Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress
Camellia sinensis is an important economic crop worldwide since this plant is used to make one of the most popular non-alcoholic beverages, tea. Salinity together with drought pose a serious threat to the production and qualities of C. sinensis . However, the transcriptome dynamics occurring in resp...
Saved in:
Published in | Tree genetics & genomes Vol. 13; no. 4; pp. 1 - 78 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Camellia sinensis
is an important economic crop worldwide since this plant is used to make one of the most popular non-alcoholic beverages, tea. Salinity together with drought pose a serious threat to the production and qualities of
C. sinensis
. However, the transcriptome dynamics occurring in response to drought stress and salt stress in tea plants are poorly understood at the molecular level. We reported the first large-coverage transcriptome datasets for
C. sinensis
under drought and salt stress using next-generation sequencing technology. Using a high-throughput Illumina sequencing platform, approximately 398.95 million high-quality paired-end reads were generated from young leaves of
C. sinensis
subjected to drought stress and salt stress, and these reads were used for de novo assembly. The transcripts with further processing and filtering yielded a set of 64,905 coding DNA sequences (CDSs) with an average length of 710 bp and an N50 of 933 bp. In total, 3936 and 3715 differentially expressed genes (DEGs) were identified from all analyzed time points of drought stress and salt stress, respectively. Identified in drought and salt stress were 2131 overlapping DEGs, and these are involved in galactosyltransferase activity, tetrapyrrole binding, and hydrolase activity, indicating that
C. sinensis
has a similar molecular response to these two stresses
.
We clustered the above DEGs from both sets into four clusters according to their expression dynamics, with the genes in each cluster showing enrichment for particular functional categories. We also found that under salt stress, most DEGs showed down-regulation at early time points and their expression levels were elevated after 48 h, whereas under drought stress most DEGs were down-regulated in all time points. The DEGs relative to pathways of osmotic product such as proline, sugar, and GABA were identified in
C. sinensis
. Noteworthy, among the identified DEGs are genes involved in the biosynthetic pathways of polyphenol and caffeine, providing evidence at the molecular level that salt and drought affect tea qualities. In addition, we analyzed the differential expression of transcription factors and revealed a large amount of crosstalk between the metabolic pathways of drought and salt stress. All findings suggest that gene expression exhibits rapid and coordinated changes during
C. sinensis
adaptations to drought stress and salt stress, and common themes in the response to both stresses were identified. |
---|---|
AbstractList | Camellia sinensis is an important economic crop worldwide since this plant is used to make one of the most popular non-alcoholic beverages, tea. Salinity together with drought pose a serious threat to the production and qualities of C. sinensis. However, the transcriptome dynamics occurring in response to drought stress and salt stress in tea plants are poorly understood at the molecular level. We reported the first large-coverage transcriptome datasets for C. sinensis under drought and salt stress using next-generation sequencing technology. Using a high-throughput Illumina sequencing platform, approximately 398.95 million high-quality paired-end reads were generated from young leaves of C. sinensis subjected to drought stress and salt stress, and these reads were used for de novo assembly. The transcripts with further processing and filtering yielded a set of 64,905 coding DNA sequences (CDSs) with an average length of 710 bp and an N50 of 933 bp. In total, 3936 and 3715 differentially expressed genes (DEGs) were identified from all analyzed time points of drought stress and salt stress, respectively. Identified in drought and salt stress were 2131 overlapping DEGs, and these are involved in galactosyltransferase activity, tetrapyrrole binding, and hydrolase activity, indicating that C. sinensis has a similar molecular response to these two stresses. We clustered the above DEGs from both sets into four clusters according to their expression dynamics, with the genes in each cluster showing enrichment for particular functional categories. We also found that under salt stress, most DEGs showed down-regulation at early time points and their expression levels were elevated after 48 h, whereas under drought stress most DEGs were down-regulated in all time points. The DEGs relative to pathways of osmotic product such as proline, sugar, and GABA were identified in C. sinensis. Noteworthy, among the identified DEGs are genes involved in the biosynthetic pathways of polyphenol and caffeine, providing evidence at the molecular level that salt and drought affect tea qualities. In addition, we analyzed the differential expression of transcription factors and revealed a large amount of crosstalk between the metabolic pathways of drought and salt stress. All findings suggest that gene expression exhibits rapid and coordinated changes during C. sinensis adaptations to drought stress and salt stress, and common themes in the response to both stresses were identified. Camellia sinensis is an important economic crop worldwide since this plant is used to make one of the most popular non-alcoholic beverages, tea. Salinity together with drought pose a serious threat to the production and qualities of C. sinensis . However, the transcriptome dynamics occurring in response to drought stress and salt stress in tea plants are poorly understood at the molecular level. We reported the first large-coverage transcriptome datasets for C. sinensis under drought and salt stress using next-generation sequencing technology. Using a high-throughput Illumina sequencing platform, approximately 398.95 million high-quality paired-end reads were generated from young leaves of C. sinensis subjected to drought stress and salt stress, and these reads were used for de novo assembly. The transcripts with further processing and filtering yielded a set of 64,905 coding DNA sequences (CDSs) with an average length of 710 bp and an N50 of 933 bp. In total, 3936 and 3715 differentially expressed genes (DEGs) were identified from all analyzed time points of drought stress and salt stress, respectively. Identified in drought and salt stress were 2131 overlapping DEGs, and these are involved in galactosyltransferase activity, tetrapyrrole binding, and hydrolase activity, indicating that C. sinensis has a similar molecular response to these two stresses . We clustered the above DEGs from both sets into four clusters according to their expression dynamics, with the genes in each cluster showing enrichment for particular functional categories. We also found that under salt stress, most DEGs showed down-regulation at early time points and their expression levels were elevated after 48 h, whereas under drought stress most DEGs were down-regulated in all time points. The DEGs relative to pathways of osmotic product such as proline, sugar, and GABA were identified in C. sinensis . Noteworthy, among the identified DEGs are genes involved in the biosynthetic pathways of polyphenol and caffeine, providing evidence at the molecular level that salt and drought affect tea qualities. In addition, we analyzed the differential expression of transcription factors and revealed a large amount of crosstalk between the metabolic pathways of drought and salt stress. All findings suggest that gene expression exhibits rapid and coordinated changes during C. sinensis adaptations to drought stress and salt stress, and common themes in the response to both stresses were identified. |
ArticleNumber | 78 |
Author | Wang, Lishan Yu, Xiaomin Cai, Muchen Ming, Ray Zhang, Qing Guo, Chunfang Zhang, Jisen |
Author_xml | – sequence: 1 givenname: Qing surname: Zhang fullname: Zhang, Qing organization: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, College of Life Sciences, Fujian Agriculture and Forestry University – sequence: 2 givenname: Muchen surname: Cai fullname: Cai, Muchen organization: College of Plant protection, Fujian Agriculture and Forestry University – sequence: 3 givenname: Xiaomin surname: Yu fullname: Yu, Xiaomin organization: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University – sequence: 4 givenname: Lishan surname: Wang fullname: Wang, Lishan organization: College of Life Sciences, Fujian Normal University – sequence: 5 givenname: Chunfang surname: Guo fullname: Guo, Chunfang organization: Fujian Institute of Education – sequence: 6 givenname: Ray surname: Ming fullname: Ming, Ray organization: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Department of Plant Biology, University of Illinois at Urbana-Champaign – sequence: 7 givenname: Jisen surname: Zhang fullname: Zhang, Jisen email: zjisen@126.com organization: Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, College of Life Sciences, Fujian Normal University, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (FAFU), Ministry of Education, Fujian Agriculture and Forestry University |
BookMark | eNp9kE1LxDAQhoMouH78AG8BL16qmbZJN0dZ_ALBi55DNk000iZrJj3svzdLRUTQwzBDeN_JO88R2Q8xWELOgF0CY90VAtSSVwy6CkBAJffIovS2Kq9s_3tu60NyhPjOWNsxIRZEPycd0CS_yXG0tN8GPXqDNDq60qMdBq8p-mADeqQ-0GRxEwNamiM1MWQfpjghRT344POW6tDTPsXp9S1TzEWNJ-TA6QHt6Vc_Ji-3N8-r--rx6e5hdf1YmaaVueqFcz3AupdCtNw00jljd8U10-uuqV3Xyr7ma2lhyZYNt7xcYHshnJYcWHNMLua9mxQ_JotZjR5NuUAHWyKqmjHGuZACivT8l_Q9TimUdAokMN41ot0thFllUkRM1qlN8qNOWwVM7aCrGboq0NUOupLF0_3yGJ919oVU0n7411nPTiy_hFebfmT60_QJ6x-Zlg |
CitedBy_id | crossref_primary_10_1038_s41598_020_57805_1 crossref_primary_10_1007_s00425_019_03256_6 crossref_primary_10_1007_s13595_021_01107_7 crossref_primary_10_1093_jxb_erz532 crossref_primary_10_1007_s12298_021_01007_0 crossref_primary_10_1016_j_plaphy_2024_108670 crossref_primary_10_3389_fpls_2022_934651 crossref_primary_10_3390_genes14071417 crossref_primary_10_1016_j_ijbiomac_2024_134304 crossref_primary_10_1007_s11103_020_00992_2 crossref_primary_10_1016_j_ijbiomac_2022_03_109 crossref_primary_10_1093_treephys_tpad004 crossref_primary_10_3389_fpls_2022_910768 crossref_primary_10_3390_genes15070932 crossref_primary_10_1186_s12870_019_1630_4 crossref_primary_10_1371_journal_pone_0258657 crossref_primary_10_1093_hr_uhae136 crossref_primary_10_3390_ijms24010202 crossref_primary_10_1016_j_gene_2022_146318 crossref_primary_10_1111_pbi_13111 crossref_primary_10_1371_journal_pone_0246615 crossref_primary_10_1007_s10725_023_01115_9 crossref_primary_10_1007_s00709_020_01555_4 crossref_primary_10_1016_j_hpj_2022_10_014 crossref_primary_10_3390_horticulturae8020173 crossref_primary_10_1021_acs_jafc_0c07009 crossref_primary_10_1007_s13258_018_0734_9 crossref_primary_10_3389_fgene_2021_770570 crossref_primary_10_3390_plants14070989 crossref_primary_10_1016_j_ygeno_2019_08_004 crossref_primary_10_1016_j_csbj_2021_12_026 crossref_primary_10_3389_fpls_2020_544933 crossref_primary_10_3390_plants14030492 crossref_primary_10_1038_s41438_021_00538_7 crossref_primary_10_1111_ppl_13646 crossref_primary_10_1007_s00239_023_10099_z crossref_primary_10_1007_s10725_017_0354_4 crossref_primary_10_1016_j_genrep_2017_10_006 crossref_primary_10_1016_j_ijbiomac_2023_126582 crossref_primary_10_3389_fpls_2021_777884 crossref_primary_10_3390_plants8050132 crossref_primary_10_3389_fpls_2022_977086 crossref_primary_10_3389_fpls_2024_1542793 crossref_primary_10_1038_s41438_021_00545_8 crossref_primary_10_1016_j_ygeno_2020_01_003 crossref_primary_10_32604_phyton_2022_021530 crossref_primary_10_1007_s00344_021_10529_6 crossref_primary_10_3390_ijms24065207 crossref_primary_10_1111_tpj_15729 crossref_primary_10_1016_j_plaphy_2020_07_047 crossref_primary_10_1007_s00438_023_02075_5 crossref_primary_10_1016_j_phytochem_2020_112515 crossref_primary_10_3390_ijms22084197 crossref_primary_10_1016_j_ijbiomac_2024_131725 crossref_primary_10_3390_genes9100488 crossref_primary_10_3389_fpls_2020_00848 crossref_primary_10_1007_s00425_023_04238_5 crossref_primary_10_48130_bpr_0024_0007 crossref_primary_10_3389_fpls_2023_1191625 crossref_primary_10_3390_antiox9100940 crossref_primary_10_3390_jof10020141 crossref_primary_10_1186_s12870_021_03254_5 crossref_primary_10_1186_s12864_020_07030_x crossref_primary_10_1038_s41438_019_0225_4 crossref_primary_10_1007_s00299_019_02440_y crossref_primary_10_3390_f12040454 crossref_primary_10_3390_ijms25189794 crossref_primary_10_1016_j_indcrop_2024_119425 crossref_primary_10_3390_foods13213412 crossref_primary_10_1016_j_plaphy_2025_109739 crossref_primary_10_3389_fpls_2021_733287 crossref_primary_10_3390_ijms19113412 crossref_primary_10_1038_s41598_020_63683_4 |
Cites_doi | 10.1038/nbt.1883 10.1073/pnas.0407107101 10.1111/j.1399-3054.1995.tb02226.x 10.1080/00380768.2004.10408608 10.1186/gb-2009-10-3-r25 10.1006/meth.2001.1262 10.1021/jf981042y 10.1016/j.pbi.2009.12.006 10.1093/nar/gkr483 10.1093/bioinformatics/bti610 10.1007/s11104-014-2309-0 10.1111/j.1365-313X.2010.04477.x 10.1016/j.tplants.2004.12.012 10.1093/bioinformatics/btl158 10.1111/j.1365-294X.2008.03666.x 10.1093/treephys/tpr083 10.1111/j.1365-313X.2010.04323.x 10.1016/j.envexpbot.2005.12.006 10.1016/j.abb.2005.10.018 10.1104/pp.123.3.1047 10.1038/nmeth.2251 10.1371/journal.pone.0037316 10.1046/j.1365-313X.1993.04020215.x 10.1186/1471-2105-11-94 10.1038/nprot.2013.084 10.1104/pp.105.070508 10.1006/bbrc.2001.6299 10.1007/s00213-007-0938-1 10.1186/1471-2164-10-219 10.1038/ng.703 10.1104/pp.82.4.890 10.1186/1471-2164-12-131 10.1105/tpc.006130 10.1093/nar/gkh063 10.1111/j.1365-3040.2007.01763.x 10.1186/s12864-015-1494-4 10.1186/1471-2164-10-345 10.1016/j.plaphy.2009.05.002 10.1046/j.1365-313X.2002.01359.x 10.1016/S1369-5266(00)00067-4 10.1371/journal.pone.0003935 10.1104/pp.103.025742 10.1126/science.218.4571.443 10.1093/nar/gkl031 10.1105/tpc.7.7.1099 10.1146/annurev.arplant.53.091401.143329 10.1093/molbev/msp288 10.3390/ijms14034885 10.1007/s10142-015-0457-9 10.1186/1471-2164-14-1 10.1104/pp.116.1.203 10.1007/s11738-008-0227-6 10.1104/pp.115.1.1 10.1016/j.jplph.2006.03.010 10.1038/ng1005-1029 10.1093/jxb/err460 10.1093/bioinformatics/17.4.309 10.1105/tpc.10.8.1391 10.1186/1471-2229-10-20 10.1007/s00438-010-0557-0 10.1126/science.280.5360.104 10.1146/annurev.arplant.51.1.463 10.1016/S0076-6879(07)28024-3 10.1016/S1369-5266(02)00289-3 10.1002/9780470515778.ch13 10.1016/j.crvi.2015.03.010 10.1186/1751-0473-9-8 10.1126/stke.2002.140.pl10 10.1016/S0378-1119(00)00446-7 10.1016/S1369-5266(00)80068-0 10.1111/j.1399-3054.2007.00993.x 10.1105/tpc.9.10.1859 10.1016/S0304-4238(98)00193-9 10.3835/plantgenome2012.08.0021 10.1371/journal.pone.0046766 10.1186/1471-2164-14-415 10.1093/nar/gkt1223 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany 2017 Tree Genetics & Genomes is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany 2017 – notice: Tree Genetics & Genomes is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7X2 8FD 8FE 8FH 8FK AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 7S9 L.6 |
DOI | 10.1007/s11295-017-1161-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry Economics |
EISSN | 1614-2950 |
EndPage | 78 |
ExternalDocumentID | 10_1007_s11295_017_1161_9 |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2013AA102604 funderid: http://dx.doi.org/10.13039/501100002855 |
GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4P2 5VS 67N 67Z 6NX 7X2 8FE 8FH 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EDH EIOEI EJD EN4 ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M0K M4Y M7P MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P PF0 PT4 Q2X QOR QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR Z45 Z7U Z7W ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c349t-d6ffd11bd96645c39ffceffce5a0ab732f749d25b9e180835e5706ed66fa95103 |
IEDL.DBID | U2A |
ISSN | 1614-2942 |
IngestDate | Fri Jul 11 11:07:27 EDT 2025 Fri Jul 25 11:01:30 EDT 2025 Tue Jul 01 02:26:29 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Fri Feb 21 02:40:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Salinity stress Drought stress Differentially expressed genes (DEGs) Transcriptome dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-d6ffd11bd96645c39ffceffce5a0ab732f749d25b9e180835e5706ed66fa95103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1910573640 |
PQPubID | 326292 |
ParticipantIDs | proquest_miscellaneous_2000556961 proquest_journals_1910573640 crossref_primary_10_1007_s11295_017_1161_9 crossref_citationtrail_10_1007_s11295_017_1161_9 springer_journals_10_1007_s11295_017_1161_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170800 2017-8-00 20170801 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 8 year: 2017 text: 20170800 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Tree genetics & genomes |
PublicationTitleAbbrev | Tree Genetics & Genomes |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Seo, Joo, Kim (CR52) 2011; 65 Shinozaki, Yamaguchi-Shinozaki (CR55) 2000; 3 Lugan, Niogret, Leport (CR37) 2010; 64 Wang, Zhao, Ma (CR68) 2013; 14 Usadel, Bläsing, Gibon (CR65) 2008; 31 Xie, Mao, Huang (CR72) 2011; 39 Kempa, Krasensky, Dal Santo (CR28) 2008; 3 Li, Ponnala, Gandotra (CR32) 2010; 42 Boyer (CR12) 1982; 218 Wang, Li, Yu (CR69) 2012; 7 Rogers, Smith, Heatherley, Pleydell-Pearce (CR47) 2008; 195 Rhodes, Handa, Bressan (CR44) 1986; 82 Urano, Kurihara, Seki, Shinozaki (CR64) 2010; 13 Delauney, Verma (CR18) 2002; 4 Berteli, Corrales, Guerrero (CR9) 2008; 93 Livak, Schmittgen (CR36) 2001; 25 Roberts, Pachter (CR46) 2013; 10 Zhang, Xia, Huang (CR76) 2015; 16 Bahieldin, Atef, Sabir (CR7) 2013; 35 Wong, Li, Labbe (CR70) 2006; 140 Beritognolo, Harfouche (CR8) 2011; 31 Monte, Tepperman, Al-Sady (CR40) 2004; 101 Meyer, Aglyamova, Wang (CR39) 2009; 10 Sanchez, Siahpoosh, Roessner (CR50) 2008; 132 Binzel, Ratajczak (CR10) 2002 Li, Godzik (CR33) 2006; 22 Teixeira, Fidalgo (CR61) 2009; 47 Bown, Shelp (CR13) 1999; 115 Chinnusamy, Stevenson, Lee, Zhu (CR16) 2002; 2002 Jaglo-Ottosen, Gilmour, Zarka (CR25) 1998; 280 Terol, Bargues, Pérez-Alonso (CR62) 2001; 260 Singh, Foley, Oñate-Sánchez (CR56) 2002; 5 Vinay, Sudesh (CR67) 2009; 31 Yamaguchi-Shinozaki, Shinozaki (CR73) 2005; 10 Rus, Bressan, Hasegawa (CR48) 2005; 37 Eiji, Yuki, Yasuaki (CR19) 2004; 50 Allakhverdiev, Sakamoto, Nishiyama (CR3) 2000; 123 Chen, Khaleel, Huang, Wu (CR15) 2015; 7 Abe, Yamaguchi-Shinozaki, Urao (CR2) 1997; 9 Tuteja (CR63) 2007; 428 Pires, Dolan (CR41) 2010; 27 Suresh, Allan (CR59) 1998; 116 Liu, Kasuga, Sakuma (CR35) 1998; 10 Ashraf, Foolad (CR6) 2007; 59 Ye, Fang, Zheng (CR74) 2006; 34 CR53 Rabbani, Maruyama, Abe (CR42) 2003; 133 Renault, Roussel, El Amrani (CR43) 2010; 10 Bullard, Purdom, Hansen, Dudoit (CR14) 2010; 11 Arbona, Manzi, Cd, Gómez-Cadenas (CR5) 2013; 14 Hoque, Okuma, Banu (CR24) 2007; 164 Krasensky, Jonak (CR29) 2012; 63 Haas, Papanicolaou, Yassour (CR22) 2013; 8 Mahajan, Tuteja (CR38) 2005; 444 Grabherr, Haas, Yassour (CR21) 2011; 29 Wu, Li, Liu (CR71) 2015; 15 Anthony (CR4) 1998; 78 Kristiansson, Asker, Förlin, Larsson (CR30) 2009; 10 Liu, Qiao, Jiang (CR34) 2012; 7 Yeung, Haynor, Ruzzo (CR75) 2001; 17 Abe, Urao, Ito (CR1) 2003; 15 Zhu (CR77) 2002; 53 Bohnert, Nelson, Jensen (CR11) 1995; 7 Takasaki, Maruyama, Kidokoro (CR60) 2010; 284 Conesa, Götz, García-Gómez (CR17) 2005; 21 Hasegawa, Bressan, Zhu, Bohnert (CR23) 2000; 51 Seki, Narusaka, Ishida (CR51) 2002; 31 Vera, Wheat, Fescemyer (CR66) 2008; 17 CR20 Robert, Bateman, Clements (CR45) 2014; 42 Sakuma, Liu, Dubouzet (CR49) 2002; 290 Sun, Gao, Fu (CR58) 2015; 388 Kanak, Arpita, Vinay (CR26) 2012; 6 Langmead, Trapnell, Pop, Salzberg (CR31) 2009; 10 Subramanian, Venkatesh, Ganguli, Sinkar (CR57) 1999; 47 Kanehisa, Goto, Kawashima (CR27) 2004; 32 Shi, Yang, Wei (CR54) 2011; 12 BJ Haas (1161_CR22) 2013; 8 I Beritognolo (1161_CR8) 2011; 31 JH Bullard (1161_CR14) 2010; 11 JK Zhu (1161_CR77) 2002; 53 J Terol (1161_CR62) 2001; 260 H Takasaki (1161_CR60) 2010; 284 1161_CR53 A Bahieldin (1161_CR7) 2013; 35 V Kanak (1161_CR26) 2012; 6 Y Wang (1161_CR69) 2012; 7 C Sun (1161_CR58) 2015; 388 XC Wang (1161_CR68) 2013; 14 C Chen (1161_CR15) 2015; 7 Y Anthony (1161_CR4) 1998; 78 CY Shi (1161_CR54) 2011; 12 A Roberts (1161_CR46) 2013; 10 MG Grabherr (1161_CR21) 2011; 29 M Liu (1161_CR34) 2012; 7 MA Rabbani (1161_CR42) 2003; 133 F Berteli (1161_CR9) 2008; 93 Q Liu (1161_CR35) 1998; 10 H Renault (1161_CR43) 2010; 10 JC Vera (1161_CR66) 2008; 17 K Singh (1161_CR56) 2002; 5 A Conesa (1161_CR17) 2005; 21 O Eiji (1161_CR19) 2004; 50 J Krasensky (1161_CR29) 2012; 63 ZJ Wu (1161_CR71) 2015; 15 PM Hasegawa (1161_CR23) 2000; 51 H Abe (1161_CR1) 2003; 15 KR Jaglo-Ottosen (1161_CR25) 1998; 280 N Subramanian (1161_CR57) 1999; 47 M Binzel (1161_CR10) 2002 W Li (1161_CR33) 2006; 22 M Ashraf (1161_CR6) 2007; 59 E Monte (1161_CR40) 2004; 101 R Lugan (1161_CR37) 2010; 64 CE Wong (1161_CR70) 2006; 140 N Tuteja (1161_CR63) 2007; 428 AM Rus (1161_CR48) 2005; 37 JS Seo (1161_CR52) 2011; 65 KJ Livak (1161_CR36) 2001; 25 B Usadel (1161_CR65) 2008; 31 B Langmead (1161_CR31) 2009; 10 AJ Delauney (1161_CR18) 2002; 4 E Meyer (1161_CR39) 2009; 10 SI Allakhverdiev (1161_CR3) 2000; 123 S Mahajan (1161_CR38) 2005; 444 MA Hoque (1161_CR24) 2007; 164 K Vinay (1161_CR67) 2009; 31 V Chinnusamy (1161_CR16) 2002; 2002 Y Sakuma (1161_CR49) 2002; 290 H Abe (1161_CR2) 1997; 9 N Pires (1161_CR41) 2010; 27 KY Yeung (1161_CR75) 2001; 17 K Urano (1161_CR64) 2010; 13 DF Robert (1161_CR45) 2014; 42 C Xie (1161_CR72) 2011; 39 1161_CR20 DH Sanchez (1161_CR50) 2008; 132 I Suresh (1161_CR59) 1998; 116 M Seki (1161_CR51) 2002; 31 HJ Bohnert (1161_CR11) 1995; 7 V Arbona (1161_CR5) 2013; 14 JS Boyer (1161_CR12) 1982; 218 M Kanehisa (1161_CR27) 2004; 32 AW Bown (1161_CR13) 1999; 115 P Li (1161_CR32) 2010; 42 K Yamaguchi-Shinozaki (1161_CR73) 2005; 10 E Kristiansson (1161_CR30) 2009; 10 S Kempa (1161_CR28) 2008; 3 HB Zhang (1161_CR76) 2015; 16 K Shinozaki (1161_CR55) 2000; 3 J Ye (1161_CR74) 2006; 34 D Rhodes (1161_CR44) 1986; 82 PJ Rogers (1161_CR47) 2008; 195 J Teixeira (1161_CR61) 2009; 47 |
References_xml | – volume: 29 start-page: 644 issue: 7 year: 2011 end-page: 652 ident: CR21 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 – volume: 101 start-page: 16091 issue: 46 year: 2004 end-page: 16098 ident: CR40 article-title: The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0407107101 – volume: 93 start-page: 259 issue: 2 year: 2008 end-page: 264 ident: CR9 article-title: Salt stress increases ferredoxin-dependent glutamate synthase activity and protein level in the leaves of tomato publication-title: Physiol Plantarum doi: 10.1111/j.1399-3054.1995.tb02226.x – volume: 50 start-page: 1301 issue: 8 year: 2004 end-page: 1305 ident: CR19 article-title: Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions publication-title: Soil Science and Plant Nutrition doi: 10.1080/00380768.2004.10408608 – volume: 10 start-page: 1 issue: 3 year: 2009 end-page: 10 ident: CR31 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: CR36 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 78 start-page: 159 issue: 1–4 year: 1998 end-page: 174 ident: CR4 article-title: Predicting the interaction between the effects of salinity and climate change on crop plants publication-title: Sci Hortic – volume: 47 start-page: 2571 issue: 7 year: 1999 ident: CR57 article-title: Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins publication-title: J Agric Food Chem doi: 10.1021/jf981042y – volume: 7 start-page: 136 issue: 10 year: 2012 end-page: 136 ident: CR34 article-title: Transcriptome sequencing and de novo analysis for ma bamboo ( Munro) using the Illumina platform publication-title: PLoS One – volume: 13 start-page: 132 issue: 2 year: 2010 end-page: 138 ident: CR64 article-title: ‘Omics’ analyses of regulatory networks in plant abiotic stress responses publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.12.006 – volume: 39 start-page: W316 issue: Web Server issue year: 2011 end-page: W322 ident: CR72 article-title: KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr483 – volume: 21 start-page: 3674 issue: 18 year: 2005 end-page: 3676 ident: CR17 article-title: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti610 – volume: 388 start-page: 99 issue: 1 year: 2015 end-page: 117 ident: CR58 article-title: Metabolic response of maize ( L.) plants to combined drought and salt stress publication-title: Plant Soil doi: 10.1007/s11104-014-2309-0 – volume: 65 start-page: 907 issue: 6 year: 2011 end-page: 921 ident: CR52 article-title: OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04477.x – volume: 10 start-page: 88 issue: 2 year: 2005 end-page: 94 ident: CR73 article-title: Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2004.12.012 – volume: 22 start-page: 1658 issue: 13 year: 2006 end-page: 1659 ident: CR33 article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 17 start-page: 1636 issue: 7 year: 2008 end-page: 1647 ident: CR66 article-title: Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2008.03666.x – volume: 31 start-page: 1335 issue: 12 year: 2011 end-page: 1355 ident: CR8 article-title: Comparative study of transcriptional and physiological responses to salinity stress in two contrasting L. genotypes publication-title: Tree Physiol doi: 10.1093/treephys/tpr083 – volume: 64 start-page: 215 issue: 2 year: 2010 ident: CR37 article-title: Metabolome and water homeostasis analysis of suggests that dehydration tolerance is a key response to osmotic stress in this halophyte publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04323.x – volume: 59 start-page: 206 issue: 2 year: 2007 end-page: 216 ident: CR6 article-title: Roles of glycine betaine and proline in improving plant abiotic stress resistance publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2005.12.006 – volume: 444 start-page: 139 issue: 2 year: 2005 end-page: 158 ident: CR38 article-title: Cold, salinity and drought stresses: an overview publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2005.10.018 – volume: 123 start-page: 1047 issue: 3 year: 2000 end-page: 1056 ident: CR3 article-title: Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in sp publication-title: Plant Physiol doi: 10.1104/pp.123.3.1047 – volume: 10 start-page: 71 issue: 1 year: 2013 end-page: 73 ident: CR46 article-title: Streaming fragment assignment for real-time analysis of sequencing experiments publication-title: Nat Methods doi: 10.1038/nmeth.2251 – volume: 7 start-page: e37316 issue: 5 year: 2012 ident: CR69 article-title: Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, publication-title: PLoS One doi: 10.1371/journal.pone.0037316 – volume: 4 start-page: 215 issue: 2 year: 2002 end-page: 223 ident: CR18 article-title: Proline biosynthesis and osmoregulation in plants publication-title: Plant J doi: 10.1046/j.1365-313X.1993.04020215.x – volume: 11 start-page: 94 year: 2010 ident: CR14 article-title: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-94 – volume: 8 start-page: 1494 issue: 8 year: 2013 end-page: 1512 ident: CR22 article-title: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis publication-title: Nat Protoc doi: 10.1038/nprot.2013.084 – volume: 140 start-page: 1437 issue: 140 year: 2006 end-page: 1450 ident: CR70 article-title: Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in , a close relative of publication-title: Plant Physiol doi: 10.1104/pp.105.070508 – volume: 6 start-page: 1 issue: 2 year: 2012 end-page: 11 ident: CR26 article-title: De novo transcriptome sequencing in L. to identify genes involved in the biosynthesis of diosgenin publication-title: Plant Genome – volume: 290 start-page: 998 issue: 3 year: 2002 end-page: 1009 ident: CR49 article-title: DNA-binding specificity of the ERF/AP2 domain of DREBs, transcription factors involved in dehydration- and cold-inducible gene expression publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2001.6299 – volume: 195 start-page: 569 issue: 4 year: 2008 end-page: 577 ident: CR47 article-title: Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together publication-title: Psychopharmacology doi: 10.1007/s00213-007-0938-1 – volume: 10 start-page: 219 issue: 1 year: 2009 ident: CR39 article-title: Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx publication-title: BMC Genomics doi: 10.1186/1471-2164-10-219 – volume: 42 start-page: 1060 issue: 12 year: 2010 end-page: 1067 ident: CR32 article-title: The developmental dynamics of the maize leaf transcriptome publication-title: Nat Genet doi: 10.1038/ng.703 – volume: 82 start-page: 890 issue: 4 year: 1986 end-page: 903 ident: CR44 article-title: Metabolic changes associated with adaptation of plant cells to water stress publication-title: Plant Physiol doi: 10.1104/pp.82.4.890 – volume: 12 start-page: 131 issue: 1 year: 2011 ident: CR54 article-title: Deep sequencing of the transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds publication-title: BMC Genomics doi: 10.1186/1471-2164-12-131 – volume: 15 start-page: 63 issue: 1 year: 2003 end-page: 78 ident: CR1 article-title: AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling publication-title: Plant Cell doi: 10.1105/tpc.006130 – volume: 32 start-page: 277 issue: Database issue year: 2004 end-page: 280 ident: CR27 article-title: The KEGG resource for deciphering the genome publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh063 – volume: 260 start-page: 45 issue: 1–2 year: 2001 end-page: 53 ident: CR62 article-title: ZFWD: a novel subfamily of plant proteins containing a C3H zinc finger and seven WD40 repeats publication-title: Gene – volume: 31 start-page: 518 issue: 4 year: 2008 end-page: 547 ident: CR65 article-title: Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in rosettes to a progressive decrease of temperature in the non-freezing range publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2007.01763.x – volume: 16 start-page: 298 year: 2015 ident: CR76 article-title: De novo transcriptome assembly of the wild relative of tea tree ( ) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response publication-title: BMC Genomics doi: 10.1186/s12864-015-1494-4 – volume: 10 start-page: 345 issue: 1 year: 2009 ident: CR30 article-title: Characterization of the liver transcriptome using massively parallel pyrosequencing publication-title: BMC Genomics doi: 10.1186/1471-2164-10-345 – volume: 47 start-page: 807 issue: 9 year: 2009 ident: CR61 article-title: Salt stress affects glutamine synthetase activity and mRNA accumulation on potato plants in an organ-dependent manner publication-title: Plant Physiol Bioch doi: 10.1016/j.plaphy.2009.05.002 – volume: 31 start-page: 279 issue: 31 year: 2002 end-page: 292 ident: CR51 article-title: Monitoring the expression profiles of 7000 genes under drought, cold and high-salinity stresses using a full-length cDNA microarray publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01359.x – volume: 3 start-page: 217 issue: 3 year: 2000 end-page: 223 ident: CR55 article-title: Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(00)00067-4 – volume: 3 start-page: e3935 issue: 12 year: 2008 ident: CR28 article-title: A central role of abscisic acid in stress-regulated carbohydrate metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0003935 – volume: 133 start-page: 1755 issue: 4 year: 2003 end-page: 1767 ident: CR42 article-title: Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses publication-title: Plant Physiol doi: 10.1104/pp.103.025742 – volume: 7 start-page: 1 issue: 2 year: 2015 end-page: 5 ident: CR15 article-title: NGS QC toolkit: a platform for quality control of next-generation sequencing data publication-title: Source Code Biol Med – volume: 218 start-page: 443 issue: 4571 year: 1982 end-page: 448 ident: CR12 article-title: Plant productivity and environment publication-title: Science doi: 10.1126/science.218.4571.443 – volume: 35 start-page: 1915 issue: 6 year: 2013 end-page: 1924 ident: CR7 article-title: Analysis of the barley leaf transcriptome under salinity stress using mRNA-Seq publication-title: C R Biol – ident: CR53 – volume: 34 start-page: W293 issue: Web Server issue year: 2006 end-page: W297 ident: CR74 article-title: WEGO: a web tool for plotting GO annotations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl031 – volume: 7 start-page: 1099 issue: 7 year: 1995 end-page: 1111 ident: CR11 article-title: Adaptations to environmental stresses publication-title: Plant Cell doi: 10.1105/tpc.7.7.1099 – volume: 53 start-page: 247 issue: 53 year: 2002 end-page: 273 ident: CR77 article-title: Salt and drought stress signal transduction in plants publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.53.091401.143329 – volume: 42 start-page: D222 issue: Database issue year: 2014 end-page: D230 ident: CR45 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res – volume: 27 start-page: 862 issue: 27 year: 2010 end-page: 874 ident: CR41 article-title: Origin and diversification of basic-helix-loop-helix proteins in plants publication-title: Mol Biol Evol doi: 10.1093/molbev/msp288 – volume: 14 start-page: 4885 issue: 3 year: 2013 end-page: 4911 ident: CR5 article-title: Metabolomics as a tool to investigate abiotic stress tolerance in plants publication-title: Int J Mol Sci doi: 10.3390/ijms14034885 – volume: 15 start-page: 741 issue: 6 year: 2015 ident: CR71 article-title: Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant ( ) publication-title: Funct Integr Genomics doi: 10.1007/s10142-015-0457-9 – year: 2002 ident: CR10 publication-title: Function of membrane transport systems under salinity: tonoplast – volume: 14 start-page: 1 issue: 1 year: 2013 end-page: 15 ident: CR68 article-title: Global transcriptome profiles of during cold acclimation publication-title: BMC Genomics doi: 10.1186/1471-2164-14-1 – volume: 116 start-page: 203 issue: 1 year: 1998 end-page: 211 ident: CR59 article-title: Products of proline catabolism can induce osmotically regulated genes in rice publication-title: Plant Physiol doi: 10.1104/pp.116.1.203 – volume: 31 start-page: 261 issue: 2 year: 2009 end-page: 269 ident: CR67 article-title: Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in (L.) O. Kuntze publication-title: Acta Physiol Plant doi: 10.1007/s11738-008-0227-6 – volume: 132 start-page: 209 issue: 2 year: 2008 end-page: 219 ident: CR50 article-title: Plant metabolomics reveals conserved and divergent metabolic responses to salinity publication-title: Physiol Plant – volume: 115 start-page: 1 issue: 1 year: 1999 end-page: 5 ident: CR13 article-title: Metabolism and functions of gamma-aminobutyric acid publication-title: Plant Physiol doi: 10.1104/pp.115.1.1 – volume: 164 start-page: 553 issue: 5 year: 2007 end-page: 561 ident: CR24 article-title: Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities publication-title: J Plant Physiol doi: 10.1016/j.jplph.2006.03.010 – volume: 37 start-page: 1029 issue: 10 year: 2005 end-page: 1030 ident: CR48 article-title: Unraveling salt tolerance in crops publication-title: Nat Genet doi: 10.1038/ng1005-1029 – volume: 2002 start-page: l10 issue: 140 year: 2002 ident: CR16 article-title: Screening for gene regulation mutants by bioluminescence imaging publication-title: Sci STKE – volume: 63 start-page: 1593 issue: 4 year: 2012 end-page: 1608 ident: CR29 article-title: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks publication-title: J Exp Bot doi: 10.1093/jxb/err460 – volume: 17 start-page: 309 issue: 4 year: 2001 end-page: 318 ident: CR75 article-title: Validating clustering for gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.4.309 – volume: 10 start-page: 1391 issue: 8 year: 1998 end-page: 1406 ident: CR35 article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in publication-title: Plant Cell doi: 10.1105/tpc.10.8.1391 – volume: 10 start-page: 20 issue: 1 year: 2010 ident: CR43 article-title: The pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance publication-title: BMC Plant Biol doi: 10.1186/1471-2229-10-20 – volume: 284 start-page: 173 issue: 3 year: 2010 end-page: 183 ident: CR60 article-title: The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice publication-title: Mol Gen Genomics doi: 10.1007/s00438-010-0557-0 – volume: 280 start-page: 104 issue: 5360 year: 1998 end-page: 106 ident: CR25 article-title: CBF1 overexpression induces COR genes and enhances freezing tolerance publication-title: Science doi: 10.1126/science.280.5360.104 – volume: 51 start-page: 463 year: 2000 end-page: 499 ident: CR23 article-title: Plant cellular and molecular responses to high salinity publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.51.1.463 – volume: 428 start-page: 419 year: 2007 end-page: 438 ident: CR63 article-title: Mechanisms of high salinity tolerance in plants publication-title: Methods Enzymol doi: 10.1016/S0076-6879(07)28024-3 – ident: CR20 – volume: 9 start-page: 1859 issue: 10 year: 1997 end-page: 1868 ident: CR2 article-title: Role of MYC and MYB homologs in drought- and abscisic acid-regulated gene expression publication-title: Plant Cell – volume: 5 start-page: 430 issue: 5 year: 2002 end-page: 436 ident: CR56 article-title: Transcription factors in plant defense and stress responses publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(02)00289-3 – ident: 1161_CR53 – ident: 1161_CR20 doi: 10.1002/9780470515778.ch13 – volume: 64 start-page: 215 issue: 2 year: 2010 ident: 1161_CR37 publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04323.x – volume: 11 start-page: 94 year: 2010 ident: 1161_CR14 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-94 – volume: 31 start-page: 279 issue: 31 year: 2002 ident: 1161_CR51 publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01359.x – volume: 17 start-page: 1636 issue: 7 year: 2008 ident: 1161_CR66 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2008.03666.x – volume: 29 start-page: 644 issue: 7 year: 2011 ident: 1161_CR21 publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 – volume: 65 start-page: 907 issue: 6 year: 2011 ident: 1161_CR52 publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04477.x – volume: 3 start-page: e3935 issue: 12 year: 2008 ident: 1161_CR28 publication-title: PLoS One doi: 10.1371/journal.pone.0003935 – volume: 42 start-page: 1060 issue: 12 year: 2010 ident: 1161_CR32 publication-title: Nat Genet doi: 10.1038/ng.703 – volume: 35 start-page: 1915 issue: 6 year: 2013 ident: 1161_CR7 publication-title: C R Biol doi: 10.1016/j.crvi.2015.03.010 – volume: 37 start-page: 1029 issue: 10 year: 2005 ident: 1161_CR48 publication-title: Nat Genet doi: 10.1038/ng1005-1029 – volume: 7 start-page: 1 issue: 2 year: 2015 ident: 1161_CR15 publication-title: Source Code Biol Med doi: 10.1186/1751-0473-9-8 – volume: 140 start-page: 1437 issue: 140 year: 2006 ident: 1161_CR70 publication-title: Plant Physiol doi: 10.1104/pp.105.070508 – volume: 133 start-page: 1755 issue: 4 year: 2003 ident: 1161_CR42 publication-title: Plant Physiol doi: 10.1104/pp.103.025742 – volume: 284 start-page: 173 issue: 3 year: 2010 ident: 1161_CR60 publication-title: Mol Gen Genomics doi: 10.1007/s00438-010-0557-0 – volume: 10 start-page: 1391 issue: 8 year: 1998 ident: 1161_CR35 publication-title: Plant Cell doi: 10.1105/tpc.10.8.1391 – volume: 10 start-page: 88 issue: 2 year: 2005 ident: 1161_CR73 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2004.12.012 – volume: 31 start-page: 518 issue: 4 year: 2008 ident: 1161_CR65 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2007.01763.x – volume: 47 start-page: 2571 issue: 7 year: 1999 ident: 1161_CR57 publication-title: J Agric Food Chem doi: 10.1021/jf981042y – volume: 2002 start-page: l10 issue: 140 year: 2002 ident: 1161_CR16 publication-title: Sci STKE doi: 10.1126/stke.2002.140.pl10 – volume: 21 start-page: 3674 issue: 18 year: 2005 ident: 1161_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti610 – volume: 82 start-page: 890 issue: 4 year: 1986 ident: 1161_CR44 publication-title: Plant Physiol doi: 10.1104/pp.82.4.890 – volume: 123 start-page: 1047 issue: 3 year: 2000 ident: 1161_CR3 publication-title: Plant Physiol doi: 10.1104/pp.123.3.1047 – volume: 260 start-page: 45 issue: 1–2 year: 2001 ident: 1161_CR62 publication-title: Gene doi: 10.1016/S0378-1119(00)00446-7 – volume: 7 start-page: e37316 issue: 5 year: 2012 ident: 1161_CR69 publication-title: PLoS One doi: 10.1371/journal.pone.0037316 – volume: 15 start-page: 63 issue: 1 year: 2003 ident: 1161_CR1 publication-title: Plant Cell doi: 10.1105/tpc.006130 – volume: 10 start-page: 1 issue: 3 year: 2009 ident: 1161_CR31 publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 31 start-page: 1335 issue: 12 year: 2011 ident: 1161_CR8 publication-title: Tree Physiol doi: 10.1093/treephys/tpr083 – volume: 27 start-page: 862 issue: 27 year: 2010 ident: 1161_CR41 publication-title: Mol Biol Evol doi: 10.1093/molbev/msp288 – volume: 15 start-page: 741 issue: 6 year: 2015 ident: 1161_CR71 publication-title: Funct Integr Genomics doi: 10.1007/s10142-015-0457-9 – volume: 3 start-page: 217 issue: 3 year: 2000 ident: 1161_CR55 publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(00)80068-0 – volume: 25 start-page: 402 year: 2001 ident: 1161_CR36 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 132 start-page: 209 issue: 2 year: 2008 ident: 1161_CR50 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2007.00993.x – volume: 5 start-page: 430 issue: 5 year: 2002 ident: 1161_CR56 publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(02)00289-3 – volume: 47 start-page: 807 issue: 9 year: 2009 ident: 1161_CR61 publication-title: Plant Physiol Bioch doi: 10.1016/j.plaphy.2009.05.002 – volume: 31 start-page: 261 issue: 2 year: 2009 ident: 1161_CR67 publication-title: Acta Physiol Plant doi: 10.1007/s11738-008-0227-6 – volume: 101 start-page: 16091 issue: 46 year: 2004 ident: 1161_CR40 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0407107101 – volume: 388 start-page: 99 issue: 1 year: 2015 ident: 1161_CR58 publication-title: Plant Soil doi: 10.1007/s11104-014-2309-0 – volume: 59 start-page: 206 issue: 2 year: 2007 ident: 1161_CR6 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2005.12.006 – volume: 9 start-page: 1859 issue: 10 year: 1997 ident: 1161_CR2 publication-title: Plant Cell doi: 10.1105/tpc.9.10.1859 – volume-title: Function of membrane transport systems under salinity: tonoplast year: 2002 ident: 1161_CR10 – volume: 12 start-page: 131 issue: 1 year: 2011 ident: 1161_CR54 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-131 – volume: 444 start-page: 139 issue: 2 year: 2005 ident: 1161_CR38 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2005.10.018 – volume: 115 start-page: 1 issue: 1 year: 1999 ident: 1161_CR13 publication-title: Plant Physiol doi: 10.1104/pp.115.1.1 – volume: 10 start-page: 71 issue: 1 year: 2013 ident: 1161_CR46 publication-title: Nat Methods doi: 10.1038/nmeth.2251 – volume: 13 start-page: 132 issue: 2 year: 2010 ident: 1161_CR64 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.12.006 – volume: 53 start-page: 247 issue: 53 year: 2002 ident: 1161_CR77 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.53.091401.143329 – volume: 78 start-page: 159 issue: 1–4 year: 1998 ident: 1161_CR4 publication-title: Sci Hortic doi: 10.1016/S0304-4238(98)00193-9 – volume: 51 start-page: 463 year: 2000 ident: 1161_CR23 publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.51.1.463 – volume: 164 start-page: 553 issue: 5 year: 2007 ident: 1161_CR24 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2006.03.010 – volume: 34 start-page: W293 issue: Web Server issu year: 2006 ident: 1161_CR74 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl031 – volume: 7 start-page: 1099 issue: 7 year: 1995 ident: 1161_CR11 publication-title: Plant Cell doi: 10.1105/tpc.7.7.1099 – volume: 195 start-page: 569 issue: 4 year: 2008 ident: 1161_CR47 publication-title: Psychopharmacology doi: 10.1007/s00213-007-0938-1 – volume: 93 start-page: 259 issue: 2 year: 2008 ident: 1161_CR9 publication-title: Physiol Plantarum doi: 10.1111/j.1399-3054.1995.tb02226.x – volume: 32 start-page: 277 issue: Database issue year: 2004 ident: 1161_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh063 – volume: 50 start-page: 1301 issue: 8 year: 2004 ident: 1161_CR19 publication-title: Soil Science and Plant Nutrition doi: 10.1080/00380768.2004.10408608 – volume: 4 start-page: 215 issue: 2 year: 2002 ident: 1161_CR18 publication-title: Plant J doi: 10.1046/j.1365-313X.1993.04020215.x – volume: 10 start-page: 219 issue: 1 year: 2009 ident: 1161_CR39 publication-title: BMC Genomics doi: 10.1186/1471-2164-10-219 – volume: 14 start-page: 4885 issue: 3 year: 2013 ident: 1161_CR5 publication-title: Int J Mol Sci doi: 10.3390/ijms14034885 – volume: 8 start-page: 1494 issue: 8 year: 2013 ident: 1161_CR22 publication-title: Nat Protoc doi: 10.1038/nprot.2013.084 – volume: 116 start-page: 203 issue: 1 year: 1998 ident: 1161_CR59 publication-title: Plant Physiol doi: 10.1104/pp.116.1.203 – volume: 428 start-page: 419 year: 2007 ident: 1161_CR63 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(07)28024-3 – volume: 280 start-page: 104 issue: 5360 year: 1998 ident: 1161_CR25 publication-title: Science doi: 10.1126/science.280.5360.104 – volume: 16 start-page: 298 year: 2015 ident: 1161_CR76 publication-title: BMC Genomics doi: 10.1186/s12864-015-1494-4 – volume: 290 start-page: 998 issue: 3 year: 2002 ident: 1161_CR49 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2001.6299 – volume: 17 start-page: 309 issue: 4 year: 2001 ident: 1161_CR75 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.4.309 – volume: 22 start-page: 1658 issue: 13 year: 2006 ident: 1161_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 10 start-page: 20 issue: 1 year: 2010 ident: 1161_CR43 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-10-20 – volume: 218 start-page: 443 issue: 4571 year: 1982 ident: 1161_CR12 publication-title: Science doi: 10.1126/science.218.4571.443 – volume: 10 start-page: 345 issue: 1 year: 2009 ident: 1161_CR30 publication-title: BMC Genomics doi: 10.1186/1471-2164-10-345 – volume: 6 start-page: 1 issue: 2 year: 2012 ident: 1161_CR26 publication-title: Plant Genome doi: 10.3835/plantgenome2012.08.0021 – volume: 7 start-page: 136 issue: 10 year: 2012 ident: 1161_CR34 publication-title: PLoS One doi: 10.1371/journal.pone.0046766 – volume: 14 start-page: 1 issue: 1 year: 2013 ident: 1161_CR68 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-415 – volume: 42 start-page: D222 issue: Database issue year: 2014 ident: 1161_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1223 – volume: 39 start-page: W316 issue: Web Server issu year: 2011 ident: 1161_CR72 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr483 – volume: 63 start-page: 1593 issue: 4 year: 2012 ident: 1161_CR29 publication-title: J Exp Bot doi: 10.1093/jxb/err460 |
SSID | ssj0047066 |
Score | 2.4037998 |
Snippet | Camellia sinensis
is an important economic crop worldwide since this plant is used to make one of the most popular non-alcoholic beverages, tea. Salinity... Camellia sinensis is an important economic crop worldwide since this plant is used to make one of the most popular non-alcoholic beverages, tea. Salinity... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Abiotic stress Adaptation Alcoholic beverages Assembly Beverages Binding biochemical pathways Biomedical and Life Sciences Biotechnology Caffeine Camellia sinensis Categories Clusters Coding Control Crosstalk data collection Datasets Deoxyribonucleic acid DNA Drought Dynamics Economics Enrichment Filtration Forestry Functional anatomy gamma-aminobutyric acid Gene Expression gene expression regulation Gene sequencing Genes high-throughput nucleotide sequencing Leaves Life Sciences Metabolic pathways Nucleotide sequence nucleotide sequences Original Article Plant Breeding/Biotechnology Plant Genetics and Genomics Plant growth Plants (botany) polyphenols proline Salinity Salinity effects Salt salt stress Salts Stress Stresses Sugar sugars Tea Technology utilization Transcription factors transcriptome Tree Biology water stress γ-Aminobutyric acid |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50BfUiuiqurhLBkxJs07TdnERFEQ8i4sLeStoksKDtarsH_70zfbgq6KGntA1MJjNfMo8P4AQhgMhEFhKhScRlqh1HvdF4SvFCBKQZoVjKtniI7sbyfhJO2gu3sk2r7GxibahNkdEd-TmeK6h3XyS9i9kbJ9Yoiq62FBrLsIImeDTqwcrVzcPjU2eLZezV0UqENZILJUUX16yL59DVUeJazH0c5-qnZ1rAzV8R0trx3G7CRosY2WWzxFuwZPM-rHUFxWUfVolekzjbtkHXrqc2BMWrZaahmy9Z4di1fqXem5pRonteTks2zdl7kyFrWVUwSlqf5vNiXrJSU71k9cF0bpipiXwq1lSV7MD49ub5-o63JAo8C6SquImcM76fGjzXyDALlHOZpSfUnk7jQLhYKiPCVFl_RHjMhig0a6LIaUJfwS708iK3e8BSOp9ZiwgGMYELtPK0ckY4HYfC6tgbgNcJMMnaDuNEdPGSLHojk8wTlHlCMk_UAE6_Ppk17TX-e3nYrUrS7rQyWejFAI6_hnGPUOBD5xalRlSb1DNIRf4AzrrV_PaLvybc_3_CA1gXpD51OuAQetX73B4iRKnSo1YPPwE-ROKR priority: 102 providerName: ProQuest |
Title | Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress |
URI | https://link.springer.com/article/10.1007/s11295-017-1161-9 https://www.proquest.com/docview/1910573640 https://www.proquest.com/docview/2000556961 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66gfgiXnE6RwSflEKbJq153MbmUBgiDuZTSZsEBq6TtXvw33tOL5uKCj6UPDRN4eRyvsP5cj5CrgACsIQlAgVNAofHyjqwbhREKa4AQJogikW2xTgYTfj9VEyre9xZzXavU5LFSb257AauCYlmoeMBTHHkNmkKCN2RxzVh3fr45aFbJCihC3eY5KxOZf40xFdntEGY35Kiha8Z7pO9CiTSbjmrB2TLpIdkB1U0UZrtiKjCwxT7fTE3VJeq8hldWNpXcyyxqSjy2dNsltFZSpclEdbQfEGRmz5LVxDw00zhtcj8napUU13o9eS0vDxyTCbDwXN_5FRaCU7ic5k7OrBWe16sIXzhIvGltYnBRyhXxaHPbMilZiKWxrtF2GUEGMroILAKQZZ_QhrpIjWnhMYYhhkDQAVcv_WVdJW0mlkVCmZU6LaIWxstSqpC4qhn8RptSiCjnSOwc4R2jmSLXK8_eSuraPzVuV3PRFRtqCyCsBJLNwYcfn-5fg1bAfMbKjVgNVTUxNJAMvBa5KaewU9D_PbDs3_1Pie7DFdQQQJsk0a-XJkLACZ53CHN7rDXG2N79_IwgLY3GD8-dYoF-gH0UN6s |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUR7QbSAulCokeACskgcx8EHhKAPbWlZIdRKvQUntqWV2qQ0WaH-KX4jM0ncpZXaWw85ObGl8Xjmc-bxAbxBCCBKUaZEaKK4LIznqDcGbylRioC0JBRL2RZTNTmW307SkyX4G2phKK0y2MTOUNu6pH_kH_BeQb37lIw-n__mxBpF0dVAodGrxYG7_INXtubT_g7u71sh9naPtid8YBXgZSJ1y63y3sZxYRHoy7RMtPeloyc1kSmyRPhMaivSQrv4IwEUl2aRclYpbwiOJDjvA1iWiYrECJa_7k5__Ay2X-KbXT0TOj0utBQhjtoV66FrpUS5jMc4zvV1T7iAtzcisp2j23sMjwaEyr70KrUGS65ah5VQwNysw0Oi8ySOuCdgOlfXGZ76zDHb09s3rPZs25xRr0_DKLG-amYNm1Xsos_IdaytGSXJz6p5PW9YY6g-s71kprLMdsRBLeurWJ7C8b2I9xmMqrpyG8AKug86h4gJMYhPjI6M9lZ4k6XCmSwaQxQEmJdDR3Mi1jjNF72YSeY5yjwnmed6DO-uPjnv23nc9fJm2JV8ONlNvtDDMby-GsYzSYEWUzmUGlF7Uo8ireIxvA-7-d8Uty34_O4Ft2BlcvT9MD_cnx68gFVBqtSlIm7CqL2Yu5cIj9ri1aCTDH7d9zH4BzVpIJk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaJcKqBUbAvFSOUCskicFz4g1AIrHtUKVSBxS53YllZiE0qyQvw1fh0zScxSJLhxyMmJLY3Hnm8yjw_gB0IAkYs8IkKTmIeZshz1RqGX4kUISHNCsZRtMYyPL8PTq-hqBh5cLQylVbo7sbmodZnTP_Id9Cuod18ceju2S4s4Pxzs3_zjxCBFkVZHp9GqyJm5v0P3rdo7OcS93hRicHRxcMw7hgGeB6GsuY6t1b6faQT9YZQH0trc0BMpT2VJIGwSSi2iTBp_l8CKiRIvNjqOrSJoEuC8H2A2Ia-oB7O_jobnf5wdCPHNprYJDSAXMhQuptoU7qGZpaS5hPs4zuX_VnEKdV9EZxujN1iATx1aZT9b9VqEGVMswUdXzFwtwRxRexJf3GdQjdlrLqFybJhuqe4rVlp2oMbU91MxSrIvqlHFRgW7bbNzDatLRgnzo2JSTipWKarVrO-ZKjTTDYlQzdqKlmW4fBfxfoFeURZmBVhGvqExiJ4Qj9hASU9Jq4VVSSSMSrw-eE6Aad51NyeSjet02peZZJ6izFOSeSr7sPX0yU3b2uOtl1fdrqTdKa_SqU72YeNpGM8nBV1UYVBqRPNJ_Ypk7Pdh2-3msyleW_Dr2wuuwxyqf_r7ZHj2DeYFaVKTlbgKvfp2YtYQKdXZ904lGfx971PwCIvNJM4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+dynamics+of+Camellia+sinensis+in+response+to+continuous+salinity+and+drought+stress&rft.jtitle=Tree+genetics+%26+genomes&rft.au=Zhang%2C+Qing&rft.au=Cai%2C+Muchen&rft.au=Yu%2C+Xiaomin&rft.au=Wang%2C+Lishan&rft.date=2017-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1614-2942&rft.eissn=1614-2950&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1007%2Fs11295-017-1161-9&rft.externalDocID=10_1007_s11295_017_1161_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-2942&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-2942&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-2942&client=summon |