A Novel Neurodynamic Approach to Constrained Complex-Variable Pseudoconvex Optimization
Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penal...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 49; no. 11; pp. 3946 - 3956 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penalty function is introduced to guarantee the boundedness of the state of the presented neural network, and make the state enter the feasible region of the considered optimization in finite time and stay there thereafter. The state is also shown to be convergent to an optimal point of the considered optimization. Compared with other neurodynamic approaches, the presented neural network does not need any penalty parameters, and has lower model complexity. Furthermore, some additional assumptions in other existing related neural networks are also removed in this paper, such as the assumption that the objective function is lower bounded over the equality constraint set and so on. Finally, some numerical examples and an application in beamforming formulation are provided. |
---|---|
AbstractList | Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penalty function is introduced to guarantee the boundedness of the state of the presented neural network, and make the state enter the feasible region of the considered optimization in finite time and stay there thereafter. The state is also shown to be convergent to an optimal point of the considered optimization. Compared with other neurodynamic approaches, the presented neural network does not need any penalty parameters, and has lower model complexity. Furthermore, some additional assumptions in other existing related neural networks are also removed in this paper, such as the assumption that the objective function is lower bounded over the equality constraint set and so on. Finally, some numerical examples and an application in beamforming formulation are provided.Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penalty function is introduced to guarantee the boundedness of the state of the presented neural network, and make the state enter the feasible region of the considered optimization in finite time and stay there thereafter. The state is also shown to be convergent to an optimal point of the considered optimization. Compared with other neurodynamic approaches, the presented neural network does not need any penalty parameters, and has lower model complexity. Furthermore, some additional assumptions in other existing related neural networks are also removed in this paper, such as the assumption that the objective function is lower bounded over the equality constraint set and so on. Finally, some numerical examples and an application in beamforming formulation are provided. Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penalty function is introduced to guarantee the boundedness of the state of the presented neural network, and make the state enter the feasible region of the considered optimization in finite time and stay there thereafter. The state is also shown to be convergent to an optimal point of the considered optimization. Compared with other neurodynamic approaches, the presented neural network does not need any penalty parameters, and has lower model complexity. Furthermore, some additional assumptions in other existing related neural networks are also removed in this paper, such as the assumption that the objective function is lower bounded over the equality constraint set and so on. Finally, some numerical examples and an application in beamforming formulation are provided. |
Author | Liu, Na Qin, Sitian |
Author_xml | – sequence: 1 givenname: Na surname: Liu fullname: Liu, Na email: liunahitwh@163.com organization: Department of Mathematics, Harbin Institute of Technology, Weihai, China – sequence: 2 givenname: Sitian orcidid: 0000-0002-4543-4940 surname: Qin fullname: Qin, Sitian email: qinsitian@163.com organization: Department of Mathematics, Harbin Institute of Technology, Weihai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30059329$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9r3DAQxUVJaf40H6AUiqGXXLwZSZYlHzdL0xZCkkPa0pOQ5VmqYEuuZIckn77a7nYPOVQMaBC_NxreOyYHPngk5B2FBaXQnN-tfl4sGFC1YEoIyapX5IjRWpWMSXGw72t5SE5Tuod8VH5q1BtyyAFEw1lzRH4si-vwgH1xjXMM3ZM3g7PFchxjMPZXMYViFXyaonEeu9wPY4-P5XcTnWl7LG4Tzl2wwT_gY3EzTm5wz2Zywb8lr9emT3i6u0_It8tPd6sv5dXN56-r5VVpedVMZdfWXcsYRUBoOlGhqnOxtaXAm5rLjmNtKsmYAaaUsG1r1qIythZSGBDAT8jZdm5e-PeMadKDSxb73ngMc9IMFCguqFQZ_fgCvQ9z9Hk7nW2iuUDKTH3YUXM7YKfH6AYTn_Q_yzJAt4CNIaWI6z1CQW-S0Ztk9CYZvUsma-QLjXXTX582zvb_Vb7fKh0i7n9SFeMMJP8DyzWZsQ |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_jfranklin_2021_02_029 crossref_primary_10_1109_TCYB_2021_3079457 crossref_primary_10_3390_en13205331 crossref_primary_10_1109_TETCI_2024_3369667 crossref_primary_10_1007_s00521_022_07757_6 crossref_primary_10_1109_TFUZZ_2024_3406761 crossref_primary_10_1109_ACCESS_2020_3045780 crossref_primary_10_1109_TNNLS_2023_3340730 crossref_primary_10_1016_j_neucom_2024_128988 crossref_primary_10_1109_TNNLS_2022_3220806 crossref_primary_10_1109_TCYB_2022_3155901 crossref_primary_10_1109_TNNLS_2020_3041364 crossref_primary_10_1109_TNNLS_2021_3105732 crossref_primary_10_1080_01969722_2020_1827794 crossref_primary_10_1109_TCYB_2021_3090204 crossref_primary_10_1109_TNNLS_2022_3190043 crossref_primary_10_1016_j_neunet_2024_107121 crossref_primary_10_1109_TSMC_2023_3274222 crossref_primary_10_1016_j_neucom_2022_02_068 crossref_primary_10_1109_TNNLS_2021_3139865 crossref_primary_10_1109_TNNLS_2023_3306374 crossref_primary_10_1109_JAS_2022_105446 crossref_primary_10_1016_j_ins_2022_10_034 crossref_primary_10_1109_TCYB_2020_3042519 crossref_primary_10_1016_j_neunet_2022_03_011 crossref_primary_10_1016_j_neunet_2022_03_033 crossref_primary_10_1016_j_asoc_2021_108007 crossref_primary_10_1016_j_neucom_2021_03_014 crossref_primary_10_1002_int_22564 crossref_primary_10_1007_s00521_023_08794_5 crossref_primary_10_1007_s11063_023_11154_y crossref_primary_10_1016_j_jfranklin_2021_11_034 crossref_primary_10_1109_TCYB_2021_3093076 crossref_primary_10_1109_JSEN_2024_3370105 crossref_primary_10_1016_j_neucom_2020_07_115 crossref_primary_10_1007_s11075_020_01061_x crossref_primary_10_1109_TCYB_2021_3104138 crossref_primary_10_1109_TNNLS_2021_3110777 crossref_primary_10_1016_j_neucom_2022_09_120 crossref_primary_10_1109_TCYB_2020_3009110 |
Cites_doi | 10.1109/TNN.2011.2169682 10.1016/j.neunet.2018.01.008 10.1109/78.923296 10.1109/TNNLS.2016.2635676 10.1109/TCYB.2016.2608499 10.1109/TCYB.2016.2523541 10.1016/j.neucom.2013.10.008 10.1109/TCSI.2007.902607 10.1109/TCYB.2016.2632159 10.1016/j.neunet.2011.09.001 10.1016/j.sigpro.2005.12.004 10.1109/TNNLS.2015.2496658 10.1023/A:1022659230603 10.1109/TNN.2004.841779 10.1109/8.267359 10.1109/49.363139 10.1007/978-3-642-69512-4 10.1109/TSP.2003.816878 10.1109/TCYB.2015.2490170 10.1109/TCYB.2016.2567449 10.1109/TSP.2014.2298384 10.1109/TSMCB.2012.2210038 10.1109/TNNLS.2015.2500618 10.1109/TNNLS.2014.2334364 10.1002/mrm.21391 10.1109/TNNLS.2015.2441697 10.1109/TASSP.1987.1165054 10.1016/j.neunet.2014.10.003 10.1109/TCYB.2017.2760908 10.1109/TSMCB.2011.2140395 10.1109/81.244913 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2018.2855724 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 3956 |
ExternalDocumentID | 30059329 10_1109_TCYB_2018_2855724 8423207 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61773136; 11471088 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-db6db221e0e09d54e86e862fc1039637d3e6a4722a02885cbbaf54ac6575a0503 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 14:03:52 EDT 2025 Sun Jun 29 14:16:18 EDT 2025 Thu Apr 03 06:58:08 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Tue Jul 01 00:53:53 EDT 2025 Wed Aug 27 05:50:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-db6db221e0e09d54e86e862fc1039637d3e6a4722a02885cbbaf54ac6575a0503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4543-4940 |
PMID | 30059329 |
PQID | 2261261077 |
PQPubID | 85422 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2018_2855724 proquest_journals_2261261077 pubmed_primary_30059329 ieee_primary_8423207 proquest_miscellaneous_2080835178 crossref_citationtrail_10_1109_TCYB_2018_2855724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref12 ref15 ref14 ref31 guo (ref29) 2011; 22 ref33 ref11 ref32 ref10 aubin (ref24) 1984 ref2 ref1 ref17 ref16 ref19 ref18 liu (ref28) 2011; 41 clarke (ref21) 1983 ref23 ref26 ref25 ref20 ref22 ref27 ref8 ref7 ref9 ref4 kreutz-delgado (ref13) 2009 ref3 ref6 ref5 hoshuyama (ref30) 2001 |
References_xml | – volume: 22 start-page: 1892 year: 2011 ident: ref29 article-title: A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2169682 – ident: ref27 doi: 10.1016/j.neunet.2018.01.008 – ident: ref33 doi: 10.1109/78.923296 – ident: ref17 doi: 10.1109/TNNLS.2016.2635676 – ident: ref11 doi: 10.1109/TCYB.2016.2608499 – ident: ref9 doi: 10.1109/TCYB.2016.2523541 – ident: ref20 doi: 10.1016/j.neucom.2013.10.008 – ident: ref25 doi: 10.1109/TCSI.2007.902607 – ident: ref15 doi: 10.1109/TCYB.2016.2632159 – ident: ref18 doi: 10.1016/j.neunet.2011.09.001 – ident: ref4 doi: 10.1016/j.sigpro.2005.12.004 – ident: ref7 doi: 10.1109/TNNLS.2015.2496658 – ident: ref22 doi: 10.1023/A:1022659230603 – ident: ref26 doi: 10.1109/TNN.2004.841779 – ident: ref34 doi: 10.1109/8.267359 – year: 2001 ident: ref30 publication-title: Robust adaptive beamforming – ident: ref23 doi: 10.1109/49.363139 – year: 1984 ident: ref24 publication-title: Differential Inclusions Set-Valued Maps and Viability Theory doi: 10.1007/978-3-642-69512-4 – ident: ref3 doi: 10.1109/TSP.2003.816878 – ident: ref14 doi: 10.1109/TCYB.2015.2490170 – start-page: 1 year: 2009 ident: ref13 article-title: The complex gradient operator and the CR-calculus publication-title: Mathematics – ident: ref19 doi: 10.1109/TCYB.2016.2567449 – ident: ref31 doi: 10.1109/TSP.2014.2298384 – ident: ref6 doi: 10.1109/TSMCB.2012.2210038 – ident: ref12 doi: 10.1109/TNNLS.2015.2500618 – year: 1983 ident: ref21 publication-title: Optimization and Nonsmooth Analysis – ident: ref10 doi: 10.1109/TNNLS.2014.2334364 – ident: ref2 doi: 10.1002/mrm.21391 – ident: ref1 doi: 10.1109/TNNLS.2015.2441697 – ident: ref32 doi: 10.1109/TASSP.1987.1165054 – ident: ref16 doi: 10.1016/j.neunet.2014.10.003 – ident: ref8 doi: 10.1109/TCYB.2017.2760908 – volume: 41 start-page: 1323 year: 2011 ident: ref28 article-title: A one-layer recurrent neural network for constrained nonsmooth optimization publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2011.2140395 – ident: ref5 doi: 10.1109/81.244913 |
SSID | ssj0000816898 |
Score | 2.4197905 |
Snippet | Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3946 |
SubjectTerms | Beamforming Complex-variable pseudoconvex optimization Complexity Constraints Convergence Linear programming Lyapunov function Neural networks Neurodynamics Optimization Penalty function Programming recurrent neural network Recurrent neural networks time-varying penalty |
Title | A Novel Neurodynamic Approach to Constrained Complex-Variable Pseudoconvex Optimization |
URI | https://ieeexplore.ieee.org/document/8423207 https://www.ncbi.nlm.nih.gov/pubmed/30059329 https://www.proquest.com/docview/2261261077 https://www.proquest.com/docview/2080835178 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnrgApXwsFORKHGhFttnEdpzjUlFVSC09tKWcIseeXLrdVGyCKn49M443SAhQpT1EipN1MmPnjcfzHsA7mhNVY7WnICd1iZR5nljtVKIaY02aIbkMLw2cnOrjC_n5Sl1twIexFgYRw-YznPJhyOX71vW8VHZgOKvIpeMPKHAbarXG9ZQgIBGkbzM6SAhVFDGJOUvLg_PDbx95H5eZZkapImM5njzI2QVs-fuLFCRW_o02w1fn6DGcrPs7bDa5nvZdPXU__6ByvO8DPYFHEX6K-eAvW7CBy6ewFQf4SryPLNR72_B1Lk7bH7gQgb7DD8L1Yh4pyEXXCtb6DAoT6AVPKwu8Sy4p9OZiLHG2wp46wHva78QXmpduYsHnM7g4-nR-eJxEFYbE5bLsEl-z5FQ2wxTT0iuJRtMvaxwnkXVe-By1ZcpJS1DFKFfXtlHSOs7oWGabeQ6by3aJL0E4J532FPqiLKS2ziiZo0c5c40qrFYTSNeWqFykKOfnWFQhVEnLiu1YsR2raMcJ7I-X3A78HP9rvM02GBvG1z-BnbW5qziCV1XG3GqELQs6vTueprHHCRW7xLanNgS3CcHOCjOBF4ObjPdee9erv__na3hIPSuHqsYd2Oy-9_iG4E1Xvw1-_QsI_fIU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWq9gAXoBTolgJG4gCIbPNhO85xqagW6C4ctlBOkWNPLmw3iE2qqr--M443SAgQUg6R4iROZmw_ezzvMfYC-0RZG-VwkhPbSIgsi4yyMpK1NjpOAV2GlgZmczU9Ex_O5fkWezPkwgCA33wGYzr1sXzX2I6Wyo40RRUpdXwHx32Z9Nlaw4qKl5Dw4rcpnkSIK_IQxkzi4mhx_O0t7eTS41RLmackyJN5QTuPLn-NSV5k5e940487J3fZbFPjfrvJ93HXVmN7_RuZ4_9-0j12JwBQPuk9Zpdtweo-2w1NfM1fBh7qV3vs64TPm0tYck_g4Xrpej4JJOS8bTipfXqNCXCcOpYlXEVfcPJN6Vj88xo6rADtar_in7Bnuggpnw_Y2cm7xfE0CjoMkc1E0UauItGpNIEY4sJJAVrhkdaWwsgqy10GyhDppEGwoqWtKlNLYSzFdAzxzTxk26tmBfuMWyuscjj5BZELZayWIgMHIrG1zI2SIxZvLFHaQFJO37Es_WQlLkqyY0l2LIMdR-z1cMuPnqHjX4X3yAZDwfD7R-xwY-4ytOF1mRK7GqLLHC8_Hy5j66OQillB02EZBNyIYZNcj9ij3k2GZ2-86-DP73zGbk0Xs9Py9P3842N2G2tZ9DmOh2y7_dnBEwQ7bfXU-_gN0OX1XQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Neurodynamic+Approach+to+Constrained+Complex-Variable+Pseudoconvex+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Na&rft.au=Qin%2C+Sitian&rft.date=2019-11-01&rft.eissn=2168-2275&rft.volume=49&rft.issue=11&rft.spage=3946&rft_id=info:doi/10.1109%2FTCYB.2018.2855724&rft_id=info%3Apmid%2F30059329&rft.externalDocID=30059329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |