_s41598_020_75473_z
crossref_primary_10_3389_fneur_2022_791547
crossref_primary_10_1177_21925682211019361
crossref_primary_10_1155_2021_3514821
crossref_primary_10_2174_1574893617666220524123825
crossref_primary_10_3390_en15165780
crossref_primary_10_1038_s41598_024_53459_5
crossref_primary_10_1371_journal_pwat_0000259
crossref_primary_10_1016_j_eclinm_2024_102617
crossref_primary_10_2139_ssrn_4017219
crossref_primary_10_3390_healthcare10091624
crossref_primary_10_1007_s13753_023_00465_2
crossref_primary_10_1016_j_ymeth_2024_10_012
crossref_primary_10_1007_s43762_023_00077_y
crossref_primary_10_3390_ijms21197271
crossref_primary_10_3389_fphy_2024_1476618
crossref_primary_10_1109_TSE_2024_3350019
crossref_primary_10_3389_fmars_2023_1065123
crossref_primary_10_3390_healthcare10020371
crossref_primary_10_1109_ACCESS_2021_3100408
crossref_primary_10_1038_s41598_022_12574_x
crossref_primary_10_1142_S2047684123500367
crossref_primary_10_3390_genes15060676
crossref_primary_10_1007_s44230_023_00020_8
crossref_primary_10_1016_j_apt_2021_09_020
crossref_primary_10_1007_s10916_025_02141_y
crossref_primary_10_3233_JIFS_213022
crossref_primary_10_1016_j_bspc_2024_106997
crossref_primary_10_1016_j_engappai_2021_104604
crossref_primary_10_3389_fmed_2022_930541
crossref_primary_10_1016_j_compbiomed_2023_106619
crossref_primary_10_1161_JAHA_120_017316
crossref_primary_10_1021_acs_jpca_4c00936
crossref_primary_10_1016_j_csbj_2025_01_003
crossref_primary_10_1016_j_comnet_2023_109868
crossref_primary_10_1002_jnm_3168
crossref_primary_10_9728_dcs_2021_22_7_1115
crossref_primary_10_2139_ssrn_4118862
crossref_primary_10_1021_acs_jcim_1c00175
crossref_primary_10_3390_biomimetics9070440
crossref_primary_10_1007_s00034_021_01889_1
crossref_primary_10_1371_journal_pone_0262523
crossref_primary_10_3390_mi14091673
crossref_primary_10_3390_app13137355
crossref_primary_10_1016_j_heliyon_2024_e29181
crossref_primary_10_1177_19322968241286907
crossref_primary_10_3390_en15165981
crossref_primary_10_31491_APT_2021_09_064
crossref_primary_10_1186_s12889_024_17929_9
crossref_primary_10_3389_fped_2022_951439
crossref_primary_10_3389_fonc_2022_785684
crossref_primary_10_1093_bioinformatics_btad577
crossref_primary_10_1016_j_eswa_2022_118310
crossref_primary_10_3389_fonc_2022_973307
crossref_primary_10_3390_ijerph182111347
crossref_primary_10_1109_TFUZZ_2024_3482282
crossref_primary_10_11648_j_ajai_20240802_11
crossref_primary_10_3389_frai_2023_1339988
crossref_primary_10_3390_cancers14153742
crossref_primary_10_3390_biomedinformatics5010001
crossref_primary_10_1016_j_ifacol_2023_10_925
crossref_primary_10_1186_s12911_022_01951_1
crossref_primary_10_1007_s40846_021_00642_y
crossref_primary_10_3389_fbioe_2021_649221
Cites_doi 10.1109/AEECT.2013.6716440
10.1109/EMBC.2016.7591186
10.1007/s10994-006-6226-1
10.1109/MIPRO.2015.7160458
10.1109/TFUZZ.2015.2501439
10.1109/ICCCI.2016.7479940
10.1109/TBME.2007.893500
10.1016/S1386-5056(01)00160-5
10.1109/GHTC.2015.7344002
10.1016/j.amc.2006.08.020
10.1109/CCAA.2016.7813730
10.22490/24629448.1712
10.1109/IEMBS.2007.4353151
10.1109/ICACCI.2014.6968460
10.1109/SCES.2014.6880051
10.1145/2939672.2939785
10.1109/ICMLC.2016.7873005
10.1109/JSEN.2011.2129506
10.1109/CITSM.2014.7042180
10.1109/TCBB.2016.2607717
10.1109/ICECC.2011.6066708
10.1109/CCA.2009.5280945
10.1109/TSMCB.2010.2048899
10.7196/SAMJ.9535
10.1109/ISBI.2018.8363854
10.1109/ICABME.2015.7323241
10.1007/978-3-319-28437-8
10.1109/ICHI.2016.36
10.1109/second.2006.1629329
10.1046/j.1523-1755.63.s83.25.x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2019.2911071
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 2140
ExternalDocumentID 30998478
10_1109_TCBB_2019_2911071
8693581
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ernest Oppenheimer Memorial Trust; Oppenheimer Memorial Trust
  funderid: 10.13039/501100009978
– fundername: National Research Foundation of South Africa
  grantid: 113340
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-e2f18610dbab472df4de120928816e6d6380c01d4f813f3f4e4ca53b1fd8c84d3
IEDL.DBID RIE
ISSN 1545-5963
1557-9964
IngestDate Thu Jul 10 18:15:13 EDT 2025
Sun Jun 29 12:29:33 EDT 2025
Mon Jul 21 06:05:29 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Tue Jul 01 00:47:51 EDT 2025
Wed Aug 27 02:28:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e2f18610dbab472df4de120928816e6d6380c01d4f813f3f4e4ca53b1fd8c84d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3672-3716
0000-0001-6463-203X
PMID 30998478
PQID 2468771432
PQPubID 85499
PageCount 10
ParticipantIDs proquest_journals_2468771432
proquest_miscellaneous_2211949399
crossref_citationtrail_10_1109_TCBB_2019_2911071
crossref_primary_10_1109_TCBB_2019_2911071
ieee_primary_8693581
pubmed_primary_30998478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Nov.-Dec.-1
2020-11-1
2020 Nov-Dec
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-Dec.-1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref31
sharma (ref38) 2018
ref30
birkett (ref37) 2017
ref11
ref10
herrmannsen (ref26) 2015
ref2
ref17
ref16
naicker (ref25) 2003; 63
ref19
ref18
go (ref32) 2013; 10
lee (ref1) 2011; 41
pacheco (ref14) 2015; 13
ref24
palace (ref23) 2016; 36
ref20
(ref8) 2013; 2
ref21
pedregosa (ref33) 2011; 12
ref28
ref27
ref29
pippa (ref22) 2015
ref7
xuan (ref40) 2018
ref9
ref4
ref3
ref6
ref5
azeez (ref39) 2018
References_xml – ident: ref27
  doi: 10.1109/AEECT.2013.6716440
– ident: ref6
  doi: 10.1109/EMBC.2016.7591186
– start-page: 1
  year: 2015
  ident: ref22
  article-title: Chronic kidney disease on the rise in SA
  publication-title: Health and Life
– ident: ref34
  doi: 10.1007/s10994-006-6226-1
– ident: ref35
  doi: 10.1109/MIPRO.2015.7160458
– ident: ref12
  doi: 10.1109/TFUZZ.2015.2501439
– ident: ref5
  doi: 10.1109/ICCCI.2016.7479940
– start-page: 1
  year: 2015
  ident: ref26
  article-title: Thousands may die without life-saving dialysis
  publication-title: HealthDay News
– ident: ref11
  doi: 10.1109/TBME.2007.893500
– ident: ref16
  doi: 10.1016/S1386-5056(01)00160-5
– ident: ref2
  doi: 10.1109/GHTC.2015.7344002
– ident: ref21
  doi: 10.1016/j.amc.2006.08.020
– ident: ref31
  doi: 10.1109/CCAA.2016.7813730
– volume: 13
  start-page: 7
  year: 2015
  ident: ref14
  article-title: A Web-based fuzzy inference system based tool for cardiovascular disease risk assessment
  publication-title: NOVA
  doi: 10.22490/24629448.1712
– ident: ref20
  doi: 10.1109/IEMBS.2007.4353151
– ident: ref13
  doi: 10.1109/ICACCI.2014.6968460
– ident: ref17
  doi: 10.1109/SCES.2014.6880051
– ident: ref36
  doi: 10.1145/2939672.2939785
– ident: ref15
  doi: 10.1109/ICMLC.2016.7873005
– ident: ref3
  doi: 10.1109/JSEN.2011.2129506
– ident: ref19
  doi: 10.1109/CITSM.2014.7042180
– ident: ref28
  doi: 10.1109/TCBB.2016.2607717
– ident: ref7
  doi: 10.1109/ICECC.2011.6066708
– year: 2017
  ident: ref37
  article-title: How to deal with outliers in your data
– ident: ref4
  doi: 10.1109/CCA.2009.5280945
– volume: 41
  start-page: 139
  year: 2011
  ident: ref1
  article-title: A fuzzy expert system for diabetes decision support application
  publication-title: IEEE Trans Syst Man Cybern B Cybernetics
  doi: 10.1109/TSMCB.2010.2048899
– ident: ref24
  doi: 10.7196/SAMJ.9535
– volume: 36
  start-page: 3
  year: 2016
  ident: ref23
  article-title: Advances in chronic kidney disease
  publication-title: Int J Molecular Sci
– ident: ref30
  doi: 10.1109/ISBI.2018.8363854
– ident: ref18
  doi: 10.1109/ICABME.2015.7323241
– start-page: 1
  year: 2018
  ident: ref40
  article-title: Multi-view generative adversarial network and its application in pearl classification
