Long Short-Term Memory Networks for Unconstrained Sleep Stage Classification Using Polyvinylidene Fluoride Film Sensor

Sleep stage scoring is the first step towards quantitative analysis of sleep using polysomnography (PSG) recordings. However, although PSG is a gold standard method for assessing sleep, it is obtrusive and difficult to apply for long-term sleep monitoring. Further, because human experts manually cla...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 24; no. 12; pp. 3606 - 3615
Main Authors Choi, Sang Ho, Kwon, Hyun Bin, Jin, Hyung Won, Yoon, Heenam, Lee, Mi Hyun, Lee, Yu Jin, Park, Kwang Suk
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sleep stage scoring is the first step towards quantitative analysis of sleep using polysomnography (PSG) recordings. However, although PSG is a gold standard method for assessing sleep, it is obtrusive and difficult to apply for long-term sleep monitoring. Further, because human experts manually classify sleep stages, it is time-consuming and exhibits inter-rater variability. Therefore, this article proposes a long short-term memory (LSTM) model for automatic sleep stage scoring using a polyvinylidene fluoride (PVDF) film sensor that can provide unconstrained long-term physiological monitoring. Signals were recorded using a PVDF sensor during PSG. From 60 recordings, 30 were used for training, 10 for validation, and 20 for testing. Sixteen parameters, including movement, respiration-related, and heart rate variability, were extracted from the recorded signals and then normalized. From the selected LSTM architecture, four sleep stage classification performances were evaluated for a test dataset and the results were compared with those of conventional machine learning methods. According to epoch-by-epoch (30 s) analysis, the classification performance for the four sleep stages had an average accuracy of 73.9% and a Cohen's kappa coefficient of 0.55. When compared with other machine learning methods, the proposed method achieved the highest classification performance. The use of LSTM networks with the PVDF film sensor has potential for facilitating automatic sleep scoring, and it can be applied for long-term sleep monitoring at home.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2020.2979168