A Novel Neurodynamic Approach to Constrained Complex-Variable Pseudoconvex Optimization

Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penal...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 11; pp. 3946 - 3956
Main Authors Liu, Na, Qin, Sitian
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penalty function is introduced to guarantee the boundedness of the state of the presented neural network, and make the state enter the feasible region of the considered optimization in finite time and stay there thereafter. The state is also shown to be convergent to an optimal point of the considered optimization. Compared with other neurodynamic approaches, the presented neural network does not need any penalty parameters, and has lower model complexity. Furthermore, some additional assumptions in other existing related neural networks are also removed in this paper, such as the assumption that the objective function is lower bounded over the equality constraint set and so on. Finally, some numerical examples and an application in beamforming formulation are provided.
AbstractList Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penalty function is introduced to guarantee the boundedness of the state of the presented neural network, and make the state enter the feasible region of the considered optimization in finite time and stay there thereafter. The state is also shown to be convergent to an optimal point of the considered optimization. Compared with other neurodynamic approaches, the presented neural network does not need any penalty parameters, and has lower model complexity. Furthermore, some additional assumptions in other existing related neural networks are also removed in this paper, such as the assumption that the objective function is lower bounded over the equality constraint set and so on. Finally, some numerical examples and an application in beamforming formulation are provided.Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penalty function is introduced to guarantee the boundedness of the state of the presented neural network, and make the state enter the feasible region of the considered optimization in finite time and stay there thereafter. The state is also shown to be convergent to an optimal point of the considered optimization. Compared with other neurodynamic approaches, the presented neural network does not need any penalty parameters, and has lower model complexity. Furthermore, some additional assumptions in other existing related neural networks are also removed in this paper, such as the assumption that the objective function is lower bounded over the equality constraint set and so on. Finally, some numerical examples and an application in beamforming formulation are provided.
Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is proposed in this paper for complex-variable pseudoconvex optimization problems subject to bound and linear equality constraints. An efficient penalty function is introduced to guarantee the boundedness of the state of the presented neural network, and make the state enter the feasible region of the considered optimization in finite time and stay there thereafter. The state is also shown to be convergent to an optimal point of the considered optimization. Compared with other neurodynamic approaches, the presented neural network does not need any penalty parameters, and has lower model complexity. Furthermore, some additional assumptions in other existing related neural networks are also removed in this paper, such as the assumption that the objective function is lower bounded over the equality constraint set and so on. Finally, some numerical examples and an application in beamforming formulation are provided.
Author Liu, Na
Qin, Sitian
Author_xml – sequence: 1
  givenname: Na
  surname: Liu
  fullname: Liu, Na
  email: liunahitwh@163.com
  organization: Department of Mathematics, Harbin Institute of Technology, Weihai, China
– sequence: 2
  givenname: Sitian
  orcidid: 0000-0002-4543-4940
  surname: Qin
  fullname: Qin, Sitian
  email: qinsitian@163.com
  organization: Department of Mathematics, Harbin Institute of Technology, Weihai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30059329$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaf40H6AUiqGXXLwZSZYlHzdL0xZCkkPa0pOQ5VmqYEuuZIckn77a7nYPOVQMaBC_NxreOyYHPngk5B2FBaXQnN-tfl4sGFC1YEoIyapX5IjRWpWMSXGw72t5SE5Tuod8VH5q1BtyyAFEw1lzRH4si-vwgH1xjXMM3ZM3g7PFchxjMPZXMYViFXyaonEeu9wPY4-P5XcTnWl7LG4Tzl2wwT_gY3EzTm5wz2Zywb8lr9emT3i6u0_It8tPd6sv5dXN56-r5VVpedVMZdfWXcsYRUBoOlGhqnOxtaXAm5rLjmNtKsmYAaaUsG1r1qIythZSGBDAT8jZdm5e-PeMadKDSxb73ngMc9IMFCguqFQZ_fgCvQ9z9Hk7nW2iuUDKTH3YUXM7YKfH6AYTn_Q_yzJAt4CNIaWI6z1CQW-S0Ztk9CYZvUsma-QLjXXTX582zvb_Vb7fKh0i7n9SFeMMJP8DyzWZsQ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_jfranklin_2021_02_029
crossref_primary_10_1109_TCYB_2021_3079457
crossref_primary_10_3390_en13205331
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1007_s00521_022_07757_6
crossref_primary_10_1109_TFUZZ_2024_3406761
crossref_primary_10_1109_ACCESS_2020_3045780
crossref_primary_10_1109_TNNLS_2023_3340730
crossref_primary_10_1016_j_neucom_2024_128988
crossref_primary_10_1109_TNNLS_2022_3220806
crossref_primary_10_1109_TCYB_2022_3155901
crossref_primary_10_1109_TNNLS_2020_3041364
crossref_primary_10_1109_TNNLS_2021_3105732
crossref_primary_10_1080_01969722_2020_1827794
crossref_primary_10_1109_TCYB_2021_3090204
crossref_primary_10_1109_TNNLS_2022_3190043
crossref_primary_10_1016_j_neunet_2024_107121
crossref_primary_10_1109_TSMC_2023_3274222
crossref_primary_10_1016_j_neucom_2022_02_068
crossref_primary_10_1109_TNNLS_2021_3139865
crossref_primary_10_1109_TNNLS_2023_3306374
crossref_primary_10_1109_JAS_2022_105446
crossref_primary_10_1016_j_ins_2022_10_034
crossref_primary_10_1109_TCYB_2020_3042519
crossref_primary_10_1016_j_neunet_2022_03_011
crossref_primary_10_1016_j_neunet_2022_03_033
crossref_primary_10_1016_j_asoc_2021_108007
crossref_primary_10_1016_j_neucom_2021_03_014
crossref_primary_10_1002_int_22564
crossref_primary_10_1007_s00521_023_08794_5
crossref_primary_10_1007_s11063_023_11154_y
crossref_primary_10_1016_j_jfranklin_2021_11_034
crossref_primary_10_1109_TCYB_2021_3093076
crossref_primary_10_1109_JSEN_2024_3370105
crossref_primary_10_1016_j_neucom_2020_07_115
crossref_primary_10_1007_s11075_020_01061_x
crossref_primary_10_1109_TCYB_2021_3104138
crossref_primary_10_1109_TNNLS_2021_3110777
crossref_primary_10_1016_j_neucom_2022_09_120
crossref_primary_10_1109_TCYB_2020_3009110
Cites_doi 10.1109/TNN.2011.2169682
10.1016/j.neunet.2018.01.008
10.1109/78.923296
10.1109/TNNLS.2016.2635676
10.1109/TCYB.2016.2608499
10.1109/TCYB.2016.2523541
10.1016/j.neucom.2013.10.008
10.1109/TCSI.2007.902607
10.1109/TCYB.2016.2632159
10.1016/j.neunet.2011.09.001
10.1016/j.sigpro.2005.12.004
10.1109/TNNLS.2015.2496658
10.1023/A:1022659230603
10.1109/TNN.2004.841779
10.1109/8.267359
10.1109/49.363139
10.1007/978-3-642-69512-4
10.1109/TSP.2003.816878
10.1109/TCYB.2015.2490170
10.1109/TCYB.2016.2567449
10.1109/TSP.2014.2298384
10.1109/TSMCB.2012.2210038
10.1109/TNNLS.2015.2500618
10.1109/TNNLS.2014.2334364
10.1002/mrm.21391
10.1109/TNNLS.2015.2441697
10.1109/TASSP.1987.1165054
10.1016/j.neunet.2014.10.003
10.1109/TCYB.2017.2760908
10.1109/TSMCB.2011.2140395
10.1109/81.244913
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2018.2855724
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3956
ExternalDocumentID 30059329
10_1109_TCYB_2018_2855724
8423207
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773136; 11471088
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-db6db221e0e09d54e86e862fc1039637d3e6a4722a02885cbbaf54ac6575a0503
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 14:03:52 EDT 2025
Sun Jun 29 14:16:18 EDT 2025
Thu Apr 03 06:58:08 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
Tue Jul 01 00:53:53 EDT 2025
Wed Aug 27 05:50:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-db6db221e0e09d54e86e862fc1039637d3e6a4722a02885cbbaf54ac6575a0503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4543-4940
PMID 30059329
PQID 2261261077
PQPubID 85422
PageCount 11
ParticipantIDs crossref_primary_10_1109_TCYB_2018_2855724
proquest_journals_2261261077
pubmed_primary_30059329
ieee_primary_8423207
proquest_miscellaneous_2080835178
crossref_citationtrail_10_1109_TCYB_2018_2855724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref15
ref14
ref31
guo (ref29) 2011; 22
ref33
ref11
ref32
ref10
aubin (ref24) 1984
ref2
ref1
ref17
ref16
ref19
ref18
liu (ref28) 2011; 41
clarke (ref21) 1983
ref23
ref26
ref25
ref20
ref22
ref27
ref8
ref7
ref9
ref4
kreutz-delgado (ref13) 2009
ref3
ref6
ref5
hoshuyama (ref30) 2001
References_xml – volume: 22
  start-page: 1892
  year: 2011
  ident: ref29
  article-title: A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2169682
– ident: ref27
  doi: 10.1016/j.neunet.2018.01.008
– ident: ref33
  doi: 10.1109/78.923296
– ident: ref17
  doi: 10.1109/TNNLS.2016.2635676
– ident: ref11
  doi: 10.1109/TCYB.2016.2608499
– ident: ref9
  doi: 10.1109/TCYB.2016.2523541
– ident: ref20
  doi: 10.1016/j.neucom.2013.10.008
– ident: ref25
  doi: 10.1109/TCSI.2007.902607
– ident: ref15
  doi: 10.1109/TCYB.2016.2632159
– ident: ref18
  doi: 10.1016/j.neunet.2011.09.001
– ident: ref4
  doi: 10.1016/j.sigpro.2005.12.004
– ident: ref7
  doi: 10.1109/TNNLS.2015.2496658
– ident: ref22
  doi: 10.1023/A:1022659230603
– ident: ref26
  doi: 10.1109/TNN.2004.841779
– ident: ref34
  doi: 10.1109/8.267359
– year: 2001
  ident: ref30
  publication-title: Robust adaptive beamforming
– ident: ref23
  doi: 10.1109/49.363139
– year: 1984
  ident: ref24
  publication-title: Differential Inclusions Set-Valued Maps and Viability Theory
  doi: 10.1007/978-3-642-69512-4
– ident: ref3
  doi: 10.1109/TSP.2003.816878
– ident: ref14
  doi: 10.1109/TCYB.2015.2490170
– start-page: 1
  year: 2009
  ident: ref13
  article-title: The complex gradient operator and the CR-calculus
  publication-title: Mathematics
– ident: ref19
  doi: 10.1109/TCYB.2016.2567449
– ident: ref31
  doi: 10.1109/TSP.2014.2298384
– ident: ref6
  doi: 10.1109/TSMCB.2012.2210038
– ident: ref12
  doi: 10.1109/TNNLS.2015.2500618
– year: 1983
  ident: ref21
  publication-title: Optimization and Nonsmooth Analysis
– ident: ref10
  doi: 10.1109/TNNLS.2014.2334364
– ident: ref2
  doi: 10.1002/mrm.21391
– ident: ref1
  doi: 10.1109/TNNLS.2015.2441697
– ident: ref32
  doi: 10.1109/TASSP.1987.1165054
– ident: ref16
  doi: 10.1016/j.neunet.2014.10.003
– ident: ref8
  doi: 10.1109/TCYB.2017.2760908
– volume: 41
  start-page: 1323
  year: 2011
  ident: ref28
  article-title: A one-layer recurrent neural network for constrained nonsmooth optimization
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2011.2140395
– ident: ref5
  doi: 10.1109/81.244913
SSID ssj0000816898
Score 2.4197905
Snippet Complex-variable pseudoconvex optimization has been widely used in numerous scientific and engineering optimization problems. A neurodynamic approach is...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3946
SubjectTerms Beamforming
Complex-variable pseudoconvex optimization
Complexity
Constraints
Convergence
Linear programming
Lyapunov function
Neural networks
Neurodynamics
Optimization
Penalty function
Programming
recurrent neural network
Recurrent neural networks
time-varying penalty
Title A Novel Neurodynamic Approach to Constrained Complex-Variable Pseudoconvex Optimization
URI https://ieeexplore.ieee.org/document/8423207
https://www.ncbi.nlm.nih.gov/pubmed/30059329
https://www.proquest.com/docview/2261261077
https://www.proquest.com/docview/2080835178
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnrgApXwsFORKHGhFttnEdpzjUlFVSC09tKWcIseeXLrdVGyCKn49M443SAhQpT1EipN1MmPnjcfzHsA7mhNVY7WnICd1iZR5nljtVKIaY02aIbkMLw2cnOrjC_n5Sl1twIexFgYRw-YznPJhyOX71vW8VHZgOKvIpeMPKHAbarXG9ZQgIBGkbzM6SAhVFDGJOUvLg_PDbx95H5eZZkapImM5njzI2QVs-fuLFCRW_o02w1fn6DGcrPs7bDa5nvZdPXU__6ByvO8DPYFHEX6K-eAvW7CBy6ewFQf4SryPLNR72_B1Lk7bH7gQgb7DD8L1Yh4pyEXXCtb6DAoT6AVPKwu8Sy4p9OZiLHG2wp46wHva78QXmpduYsHnM7g4-nR-eJxEFYbE5bLsEl-z5FQ2wxTT0iuJRtMvaxwnkXVe-By1ZcpJS1DFKFfXtlHSOs7oWGabeQ6by3aJL0E4J532FPqiLKS2ziiZo0c5c40qrFYTSNeWqFykKOfnWFQhVEnLiu1YsR2raMcJ7I-X3A78HP9rvM02GBvG1z-BnbW5qziCV1XG3GqELQs6vTueprHHCRW7xLanNgS3CcHOCjOBF4ObjPdee9erv__na3hIPSuHqsYd2Oy-9_iG4E1Xvw1-_QsI_fIU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWq9gAXoBTolgJG4gCIbPNhO85xqagW6C4ctlBOkWNPLmw3iE2qqr--M443SAgQUg6R4iROZmw_ezzvMfYC-0RZG-VwkhPbSIgsi4yyMpK1NjpOAV2GlgZmczU9Ex_O5fkWezPkwgCA33wGYzr1sXzX2I6Wyo40RRUpdXwHx32Z9Nlaw4qKl5Dw4rcpnkSIK_IQxkzi4mhx_O0t7eTS41RLmackyJN5QTuPLn-NSV5k5e940487J3fZbFPjfrvJ93HXVmN7_RuZ4_9-0j12JwBQPuk9Zpdtweo-2w1NfM1fBh7qV3vs64TPm0tYck_g4Xrpej4JJOS8bTipfXqNCXCcOpYlXEVfcPJN6Vj88xo6rADtar_in7Bnuggpnw_Y2cm7xfE0CjoMkc1E0UauItGpNIEY4sJJAVrhkdaWwsgqy10GyhDppEGwoqWtKlNLYSzFdAzxzTxk26tmBfuMWyuscjj5BZELZayWIgMHIrG1zI2SIxZvLFHaQFJO37Es_WQlLkqyY0l2LIMdR-z1cMuPnqHjX4X3yAZDwfD7R-xwY-4ytOF1mRK7GqLLHC8_Hy5j66OQillB02EZBNyIYZNcj9ij3k2GZ2-86-DP73zGbk0Xs9Py9P3842N2G2tZ9DmOh2y7_dnBEwQ7bfXU-_gN0OX1XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Neurodynamic+Approach+to+Constrained+Complex-Variable+Pseudoconvex+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Na&rft.au=Qin%2C+Sitian&rft.date=2019-11-01&rft.eissn=2168-2275&rft.volume=49&rft.issue=11&rft.spage=3946&rft_id=info:doi/10.1109%2FTCYB.2018.2855724&rft_id=info%3Apmid%2F30059329&rft.externalDocID=30059329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon