A practical error formula for multivariate rational interpolation and approximation
We consider exact and approximate multivariate interpolation of a function f ( x 1 , . . . , x d ) by a rational function p n , m / q n , m ( x 1 , . . . , x d ) and develop an error formula for the difference f − p n , m / q n , m . The similarity with a well-known univariate formula for the...
Saved in:
Published in | Numerical algorithms Vol. 55; no. 2-3; pp. 233 - 243 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.11.2010
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1017-1398 1572-9265 |
DOI | 10.1007/s11075-010-9380-2 |
Cover
Abstract | We consider exact and approximate multivariate interpolation of a function
f
(
x
1
, . . . ,
x
d
) by a rational function
p
n
,
m
/
q
n
,
m
(
x
1
, . . . ,
x
d
) and develop an error formula for the difference
f
−
p
n
,
m
/
q
n
,
m
. The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for
f
and approximate interpolation is through intervals bounding
f
. The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on. |
---|---|
AbstractList | We consider exact and approximate multivariate interpolation of a function f(x 1,...,x d ) by a rational function p n,m /q n,m (x 1,...,x d ) and develop an error formula for the difference f-p n,m /q n,m . The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for f and approximate interpolation is through intervals bounding f. The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on. We consider exact and approximate multivariate interpolation of a function f(x1 , . . . , xd) by a rational function pn,m/qn,m(x1 , . . . , xd) and develop an error formula for the difference f − pn,m/qn,m. The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for f and approximate interpolation is through intervals bounding f. The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on. We consider exact and approximate multivariate interpolation of a function f ( x 1 , . . . , x d ) by a rational function p n , m / q n , m ( x 1 , . . . , x d ) and develop an error formula for the difference f − p n , m / q n , m . The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for f and approximate interpolation is through intervals bounding f . The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on. |
Author | Yang, Xianglan Cuyt, Annie |
Author_xml | – sequence: 1 givenname: Annie surname: Cuyt fullname: Cuyt, Annie organization: Department of Mathematics and Computer Science, University of Antwerp – sequence: 2 givenname: Xianglan surname: Yang fullname: Yang, Xianglan email: xianglan.yang@ua.ac.be organization: Department of Mathematics and Computer Science, University of Antwerp |
BookMark | eNp9kMtKAzEUhoMo2FYfwN2AGzfRXJpksizFGxRcqOuQZhJJmU7GJCP69qYdQSjo6pyE78_J-abguAudBeACo2uMkLhJGCPBIMIISlojSI7ABDNBoCScHZceYQExlfUpmKa0QQVEREzA86LqozbZG91WNsYQKxfidmj1rlalyf5DR6-zraLOPnSF8122sQ_t_lzprql038fw6bf7mzNw4nSb7PlPnYHXu9uX5QNcPd0_LhcraOhcZthwTmvH6NzwNa3nTU0pMnNaE8cQbogmjFK-Jg7JprGGU7O2DdayoY4bxwo-A1fju2X2-2BTVlufjG1b3dkwJIWFQJRwQllBLw_QTRhi2SUpInHNJJNCFAqPlIkhpWid6mPZKX4pjNROsxo1q2JP7TQrUjLiIGN83mvIUfv23yQZk6lM6d5s_P3T36FvXY-T4w |
CitedBy_id | crossref_primary_10_1137_23M1626414 crossref_primary_10_1063_1_4724305 crossref_primary_10_1016_j_cpc_2020_107663 crossref_primary_10_1007_s11075_011_9532_z |
Cites_doi | 10.1017/CBO9780511530074 10.1016/j.ejor.2006.12.028 10.1007/BF02432000 10.1017/CBO9780511800948 10.1090/S0025-5718-1995-1297477-5 10.1007/978-3-540-24588-9_22 10.1109/TMTT.2006.873637 10.1023/A:1018981505752 10.1063/1.2990963 10.1007/s11075-007-9077-3 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC. 2010 Springer Science+Business Media, LLC. 2010. |
Copyright_xml | – notice: Springer Science+Business Media, LLC. 2010 – notice: Springer Science+Business Media, LLC. 2010. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7SC 7TB 8FD FR3 KR7 L7M L~C L~D |
DOI | 10.1007/s11075-010-9380-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1572-9265 |
EndPage | 243 |
ExternalDocumentID | 10_1007_s11075_010_9380_2 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI 7SC 7TB 8FD FR3 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c349t-d6638f534c6b384d8330c4382f501d2a25336b2f09ddec63cbed1a9d3f6cf5d83 |
IEDL.DBID | AGYKE |
ISSN | 1017-1398 |
IngestDate | Fri Jul 11 11:12:05 EDT 2025 Sat Aug 16 21:31:13 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Tue Jul 01 00:28:10 EDT 2025 Fri Feb 21 02:32:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | Multivariate interpolation Rational interpolation Interpolation error |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-d6638f534c6b384d8330c4382f501d2a25336b2f09ddec63cbed1a9d3f6cf5d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2918595977 |
PQPubID | 2043837 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1770326235 proquest_journals_2918595977 crossref_primary_10_1007_s11075_010_9380_2 crossref_citationtrail_10_1007_s11075_010_9380_2 springer_journals_10_1007_s11075_010_9380_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-11-01 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationTitle | Numerical algorithms |
PublicationTitleAbbrev | Numer Algor |
PublicationYear | 2010 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Higham, D.J.: An Introduction to Financial Option Valuation: Mathematics, Stochastics, and Computation. Cambridge University Press (2004) Salazar CelisOCuytAVerdonkBRational approximation of vertical segmentsNumer. Algorithms2007453753881151.4101110.1007/s11075-007-9077-32355995 SauerTXuYOn multivariate Lagrange interpolationMath. Comput.199564211114711700823.410021297477 Becuwe, S., Cuyt, A., Verdonk, B.: Multivariate rational interpolation of scattered data. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds.) LNCS, vol. 2907, pp. 204–213 (2004) Salazar Celis, O., Cuyt, A., Van Deun, J.: Symbolic and interval rational interpolation: the problem of unattainable data. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 1048, pp. 466–469 (2008) LiMApproximate inversion of the Black-Scholes formula using rational functionsEur. J. Oper. Res.200818527437591137.9145910.1016/j.ejor.2006.12.028 CuytALeninRBBecuweSVerdonkBAdaptive multivariate rational data fitting with applications in electromagneticsIEEE Trans. Microwave Theor. Tech.2006542265227410.1109/TMTT.2006.873637 Baker, G.A., Jr., Graves-Morris, P.: Padé Approximants, 2nd edn. Cambridge University Press (1996) GascaMSauerTPolynomial interpolation in several variablesAdv. Comput. Math.20001243774100943.4100110.1023/A:10189815057521768957 SauerTComputational aspects of multivariate polynomial interpolationAdv. Comput. Math.1995332192370831.6500610.1007/BF024320001325032 CuytAWuytackLNonlinear Methods in Numerical Analysis1987AmsterdamNorth-Holland0609.65001 T Sauer (9380_CR11) 1995; 64 A Cuyt (9380_CR3) 2006; 54 O Salazar Celis (9380_CR9) 2007; 45 9380_CR1 9380_CR2 M Li (9380_CR7) 2008; 185 T Sauer (9380_CR10) 1995; 3 9380_CR6 A Cuyt (9380_CR4) 1987 9380_CR8 M Gasca (9380_CR5) 2000; 12 |
References_xml | – reference: Higham, D.J.: An Introduction to Financial Option Valuation: Mathematics, Stochastics, and Computation. Cambridge University Press (2004) – reference: Salazar Celis, O., Cuyt, A., Van Deun, J.: Symbolic and interval rational interpolation: the problem of unattainable data. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 1048, pp. 466–469 (2008) – reference: SauerTXuYOn multivariate Lagrange interpolationMath. Comput.199564211114711700823.410021297477 – reference: Baker, G.A., Jr., Graves-Morris, P.: Padé Approximants, 2nd edn. Cambridge University Press (1996) – reference: SauerTComputational aspects of multivariate polynomial interpolationAdv. Comput. Math.1995332192370831.6500610.1007/BF024320001325032 – reference: CuytALeninRBBecuweSVerdonkBAdaptive multivariate rational data fitting with applications in electromagneticsIEEE Trans. Microwave Theor. Tech.2006542265227410.1109/TMTT.2006.873637 – reference: Becuwe, S., Cuyt, A., Verdonk, B.: Multivariate rational interpolation of scattered data. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds.) LNCS, vol. 2907, pp. 204–213 (2004) – reference: LiMApproximate inversion of the Black-Scholes formula using rational functionsEur. J. Oper. Res.200818527437591137.9145910.1016/j.ejor.2006.12.028 – reference: CuytAWuytackLNonlinear Methods in Numerical Analysis1987AmsterdamNorth-Holland0609.65001 – reference: GascaMSauerTPolynomial interpolation in several variablesAdv. Comput. Math.20001243774100943.4100110.1023/A:10189815057521768957 – reference: Salazar CelisOCuytAVerdonkBRational approximation of vertical segmentsNumer. Algorithms2007453753881151.4101110.1007/s11075-007-9077-32355995 – ident: 9380_CR1 doi: 10.1017/CBO9780511530074 – volume: 185 start-page: 743 issue: 2 year: 2008 ident: 9380_CR7 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.12.028 – volume: 3 start-page: 219 issue: 3 year: 1995 ident: 9380_CR10 publication-title: Adv. Comput. Math. doi: 10.1007/BF02432000 – ident: 9380_CR6 doi: 10.1017/CBO9780511800948 – volume: 64 start-page: 1147 issue: 211 year: 1995 ident: 9380_CR11 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1995-1297477-5 – volume-title: Nonlinear Methods in Numerical Analysis year: 1987 ident: 9380_CR4 – ident: 9380_CR2 doi: 10.1007/978-3-540-24588-9_22 – volume: 54 start-page: 2265 year: 2006 ident: 9380_CR3 publication-title: IEEE Trans. Microwave Theor. Tech. doi: 10.1109/TMTT.2006.873637 – volume: 12 start-page: 377 issue: 4 year: 2000 ident: 9380_CR5 publication-title: Adv. Comput. Math. doi: 10.1023/A:1018981505752 – ident: 9380_CR8 doi: 10.1063/1.2990963 – volume: 45 start-page: 375 year: 2007 ident: 9380_CR9 publication-title: Numer. Algorithms doi: 10.1007/s11075-007-9077-3 |
SSID | ssj0010027 |
Score | 1.9088961 |
Snippet | We consider exact and approximate multivariate interpolation of a function
f
(
x
1
, . . . ,
x
d
) by a rational function
p
n
,
m
/
q
n
,
m
(
x
1
, . . . , ... We consider exact and approximate multivariate interpolation of a function f(x1 , . . . , xd) by a rational function pn,m/qn,m(x1 , . . . , xd) and develop an... We consider exact and approximate multivariate interpolation of a function f(x 1,...,x d ) by a rational function p n,m /q n,m (x 1,...,x d ) and develop an... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 233 |
SubjectTerms | Algebra Algorithms Approximation Computer Science Error analysis Errors Interpolation Intervals Mathematical analysis Mathematical models Multivariate analysis Numeric Computing Numerical Analysis Original Paper Permissible error Polynomials Rational functions Theory of Computation |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuNBDCwuo20JlJE4gCyeOs86pQlW3CAkusBK3yLEdCQllt8luxc_vjOPsqkhwyiF-SDOe8TeeF8CZkToXzkjuva95Zo3gWhWeBK9QRaIpNoyiLe7y61l286ge44NbF8MqB50YFLWbW3ojv0xxoiqoWtqPxR9OXaPIuxpbaHyAnQRvGjrnevp77UUgmyt4O1ETI9LRg1czpM6h3UNha4IXUgue_n8vbcDmK_9ouHame_Ap4kV21TN4H7Z8M4LPETuyKJndCD7eruuvdgdwf8Vi-hPO9W07bxmB09WzoS8LUYR_0UpGoMna-BzInvqWW31wHDONY6Hg-MtTn914CLPpr4ef1zy2T-BWZsWSOySIrpXMbF5JnTktpbDk96uVSFxqUkR6eZXWokAVZ3NpK-8SUzhZ57ZWOPwItpt5478AE8pPjHFoW_gkU9ZXDnHlBDkycV45YccgBuKVNtYWpxYXz-WmKjLRu0R6l0TvMh3D-XrKoi-s8d7g44EjZZSxrtyciDGcrn-jdJDLwzR-vurKZIIaLUWIp8ZwMXBys8SbG359f8NvsBuiCEJO4jFsL9uVP0Fwsqy-hxP4Dx5h4J0 priority: 102 providerName: ProQuest |
Title | A practical error formula for multivariate rational interpolation and approximation |
URI | https://link.springer.com/article/10.1007/s11075-010-9380-2 https://www.proquest.com/docview/2918595977 https://www.proquest.com/docview/1770326235 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH9s6WU7tF23sfQjaLBTh4tsWY50TErSsrEw1ga6k5ElGcqKU-yklP71fbKlhJZt0JNAkiVb0nv6Pb8vgC-KiYwaxSJrbRmlWtFIcGkd4UkuY-Fsw5y1xSw7n6ffrviV9-NugrV7UEm2nHrj7IaSijM0o5FkgkbId7d4LKTowdbo7Pf3yVp54EStVsmJDBgBjgjKzL8N8vQ62mDMZ2rR9raZ7sBleM_OyOTPyWpZnOiHZyEcX_ghu7Dt0ScZdcflHbyy1R7seCRKPJ03WBWSPYS6PXj7Yx3gtXkPFyPi_atwOFvXi5o49Lu6Ua4krZniHYrhiGRJ7f83kusup1dnfUdUZUgb0fz-unOf_ADz6eTy9Dzy-RkizVK5jAyiFVFyluqsYCI1gjGqnWKx5DQ2iUoQSmZFUlKJPFRnTBfWxEoaVma65Nj9I_SqRWU_AaHcDpUyKLzYOOXaFgaB6xDPytBYbqjuAw3blGsfvNzl0LjJN2GX3armuKq5W9U86cPx-pHbLnLH_zofhr3PPRE3eYLzc-kC9PXh87oZyc_pVFRlF6smj4fIMhPEkLwPX8N2b4b454T7L-p9AG9aq4XWB_IQest6ZY8QDC2LAbwW07MBksB0PJ4NPClgOZ7Mfv7C1nkyegSigAT- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE48Cggti1gJLiALBwnziYHhNrSakvbFYJW6s11bEeqVGXbZJfCn-I3MpM4uwKJ3nrKIX5I45nxN54XwBsTZ6lwJube-5In1gieqdyT4OUqjzKKDaNoi0k6Pkm-nKrTFfjd58JQWGWvE1tF7aaW3sg_SJyocqqW9unyilPXKPKu9i00OrY48L-u0WRrPu5_xvN9K-Xe7vHOmIeuAtzGST7jDu_YrFRxYtMizhKXoUVvyR1WKhE5aSQCoLSQpchR8m0a28K7yOQuLlNbKhyO696B1YQyWgewur07-fpt4bcgK6_1r6LuR2yV9X7UNlkPLS0KlBM8jzPB5d834RLe_uORbS-6vUfwICBUttWx1GNY8dUaPAxolQVd0KzB_aNFxdfmCXzfYiHhCuf6up7WjODw_MLQl7Vxiz_QLkdoy-rwAMnOuyZfXTgeM5VjbYnzn-ddPuVTOLkV0j6DQTWt_HNgQvmRMQ6tGR8lyvrCIZIdIQ-MnFdO2CGInnjahmrm1FTjQi_rMBO9NdJbE721HMK7xZTLrpTHTYM3-xPRQaobveTBIbxe_EZ5JCeLqfx03uhohDpUIqhUQ3jfn-Ryif9uuH7zhq_g7vj46FAf7k8ONuBeG8PQZkRuwmBWz_0LhEaz4mXgRwZnty0CfwDzrB8t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7IBNEH7-K8RvBJKUubpmsfhzq8I-jAt5AmKQxGJ-0m_nxP2nRDUcGnQpqm0JNz8p1-5wJwKlkcUS2ZZ4zJvFBJ6sU8MVbxEp74sY0Ns9EWj9H1ILx95a-uz2nZRLs3lGSd02CrNOWTzpvOOvPEN_RabNAZ9RIWUw9t8CJaY99u9EHQm9EI1umq6E40xQh14obW_GmJrwfTHG1-I0irc6e_DqsOMJJeLeENWDD5Jqw58EicapY41PRnaMY2YeVhVpO13ILnHnEpUbicKYpxQSxgnY6kvZIqsvAdPWcEn6RwvwjJsG7DVQfMEZlrUhUh_xjWGY_bMOhfvVxce66lgqdYmEw8jQAjzjgLVZSyONQxY1RZLjDj1NeBDBD9RWmQ0QTNnoqYSo32ZaJZFqmM4_QdaOXj3OwCodx0pdTobxg_5MqkGrFmF8Xb1YZrqtpAm-8plKs3bttejMS8UrIVgUARCCsCEbThbPbIW11s46_JB42QhNO7UgT4fp7YmnptOJndRo2xNIjMzXhaCr-LVi5A2MfbcN4Id77Ery_c-9fsY1h6uuyL-5vHu31YrmIOqgzGA2hNiqk5RCgzSY-q7foJ32XqZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+error+formula+for+multivariate+rational+interpolation+and+approximation&rft.jtitle=Numerical+algorithms&rft.au=Cuyt%2C+Annie&rft.au=Yang%2C+Xianglan&rft.date=2010-11-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=55&rft.issue=2-3&rft.spage=233&rft.epage=243&rft_id=info:doi/10.1007%2Fs11075-010-9380-2&rft.externalDocID=10_1007_s11075_010_9380_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |