Reinforcement Learning With Data Envelopment Analysis and Conditional Value-At-Risk for the Capacity Expansion Problem
The capacity expansion problem is solved by accurately measuring the existing demand-supply mismatch and controlling the emissions output, considering multiple objectives, specific constraints, resource diversity, and resource allocation. This article proposes a reinforcement learning (RL) framework...
Saved in:
Published in | IEEE transactions on engineering management Vol. 71; pp. 1 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capacity expansion problem is solved by accurately measuring the existing demand-supply mismatch and controlling the emissions output, considering multiple objectives, specific constraints, resource diversity, and resource allocation. This article proposes a reinforcement learning (RL) framework embedded with data envelopment analysis (DEA) to generate the optimal policy and guide the productivity improvement. The proposed framework uses DEA to evaluate efficiency and effectiveness for reward estimation in RL, and also assesses conditional value-at-risk to characterize the risk-averse capacity decision. Instead of focusing on short-term fluctuations in demand, RL optimizes the expected future reward with sequential capacity decisions over time. An empirical study of U.S. power generation validates the proposed framework and provides the managerial implications to policy makers. The results show that the RL agent can successfully learn the optimal policy through observing the interactions between the agent and the environment, and suggest the capacity adjustment that can improve efficiency by 8.3% and effectiveness by 0.9%. We conclude that RL complements productivity analysis, and emphasizes ex-ante planning over ex-post evaluation. |
---|---|
AbstractList | The capacity expansion problem is solved by accurately measuring the existing demand-supply mismatch and controlling the emissions output, considering multiple objectives, specific constraints, resource diversity, and resource allocation. This article proposes a reinforcement learning (RL) framework embedded with data envelopment analysis (DEA) to generate the optimal policy and guide the productivity improvement. The proposed framework uses DEA to evaluate efficiency and effectiveness for reward estimation in RL, and also assesses conditional value-at-risk to characterize the risk-averse capacity decision. Instead of focusing on short-term fluctuations in demand, RL optimizes the expected future reward with sequential capacity decisions over time. An empirical study of U.S. power generation validates the proposed framework and provides the managerial implications to policy makers. The results show that the RL agent can successfully learn the optimal policy through observing the interactions between the agent and the environment, and suggest the capacity adjustment that can improve efficiency by 8.3% and effectiveness by 0.9%. We conclude that RL complements productivity analysis, and emphasizes ex-ante planning over ex-post evaluation. |
Author | Chen, Yen-Wen Lee, Chia-Yen |
Author_xml | – sequence: 1 givenname: Chia-Yen orcidid: 0000-0002-2928-3337 surname: Lee fullname: Lee, Chia-Yen organization: Department of Information Management, National Taiwan University, Taipei, Taiwan – sequence: 2 givenname: Yen-Wen orcidid: 0009-0002-6789-5331 surname: Chen fullname: Chen, Yen-Wen organization: Institute of Manufacturing Information and Systems, National Cheng Kung University, Tainan, Taiwan |
BookMark | eNp9kE1PGzEQhi1EJQLtvQcOljhvaq_tjfcYhQCVgqgQbY-rWe8sGDb2YjuI_Ps6DQfEgdNoZt53Pp5jcui8Q0K-czblnNU_7pbX05KVYirKSqqqOiATrpQuGJPskEwY47qoRc2PyHGMjzmVqmQT8nKL1vU-GFyjS3SFEJx19_SvTQ_0HBLQpXvBwY__23MHwzbaSMF1dOFdZ5P1uUb_wLDBYp6KWxufaJ5H0wPSBYxgbNrS5esILmYp_RV8O-D6K_nSwxDx21s8Ib8vlneLq2J1c_lzMV8VRsg6FZ1GXeu25b0WqlZGt6oHnAmJCsBU3UyWRqtOgmAotWnRKK7KVvRg2m5manFCzvZzx-CfNxhT8-g3IV8cG8GEqEqmlc4qtleZ4GMM2DdjsGsI24azZke3yXSbHd3mjW62VB8s-VHY0UgB7PCZ8XRvtIj4bg9nknMt_gHP1IsY |
CODEN | IEEMA4 |
CitedBy_id | crossref_primary_10_3389_fenrg_2025_1561763 crossref_primary_10_1109_TEM_2023_3340302 crossref_primary_10_1016_j_ijpe_2024_109488 |
Cites_doi | 10.1016/j.eswa.2020.114186 10.1016/S0377-2217(03)00174-7 10.1057/s41274-016-0129-8 10.1109/TEM.2019.2915055 10.1287/opre.30.5.907 10.1016/j.ejor.2006.11.041 10.1007/s11123-010-0178-y 10.2307/2526781 10.1109/TEM.2019.2904985 10.1007/s11123-012-0292-0 10.1016/j.ejor.2008.02.017 10.1109/TSMC.2014.2358639 10.1504/IJRM.2009.027604 10.1109/TPWRS.2018.2889032 10.1016/j.cor.2017.10.006 10.1007/s10957-014-0557-z 10.1109/ITSC.2019.8917429 10.1002/9781118946688.ch26 10.1016/j.omega.2007.06.003 10.1006/jema.1997.0146 10.1111/j.1467-8276.2008.01238.x 10.1038/nature14236 10.1016/j.ejor.2017.01.006 10.1016/j.jenvman.2019.03.114 10.1016/j.cor.2015.02.015 10.1016/j.resconrec.2022.106589 10.1016/j.ijepes.2013.08.018 10.1016/j.mcm.2004.10.003 10.1007/BF00158770 10.1109/tem.2021.3118275 10.1016/j.ijepes.2021.107923 10.1007/s10479-017-2423-5 10.1016/j.econlet.2005.02.013 10.1016/j.chemosphere.2021.131867 10.1016/j.ejor.2021.04.003 10.1016/j.renene.2021.11.112 10.1109/ACC.2014.6859437 10.1007/978-3-030-75162-3_4 10.2307/2525845 10.1016/j.ejor.2014.01.026 10.1109/tpwrs.2014.2372009 10.1007/s10479-020-03668-8 10.1016/j.eneco.2014.07.016 10.1016/j.apenergy.2021.117745 10.1609/aaai.v34i04.5870 10.1016/j.ejor.2014.02.039 10.5220/0008175604120423 10.1007/978-3-030-64765-0_4 10.1016/j.ejor.2011.08.004 10.1093/acprof:oso/9780195183528.001.0001 10.1109/IVS.2019.8813791 10.1016/j.jenvman.2017.01.066 10.1287/mnsc.32.1.30 10.1609/aaai.v32i1.11791 10.1007/978-3-642-48318-9 10.1016/j.ejor.2016.05.051 10.1007/s10479-015-1932-3 10.1016/j.ejor.2013.07.043 10.1016/j.ejor.2017.10.048 10.1007/s11123-012-0333-8 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TEM.2023.3264566 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0040 |
EndPage | 12 |
ExternalDocumentID | 10_1109_TEM_2023_3264566 10104118 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan; Ministry of Science and Technology of Taiwan grantid: MOST111-2628-E-002-019-MY3 funderid: 10.13039/501100004663 – fundername: 2021 Seed Research Grant from College of Management – fundername: National Taiwan University funderid: 10.13039/501100006477 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACGOD ACHQT ACIWK ACNCT AENEX AFOGA AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 .-4 5VS AAYOK AAYXX ADMHC AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH RIG VH1 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c349t-d8e898bb1f83595c8b5fae734e5aac6d742c85d4a30e48cbec5152b3facbd7c93 |
IEDL.DBID | RIE |
ISSN | 0018-9391 |
IngestDate | Sun Jun 29 16:23:17 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 00:58:48 EDT 2025 Wed Aug 27 02:17:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-d8e898bb1f83595c8b5fae734e5aac6d742c85d4a30e48cbec5152b3facbd7c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2928-3337 0009-0002-6789-5331 |
PQID | 3033620858 |
PQPubID | 4949 |
PageCount | 12 |
ParticipantIDs | ieee_primary_10104118 crossref_citationtrail_10_1109_TEM_2023_3264566 proquest_journals_3033620858 crossref_primary_10_1109_TEM_2023_3264566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on engineering management |
PublicationTitleAbbrev | TEM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref3 Fre (ref16) 1994; 84 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 Chow (ref9) 2017; 18 ref39 ref38 Puterman (ref52) 2005 Bellemare (ref4); 70 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref6 doi: 10.1016/j.eswa.2020.114186 – volume: 84 start-page: 66 issue: 1 year: 1994 ident: ref16 article-title: Productivity growth, technical progress, and efficiency change in industrialized countries publication-title: Amer. Econ. Rev. – ident: ref2 doi: 10.1016/S0377-2217(03)00174-7 – ident: ref32 doi: 10.1057/s41274-016-0129-8 – ident: ref7 doi: 10.1109/TEM.2019.2915055 – ident: ref44 doi: 10.1287/opre.30.5.907 – ident: ref26 doi: 10.1016/j.ejor.2006.11.041 – ident: ref48 doi: 10.1007/s11123-010-0178-y – ident: ref18 doi: 10.2307/2526781 – ident: ref41 doi: 10.1109/TEM.2019.2904985 – ident: ref63 doi: 10.1007/s11123-012-0292-0 – ident: ref54 doi: 10.1016/j.ejor.2008.02.017 – ident: ref10 doi: 10.1109/TSMC.2014.2358639 – ident: ref22 doi: 10.1504/IJRM.2009.027604 – ident: ref53 doi: 10.1109/TPWRS.2018.2889032 – ident: ref45 doi: 10.1016/j.cor.2017.10.006 – ident: ref38 doi: 10.1007/s10957-014-0557-z – ident: ref61 doi: 10.1109/ITSC.2019.8917429 – ident: ref24 doi: 10.1002/9781118946688.ch26 – ident: ref58 doi: 10.1016/j.omega.2007.06.003 – ident: ref11 doi: 10.1006/jema.1997.0146 – ident: ref28 doi: 10.1111/j.1467-8276.2008.01238.x – ident: ref46 doi: 10.1038/nature14236 – ident: ref14 doi: 10.1016/j.ejor.2017.01.006 – ident: ref34 doi: 10.1016/j.jenvman.2019.03.114 – ident: ref20 doi: 10.1016/j.cor.2015.02.015 – ident: ref64 doi: 10.1016/j.resconrec.2022.106589 – ident: ref43 doi: 10.1016/j.ijepes.2013.08.018 – volume: 18 start-page: 6070 issue: 1 year: 2017 ident: ref9 article-title: Risk-constrained reinforcement learning with percentile risk criteria publication-title: J. Mach. Learn. Res. – ident: ref49 doi: 10.1016/j.mcm.2004.10.003 – ident: ref15 doi: 10.1007/BF00158770 – ident: ref56 doi: 10.1109/tem.2021.3118275 – volume: 70 start-page: 449 volume-title: Proc. 34th Int. Conf. Mach. Learn., PMLR ident: ref4 article-title: A distributional perspective on reinforcement learning – ident: ref13 doi: 10.1016/j.ijepes.2021.107923 – ident: ref59 doi: 10.1007/s10479-017-2423-5 – ident: ref50 doi: 10.1016/j.econlet.2005.02.013 – ident: ref47 doi: 10.1016/j.chemosphere.2021.131867 – ident: ref39 doi: 10.1016/j.ejor.2021.04.003 – ident: ref42 doi: 10.1016/j.renene.2021.11.112 – ident: ref8 doi: 10.1109/ACC.2014.6859437 – ident: ref40 doi: 10.1007/978-3-030-75162-3_4 – ident: ref1 doi: 10.2307/2525845 – volume-title: Markov Decision Processes: Discrete Stochastic Dynamic Programming year: 2005 ident: ref52 – ident: ref29 doi: 10.1016/j.ejor.2014.01.026 – ident: ref30 doi: 10.1109/tpwrs.2014.2372009 – ident: ref62 doi: 10.1007/s10479-020-03668-8 – ident: ref51 doi: 10.1016/j.eneco.2014.07.016 – ident: ref21 doi: 10.1016/j.apenergy.2021.117745 – ident: ref27 doi: 10.1609/aaai.v34i04.5870 – ident: ref25 doi: 10.1016/j.ejor.2014.02.039 – ident: ref55 doi: 10.5220/0008175604120423 – ident: ref57 doi: 10.1007/978-3-030-64765-0_4 – ident: ref35 doi: 10.1016/j.ejor.2011.08.004 – ident: ref19 doi: 10.1093/acprof:oso/9780195183528.001.0001 – ident: ref5 doi: 10.1109/IVS.2019.8813791 – ident: ref60 doi: 10.1016/j.jenvman.2017.01.066 – ident: ref3 doi: 10.1287/mnsc.32.1.30 – ident: ref12 doi: 10.1609/aaai.v32i1.11791 – ident: ref23 doi: 10.1007/978-3-642-48318-9 – ident: ref31 doi: 10.1016/j.ejor.2016.05.051 – ident: ref37 doi: 10.1007/s10479-015-1932-3 – ident: ref36 doi: 10.1016/j.ejor.2013.07.043 – ident: ref33 doi: 10.1016/j.ejor.2017.10.048 – ident: ref17 doi: 10.1007/s11123-012-0333-8 |
SSID | ssj0014520 |
Score | 2.4074275 |
Snippet | The capacity expansion problem is solved by accurately measuring the existing demand-supply mismatch and controlling the emissions output, considering multiple... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Capacity expansion Capacity planning conditional value-at-risk (CVAR) Costs Data analysis Data envelopment analysis data envelopment analysis (DEA) Effectiveness efficiency and effectiveness measure Empirical analysis Evaluation Indexes Machine learning Optimization Power generation Productivity reinforcement learning (RL) Resource allocation Risk aversion risk-averse decision Uncertainty |
Title | Reinforcement Learning With Data Envelopment Analysis and Conditional Value-At-Risk for the Capacity Expansion Problem |
URI | https://ieeexplore.ieee.org/document/10104118 https://www.proquest.com/docview/3033620858 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-J0Sg5ePLRr13RNjmN2DGFDZNPdSpKmKhuduFbEv96XtB1TUbyFkITAS_K-917e9xC6FIBRhewwK3BiTaodJJaGIZYC1ZMEHotdUwxmNO4Op-Rm5s_KZHWTC6OUMp_PlK2bJpYfL2WuXWVww8F4AERcQzWw3IpkrXXIgPglB6MLN9hjbhWTdFh7Eo5sXSbcBqwCgKH7RQeZoio_XmKjXgZ7aFxtrPhVMrfzTNjy4xtn4793vo92S6CJe8XJOEBbKj1EOxv0g0fo7U4Z3lRpXIS4pFp9xA_P2RO-5hnHYbr-UoQr-hLM0xj3lzrUbdyI-J4vcmX1NB3Jao5hPQygEvdBC0uA-Dh8hwdH--TwbVG8poGmg3DSH1plHQZLeoRlVkwVZVQIN6E6jVdS4SdcBR5RPueyG4N1LakfE-45ilAJpwJAUkd4CZciDiTzjlE9XabqBGHFYF6H8cRnmhuACsICsCChm-sO2UTtSjKRLEnKda2MRWSMFYdFIMtIyzIqZdlEV-sZLwVBxx9jG1o0G-MKqTRRq5J-VF7hVQS6HZQ7IFJ6-su0M7QNq5PCIdNC9ew1V-cAUTJxYY7mJ-yB4io |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB0hOAAHdkShgA9w4JDQZmnsA4eqFJWlCKGy3ILtOIBAKaIp27_wK3wbYyepWAQ3JG6RZSey8zx-M7bfAKwJ5KhCOswKKpEW1Q5iS9MQS-HSEwcui6omGUz7sNY68fbO_fMheB3chVFKmcNnytaPZi8_6sq-DpXhDEfnARlxfoZyXz0_oofW29rdxt-57jg7zU6jZeVJBCzpeiy1Iqooo0JUY6rvoEoq_JirwPWUz7msRegaSupHHncryqMSu4QrvCPcmEsRBVJrLaGFH0Gi4TvZ9bDBJoXn56qPVbQZLqsWu6AVttlptm2dmNxGdoQUpfZp1TNpXL7ZfrOg7UzCWzEU2TmWG7ufClu-fFGJ_LdjNQUTOZUm9Qz70zCkkhkY_yCwOAsPx8oow0oTBCW5mOwlObtOr8g2TzlpJoNDU6QQaCE8iUijqzfzTaCUnPLbvrLqWnCld0PwfQRpM2kgz5DoxJDmE5pUHXUkR1l6njk4-ZOOz8Nw0k3UAhDFsJ3DeOwzrX5AhccC9JGxmOsCWYLNAgmhzGXYdTaQ29C4YxUWInZCjZ0wx04JNgYt7jIJkl_qzmkofKiXoaAE5QJtYW6keiGyF6QvyLnp4g_NVmG01WkfhAe7h_tLMIZf8rLwUxmG0_u-WkZClooVMy0IXPw1tt4BwABC_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+With+Data+Envelopment+Analysis+and+Conditional+Value-At-Risk+for+the+Capacity+Expansion+Problem&rft.jtitle=IEEE+transactions+on+engineering+management&rft.au=Lee%2C+Chia-Yen&rft.au=Chen%2C+Yen-Wen&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9391&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTEM.2023.3264566&rft.externalDocID=10104118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9391&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9391&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9391&client=summon |