  publication-title: IEEE Trans Ind Electronics
– start-page: 805
  year: 2018
  ident: ref39
  article-title: Enhanced XGBoost-based automatic diagnosis system for chronic kidney disease
  publication-title: Proc 14th IEEE Int Conf Control Autom
– volume: 10
  start-page: 39
  year: 2013
  ident: ref32
  article-title: Application of the recursive feature elimination and the relaxed linear separability feature selection algorithms to gene expression data analysis
  publication-title: Advances Comput Sci Res Appl
– year: 2018
  ident: ref38
  article-title: Ways to detect and remove the outliers
– ident: ref9
  doi: 10.1007/978-3-319-28437-8
– ident: ref29
  doi: 10.1109/ICHI.2016.36
– ident: ref10
  doi: 10.1109/second.2006.1629329
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref33
  article-title: Scikit-learn: Machine learning in python
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 1
  year: 2013
  ident: ref8
  article-title: Hybrid intelligent system for the diagnosis of typhoid fever
  publication-title: Journal of Computer Engineering and Information Technology
– volume: 63
  start-page: 119
  year: 2003
  ident: ref25
  article-title: End-stage renal disease in sub-saharan and South Africa
  publication-title: Kidney International Supplements
  doi: 10.1046/j.1523-1755.63.s83.25.x
SSID ssj0024904
Score 2.6783729
Snippet Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2131
SubjectTerms Accuracy
Algorithms
Artificial intelligence
chronic kidney disease
clinical decision support system
Computational modeling
Decision support systems
Diagnosis
Diseases
extreme gradient boosting
Feature extraction
Feature selection
Kidney
Kidney diseases
Kidneys
Medical diagnosis
Sensitivity
Sensitivity analysis
World population
Title XGBoost Model for Chronic Kidney Disease Diagnosis
URI https://ieeexplore.ieee.org/document/8693581
https://www.ncbi.nlm.nih.gov/pubmed/30998478
https://www.proquest.com/docview/2468771432
https://www.proquest.com/docview/2211949399
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC4AKU8AgUFiRMi29ieJM6x21IqEJxaaW9RbI-lqlWC2Oyh_Ho8TjaIChCnRMrk5RnH32QeH8Db4KzVnkhlKGSZoXFV1mqtMuWMKaQTZWVjguzX8vwSP62K1Q68n2thiCgmn9GCd2Ms3_V2w7_KjnQZ23Xtwm5w3MZarV999epIFciIICuCVU0RTJHXRxcnyyUncdULWbO7w-wwKiCj8GHWvy1HkV_l71AzLjlnD-HL9mHHTJPrxWYwC_vjTh_H_32bR_Bgwp7p8Wgs-7BD3WO4N7JR3h6AXH1c9v16SJkf7SYNaDadWuemn69cR7fp6RjNCduYn3e1fgKXZx8uTs6ziVIhswrrISPphQ6IyZnWYCWdR0dcPSu1FiWVLszG3ObCoddCeeWR0LaFMsI7bTU69RT2ur6j55Ci915gRTkVEqs2iDlEa3TecrGvxATy7cg2duo3zrQXN030O_K6Yb00rJdm0ksC7-ZTvo3NNv4lfMBjOgtOw5nA4VZ9zTQd143EUlfM9C4TeDMfDhOJoyNtR_0myHCvO6wDYEvg2aj2-dpba3nx53u-hPuS3fBYongIe8P3Db0KWGUwr6OR_gSP19_k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61RahcKFAKoQWCxKki29ieJM6RLZQtfZy20t6i2B5LFVWC2Oyh_HpsJ5sKRBGnRMrk5RnH32QeH8B756yVlkgkyHieoDJFUkspEmGUyrhheaFDguxlPrvCr4tssQEfxloYIgrJZzTxuyGWb1q98r_KjmQe2nVtwgO37mesr9a666xXBrJAjwmSzNnVEMNkaXk0P55OfRpXOeGld3g8P4xw2Mh9muVvC1JgWLkfbIZF52QHLtaP2-eafJusOjXRP__o5Pi_7_MEHg_oM_7Ym8tT2KDmGTzs-Shvd4EvvkzbdtnFniHtJnZ4Nh6a58Zn16ah2_hTH89x25Chd718Dlcnn-fHs2QgVUi0wLJLiFsmHWYyqlZYcGPRkK-f5VKynHLj5mOqU2bQSiassEio60woZo3UEo3Yg62mbeglxGitZVhQShnHonZiBlErmda-3JdjBOl6ZCs9dBz3xBc3VfA80rLyeqm8XqpBLxEcjqd879tt_Et414_pKDgMZwQHa_VVw4RcVhxzWXiudx7Bu_Gwm0o-PlI31K6cjO92h6WDbBG86NU-XnttLa_-fs-3sD2bX5xX56eXZ_vwiHunPBQsHsBW92NFrx1y6dSbYLC_AGyg4y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XGBoost+Model+for+Chronic+Kidney+Disease+Diagnosis&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Ogunleye%2C+Adeola&rft.au=Wang%2C+Qing-Guo&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=1545-5963&rft.volume=17&rft.issue=6&rft.spage=2131&rft.epage=2140&rft_id=info:doi/10.1109%2FTCBB.2019.2911071&rft_id=info%3Apmid%2F30998478&rft.externalDocID=8693581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon