Reinforcement Learning With Data Envelopment Analysis and Conditional Value-At-Risk for the Capacity Expansion Problem

The capacity expansion problem is solved by accurately measuring the existing demand-supply mismatch and controlling the emissions output, considering multiple objectives, specific constraints, resource diversity, and resource allocation. This article proposes a reinforcement learning (RL) framework...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on engineering management Vol. 71; pp. 1 - 12
Main Authors Lee, Chia-Yen, Chen, Yen-Wen
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capacity expansion problem is solved by accurately measuring the existing demand-supply mismatch and controlling the emissions output, considering multiple objectives, specific constraints, resource diversity, and resource allocation. This article proposes a reinforcement learning (RL) framework embedded with data envelopment analysis (DEA) to generate the optimal policy and guide the productivity improvement. The proposed framework uses DEA to evaluate efficiency and effectiveness for reward estimation in RL, and also assesses conditional value-at-risk to characterize the risk-averse capacity decision. Instead of focusing on short-term fluctuations in demand, RL optimizes the expected future reward with sequential capacity decisions over time. An empirical study of U.S. power generation validates the proposed framework and provides the managerial implications to policy makers. The results show that the RL agent can successfully learn the optimal policy through observing the interactions between the agent and the environment, and suggest the capacity adjustment that can improve efficiency by 8.3% and effectiveness by 0.9%. We conclude that RL complements productivity analysis, and emphasizes ex-ante planning over ex-post evaluation.
AbstractList The capacity expansion problem is solved by accurately measuring the existing demand-supply mismatch and controlling the emissions output, considering multiple objectives, specific constraints, resource diversity, and resource allocation. This article proposes a reinforcement learning (RL) framework embedded with data envelopment analysis (DEA) to generate the optimal policy and guide the productivity improvement. The proposed framework uses DEA to evaluate efficiency and effectiveness for reward estimation in RL, and also assesses conditional value-at-risk to characterize the risk-averse capacity decision. Instead of focusing on short-term fluctuations in demand, RL optimizes the expected future reward with sequential capacity decisions over time. An empirical study of U.S. power generation validates the proposed framework and provides the managerial implications to policy makers. The results show that the RL agent can successfully learn the optimal policy through observing the interactions between the agent and the environment, and suggest the capacity adjustment that can improve efficiency by 8.3% and effectiveness by 0.9%. We conclude that RL complements productivity analysis, and emphasizes ex-ante planning over ex-post evaluation.
Author Chen, Yen-Wen
Lee, Chia-Yen
Author_xml – sequence: 1
  givenname: Chia-Yen
  orcidid: 0000-0002-2928-3337
  surname: Lee
  fullname: Lee, Chia-Yen
  organization: Department of Information Management, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: Yen-Wen
  orcidid: 0009-0002-6789-5331
  surname: Chen
  fullname: Chen, Yen-Wen
  organization: Institute of Manufacturing Information and Systems, National Cheng Kung University, Tainan, Taiwan
BookMark eNp9kE1PGzEQhi1EJQLtvQcOljhvaq_tjfcYhQCVgqgQbY-rWe8sGDb2YjuI_Ps6DQfEgdNoZt53Pp5jcui8Q0K-czblnNU_7pbX05KVYirKSqqqOiATrpQuGJPskEwY47qoRc2PyHGMjzmVqmQT8nKL1vU-GFyjS3SFEJx19_SvTQ_0HBLQpXvBwY__23MHwzbaSMF1dOFdZ5P1uUb_wLDBYp6KWxufaJ5H0wPSBYxgbNrS5esILmYp_RV8O-D6K_nSwxDx21s8Ib8vlneLq2J1c_lzMV8VRsg6FZ1GXeu25b0WqlZGt6oHnAmJCsBU3UyWRqtOgmAotWnRKK7KVvRg2m5manFCzvZzx-CfNxhT8-g3IV8cG8GEqEqmlc4qtleZ4GMM2DdjsGsI24azZke3yXSbHd3mjW62VB8s-VHY0UgB7PCZ8XRvtIj4bg9nknMt_gHP1IsY
CODEN IEEMA4
CitedBy_id crossref_primary_10_3389_fenrg_2025_1561763
crossref_primary_10_1109_TEM_2023_3340302
crossref_primary_10_1016_j_ijpe_2024_109488
Cites_doi 10.1016/j.eswa.2020.114186
10.1016/S0377-2217(03)00174-7
10.1057/s41274-016-0129-8
10.1109/TEM.2019.2915055
10.1287/opre.30.5.907
10.1016/j.ejor.2006.11.041
10.1007/s11123-010-0178-y
10.2307/2526781
10.1109/TEM.2019.2904985
10.1007/s11123-012-0292-0
10.1016/j.ejor.2008.02.017
10.1109/TSMC.2014.2358639
10.1504/IJRM.2009.027604
10.1109/TPWRS.2018.2889032
10.1016/j.cor.2017.10.006
10.1007/s10957-014-0557-z
10.1109/ITSC.2019.8917429
10.1002/9781118946688.ch26
10.1016/j.omega.2007.06.003
10.1006/jema.1997.0146
10.1111/j.1467-8276.2008.01238.x
10.1038/nature14236
10.1016/j.ejor.2017.01.006
10.1016/j.jenvman.2019.03.114
10.1016/j.cor.2015.02.015
10.1016/j.resconrec.2022.106589
10.1016/j.ijepes.2013.08.018
10.1016/j.mcm.2004.10.003
10.1007/BF00158770
10.1109/tem.2021.3118275
10.1016/j.ijepes.2021.107923
10.1007/s10479-017-2423-5
10.1016/j.econlet.2005.02.013
10.1016/j.chemosphere.2021.131867
10.1016/j.ejor.2021.04.003
10.1016/j.renene.2021.11.112
10.1109/ACC.2014.6859437
10.1007/978-3-030-75162-3_4
10.2307/2525845
10.1016/j.ejor.2014.01.026
10.1109/tpwrs.2014.2372009
10.1007/s10479-020-03668-8
10.1016/j.eneco.2014.07.016
10.1016/j.apenergy.2021.117745
10.1609/aaai.v34i04.5870
10.1016/j.ejor.2014.02.039
10.5220/0008175604120423
10.1007/978-3-030-64765-0_4
10.1016/j.ejor.2011.08.004
10.1093/acprof:oso/9780195183528.001.0001
10.1109/IVS.2019.8813791
10.1016/j.jenvman.2017.01.066
10.1287/mnsc.32.1.30
10.1609/aaai.v32i1.11791
10.1007/978-3-642-48318-9
10.1016/j.ejor.2016.05.051
10.1007/s10479-015-1932-3
10.1016/j.ejor.2013.07.043
10.1016/j.ejor.2017.10.048
10.1007/s11123-012-0333-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TEM.2023.3264566
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0040
EndPage 12
ExternalDocumentID 10_1109_TEM_2023_3264566
10104118
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan; Ministry of Science and Technology of Taiwan
  grantid: MOST111-2628-E-002-019-MY3
  funderid: 10.13039/501100004663
– fundername: 2021 Seed Research Grant from College of Management
– fundername: National Taiwan University
  funderid: 10.13039/501100006477
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACHQT
ACIWK
ACNCT
AENEX
AFOGA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
.-4
5VS
AAYOK
AAYXX
ADMHC
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-d8e898bb1f83595c8b5fae734e5aac6d742c85d4a30e48cbec5152b3facbd7c93
IEDL.DBID RIE
ISSN 0018-9391
IngestDate Sun Jun 29 16:23:17 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 00:58:48 EDT 2025
Wed Aug 27 02:17:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-d8e898bb1f83595c8b5fae734e5aac6d742c85d4a30e48cbec5152b3facbd7c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2928-3337
0009-0002-6789-5331
PQID 3033620858
PQPubID 4949
PageCount 12
ParticipantIDs ieee_primary_10104118
crossref_citationtrail_10_1109_TEM_2023_3264566
proquest_journals_3033620858
crossref_primary_10_1109_TEM_2023_3264566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on engineering management
PublicationTitleAbbrev TEM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref3
Fre (ref16) 1994; 84
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
Chow (ref9) 2017; 18
ref39
ref38
Puterman (ref52) 2005
Bellemare (ref4); 70
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref6
  doi: 10.1016/j.eswa.2020.114186
– volume: 84
  start-page: 66
  issue: 1
  year: 1994
  ident: ref16
  article-title: Productivity growth, technical progress, and efficiency change in industrialized countries
  publication-title: Amer. Econ. Rev.
– ident: ref2
  doi: 10.1016/S0377-2217(03)00174-7
– ident: ref32
  doi: 10.1057/s41274-016-0129-8
– ident: ref7
  doi: 10.1109/TEM.2019.2915055
– ident: ref44
  doi: 10.1287/opre.30.5.907
– ident: ref26
  doi: 10.1016/j.ejor.2006.11.041
– ident: ref48
  doi: 10.1007/s11123-010-0178-y
– ident: ref18
  doi: 10.2307/2526781
– ident: ref41
  doi: 10.1109/TEM.2019.2904985
– ident: ref63
  doi: 10.1007/s11123-012-0292-0
– ident: ref54
  doi: 10.1016/j.ejor.2008.02.017
– ident: ref10
  doi: 10.1109/TSMC.2014.2358639
– ident: ref22
  doi: 10.1504/IJRM.2009.027604
– ident: ref53
  doi: 10.1109/TPWRS.2018.2889032
– ident: ref45
  doi: 10.1016/j.cor.2017.10.006
– ident: ref38
  doi: 10.1007/s10957-014-0557-z
– ident: ref61
  doi: 10.1109/ITSC.2019.8917429
– ident: ref24
  doi: 10.1002/9781118946688.ch26
– ident: ref58
  doi: 10.1016/j.omega.2007.06.003
– ident: ref11
  doi: 10.1006/jema.1997.0146
– ident: ref28
  doi: 10.1111/j.1467-8276.2008.01238.x
– ident: ref46
  doi: 10.1038/nature14236
– ident: ref14
  doi: 10.1016/j.ejor.2017.01.006
– ident: ref34
  doi: 10.1016/j.jenvman.2019.03.114
– ident: ref20
  doi: 10.1016/j.cor.2015.02.015
– ident: ref64
  doi: 10.1016/j.resconrec.2022.106589
– ident: ref43
  doi: 10.1016/j.ijepes.2013.08.018
– volume: 18
  start-page: 6070
  issue: 1
  year: 2017
  ident: ref9
  article-title: Risk-constrained reinforcement learning with percentile risk criteria
  publication-title: J. Mach. Learn. Res.
– ident: ref49
  doi: 10.1016/j.mcm.2004.10.003
– ident: ref15
  doi: 10.1007/BF00158770
– ident: ref56
  doi: 10.1109/tem.2021.3118275
– volume: 70
  start-page: 449
  volume-title: Proc. 34th Int. Conf. Mach. Learn., PMLR
  ident: ref4
  article-title: A distributional perspective on reinforcement learning
– ident: ref13
  doi: 10.1016/j.ijepes.2021.107923
– ident: ref59
  doi: 10.1007/s10479-017-2423-5
– ident: ref50
  doi: 10.1016/j.econlet.2005.02.013
– ident: ref47
  doi: 10.1016/j.chemosphere.2021.131867
– ident: ref39
  doi: 10.1016/j.ejor.2021.04.003
– ident: ref42
  doi: 10.1016/j.renene.2021.11.112
– ident: ref8
  doi: 10.1109/ACC.2014.6859437
– ident: ref40
  doi: 10.1007/978-3-030-75162-3_4
– ident: ref1
  doi: 10.2307/2525845
– volume-title: Markov Decision Processes: Discrete Stochastic Dynamic Programming
  year: 2005
  ident: ref52
– ident: ref29
  doi: 10.1016/j.ejor.2014.01.026
– ident: ref30
  doi: 10.1109/tpwrs.2014.2372009
– ident: ref62
  doi: 10.1007/s10479-020-03668-8
– ident: ref51
  doi: 10.1016/j.eneco.2014.07.016
– ident: ref21
  doi: 10.1016/j.apenergy.2021.117745
– ident: ref27
  doi: 10.1609/aaai.v34i04.5870
– ident: ref25
  doi: 10.1016/j.ejor.2014.02.039
– ident: ref55
  doi: 10.5220/0008175604120423
– ident: ref57
  doi: 10.1007/978-3-030-64765-0_4
– ident: ref35
  doi: 10.1016/j.ejor.2011.08.004
– ident: ref19
  doi: 10.1093/acprof:oso/9780195183528.001.0001
– ident: ref5
  doi: 10.1109/IVS.2019.8813791
– ident: ref60
  doi: 10.1016/j.jenvman.2017.01.066
– ident: ref3
  doi: 10.1287/mnsc.32.1.30
– ident: ref12
  doi: 10.1609/aaai.v32i1.11791
– ident: ref23
  doi: 10.1007/978-3-642-48318-9
– ident: ref31
  doi: 10.1016/j.ejor.2016.05.051
– ident: ref37
  doi: 10.1007/s10479-015-1932-3
– ident: ref36
  doi: 10.1016/j.ejor.2013.07.043
– ident: ref33
  doi: 10.1016/j.ejor.2017.10.048
– ident: ref17
  doi: 10.1007/s11123-012-0333-8
SSID ssj0014520
Score 2.4074275
Snippet The capacity expansion problem is solved by accurately measuring the existing demand-supply mismatch and controlling the emissions output, considering multiple...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Capacity expansion
Capacity planning
conditional value-at-risk (CVAR)
Costs
Data analysis
Data envelopment analysis
data envelopment analysis (DEA)
Effectiveness
efficiency and effectiveness measure
Empirical analysis
Evaluation
Indexes
Machine learning
Optimization
Power generation
Productivity
reinforcement learning (RL)
Resource allocation
Risk aversion
risk-averse decision
Uncertainty
Title Reinforcement Learning With Data Envelopment Analysis and Conditional Value-At-Risk for the Capacity Expansion Problem
URI https://ieeexplore.ieee.org/document/10104118
https://www.proquest.com/docview/3033620858
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-J0Sg5ePLRr13RNjmN2DGFDZNPdSpKmKhuduFbEv96XtB1TUbyFkITAS_K-917e9xC6FIBRhewwK3BiTaodJJaGIZYC1ZMEHotdUwxmNO4Op-Rm5s_KZHWTC6OUMp_PlK2bJpYfL2WuXWVww8F4AERcQzWw3IpkrXXIgPglB6MLN9hjbhWTdFh7Eo5sXSbcBqwCgKH7RQeZoio_XmKjXgZ7aFxtrPhVMrfzTNjy4xtn4793vo92S6CJe8XJOEBbKj1EOxv0g0fo7U4Z3lRpXIS4pFp9xA_P2RO-5hnHYbr-UoQr-hLM0xj3lzrUbdyI-J4vcmX1NB3Jao5hPQygEvdBC0uA-Dh8hwdH--TwbVG8poGmg3DSH1plHQZLeoRlVkwVZVQIN6E6jVdS4SdcBR5RPueyG4N1LakfE-45ilAJpwJAUkd4CZciDiTzjlE9XabqBGHFYF6H8cRnmhuACsICsCChm-sO2UTtSjKRLEnKda2MRWSMFYdFIMtIyzIqZdlEV-sZLwVBxx9jG1o0G-MKqTRRq5J-VF7hVQS6HZQ7IFJ6-su0M7QNq5PCIdNC9ew1V-cAUTJxYY7mJ-yB4io
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB0hOAAHdkShgA9w4JDQZmnsA4eqFJWlCKGy3ILtOIBAKaIp27_wK3wbYyepWAQ3JG6RZSey8zx-M7bfAKwJ5KhCOswKKpEW1Q5iS9MQS-HSEwcui6omGUz7sNY68fbO_fMheB3chVFKmcNnytaPZi8_6sq-DpXhDEfnARlxfoZyXz0_oofW29rdxt-57jg7zU6jZeVJBCzpeiy1Iqooo0JUY6rvoEoq_JirwPWUz7msRegaSupHHncryqMSu4QrvCPcmEsRBVJrLaGFH0Gi4TvZ9bDBJoXn56qPVbQZLqsWu6AVttlptm2dmNxGdoQUpfZp1TNpXL7ZfrOg7UzCWzEU2TmWG7ufClu-fFGJ_LdjNQUTOZUm9Qz70zCkkhkY_yCwOAsPx8oow0oTBCW5mOwlObtOr8g2TzlpJoNDU6QQaCE8iUijqzfzTaCUnPLbvrLqWnCld0PwfQRpM2kgz5DoxJDmE5pUHXUkR1l6njk4-ZOOz8Nw0k3UAhDFsJ3DeOwzrX5AhccC9JGxmOsCWYLNAgmhzGXYdTaQ29C4YxUWInZCjZ0wx04JNgYt7jIJkl_qzmkofKiXoaAE5QJtYW6keiGyF6QvyLnp4g_NVmG01WkfhAe7h_tLMIZf8rLwUxmG0_u-WkZClooVMy0IXPw1tt4BwABC_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+With+Data+Envelopment+Analysis+and+Conditional+Value-At-Risk+for+the+Capacity+Expansion+Problem&rft.jtitle=IEEE+transactions+on+engineering+management&rft.au=Lee%2C+Chia-Yen&rft.au=Chen%2C+Yen-Wen&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9391&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTEM.2023.3264566&rft.externalDocID=10104118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9391&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9391&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9391&client=summon