A practical error formula for multivariate rational interpolation and approximation

We consider exact and approximate multivariate interpolation of a function f ( x 1  , . . . ,  x d ) by a rational function p n , m / q n , m ( x 1  , . . . ,  x d ) and develop an error formula for the difference f  −  p n , m / q n , m . The similarity with a well-known univariate formula for the...

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 55; no. 2-3; pp. 233 - 243
Main Authors Cuyt, Annie, Yang, Xianglan
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.11.2010
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1017-1398
1572-9265
DOI10.1007/s11075-010-9380-2

Cover

Abstract We consider exact and approximate multivariate interpolation of a function f ( x 1  , . . . ,  x d ) by a rational function p n , m / q n , m ( x 1  , . . . ,  x d ) and develop an error formula for the difference f  −  p n , m / q n , m . The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for f and approximate interpolation is through intervals bounding f . The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on.
AbstractList We consider exact and approximate multivariate interpolation of a function f(x 1,...,x d ) by a rational function p n,m /q n,m (x 1,...,x d ) and develop an error formula for the difference f-p n,m /q n,m . The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for f and approximate interpolation is through intervals bounding f. The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on.
We consider exact and approximate multivariate interpolation of a function f(x1 , . . . , xd) by a rational function pn,m/qn,m(x1 , . . . , xd) and develop an error formula for the difference f − pn,m/qn,m. The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for f and approximate interpolation is through intervals bounding f. The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on.
We consider exact and approximate multivariate interpolation of a function f ( x 1  , . . . ,  x d ) by a rational function p n , m / q n , m ( x 1  , . . . ,  x d ) and develop an error formula for the difference f  −  p n , m / q n , m . The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for f and approximate interpolation is through intervals bounding f . The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on.
Author Yang, Xianglan
Cuyt, Annie
Author_xml – sequence: 1
  givenname: Annie
  surname: Cuyt
  fullname: Cuyt, Annie
  organization: Department of Mathematics and Computer Science, University of Antwerp
– sequence: 2
  givenname: Xianglan
  surname: Yang
  fullname: Yang, Xianglan
  email: xianglan.yang@ua.ac.be
  organization: Department of Mathematics and Computer Science, University of Antwerp
BookMark eNp9kMtKAzEUhoMo2FYfwN2AGzfRXJpksizFGxRcqOuQZhJJmU7GJCP69qYdQSjo6pyE78_J-abguAudBeACo2uMkLhJGCPBIMIISlojSI7ABDNBoCScHZceYQExlfUpmKa0QQVEREzA86LqozbZG91WNsYQKxfidmj1rlalyf5DR6-zraLOPnSF8122sQ_t_lzprql038fw6bf7mzNw4nSb7PlPnYHXu9uX5QNcPd0_LhcraOhcZthwTmvH6NzwNa3nTU0pMnNaE8cQbogmjFK-Jg7JprGGU7O2DdayoY4bxwo-A1fju2X2-2BTVlufjG1b3dkwJIWFQJRwQllBLw_QTRhi2SUpInHNJJNCFAqPlIkhpWid6mPZKX4pjNROsxo1q2JP7TQrUjLiIGN83mvIUfv23yQZk6lM6d5s_P3T36FvXY-T4w
CitedBy_id crossref_primary_10_1137_23M1626414
crossref_primary_10_1063_1_4724305
crossref_primary_10_1016_j_cpc_2020_107663
crossref_primary_10_1007_s11075_011_9532_z
Cites_doi 10.1017/CBO9780511530074
10.1016/j.ejor.2006.12.028
10.1007/BF02432000
10.1017/CBO9780511800948
10.1090/S0025-5718-1995-1297477-5
10.1007/978-3-540-24588-9_22
10.1109/TMTT.2006.873637
10.1023/A:1018981505752
10.1063/1.2990963
10.1007/s11075-007-9077-3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC. 2010
Springer Science+Business Media, LLC. 2010.
Copyright_xml – notice: Springer Science+Business Media, LLC. 2010
– notice: Springer Science+Business Media, LLC. 2010.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7SC
7TB
8FD
FR3
KR7
L7M
L~C
L~D
DOI 10.1007/s11075-010-9380-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 243
ExternalDocumentID 10_1007_s11075_010_9380_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7SC
7TB
8FD
FR3
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-d6638f534c6b384d8330c4382f501d2a25336b2f09ddec63cbed1a9d3f6cf5d83
IEDL.DBID AGYKE
ISSN 1017-1398
IngestDate Fri Jul 11 11:12:05 EDT 2025
Sat Aug 16 21:31:13 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Tue Jul 01 00:28:10 EDT 2025
Fri Feb 21 02:32:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2-3
Keywords Multivariate interpolation
Rational interpolation
Interpolation error
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-d6638f534c6b384d8330c4382f501d2a25336b2f09ddec63cbed1a9d3f6cf5d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2918595977
PQPubID 2043837
PageCount 11
ParticipantIDs proquest_miscellaneous_1770326235
proquest_journals_2918595977
crossref_primary_10_1007_s11075_010_9380_2
crossref_citationtrail_10_1007_s11075_010_9380_2
springer_journals_10_1007_s11075_010_9380_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-01
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2010
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Higham, D.J.: An Introduction to Financial Option Valuation: Mathematics, Stochastics, and Computation. Cambridge University Press (2004)
Salazar CelisOCuytAVerdonkBRational approximation of vertical segmentsNumer. Algorithms2007453753881151.4101110.1007/s11075-007-9077-32355995
SauerTXuYOn multivariate Lagrange interpolationMath. Comput.199564211114711700823.410021297477
Becuwe, S., Cuyt, A., Verdonk, B.: Multivariate rational interpolation of scattered data. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds.) LNCS, vol. 2907, pp. 204–213 (2004)
Salazar Celis, O., Cuyt, A., Van Deun, J.: Symbolic and interval rational interpolation: the problem of unattainable data. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 1048, pp. 466–469 (2008)
LiMApproximate inversion of the Black-Scholes formula using rational functionsEur. J. Oper. Res.200818527437591137.9145910.1016/j.ejor.2006.12.028
CuytALeninRBBecuweSVerdonkBAdaptive multivariate rational data fitting with applications in electromagneticsIEEE Trans. Microwave Theor. Tech.2006542265227410.1109/TMTT.2006.873637
Baker, G.A., Jr., Graves-Morris, P.: Padé Approximants, 2nd edn. Cambridge University Press (1996)
GascaMSauerTPolynomial interpolation in several variablesAdv. Comput. Math.20001243774100943.4100110.1023/A:10189815057521768957
SauerTComputational aspects of multivariate polynomial interpolationAdv. Comput. Math.1995332192370831.6500610.1007/BF024320001325032
CuytAWuytackLNonlinear Methods in Numerical Analysis1987AmsterdamNorth-Holland0609.65001
T Sauer (9380_CR11) 1995; 64
A Cuyt (9380_CR3) 2006; 54
O Salazar Celis (9380_CR9) 2007; 45
9380_CR1
9380_CR2
M Li (9380_CR7) 2008; 185
T Sauer (9380_CR10) 1995; 3
9380_CR6
A Cuyt (9380_CR4) 1987
9380_CR8
M Gasca (9380_CR5) 2000; 12
References_xml – reference: Higham, D.J.: An Introduction to Financial Option Valuation: Mathematics, Stochastics, and Computation. Cambridge University Press (2004)
– reference: Salazar Celis, O., Cuyt, A., Van Deun, J.: Symbolic and interval rational interpolation: the problem of unattainable data. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 1048, pp. 466–469 (2008)
– reference: SauerTXuYOn multivariate Lagrange interpolationMath. Comput.199564211114711700823.410021297477
– reference: Baker, G.A., Jr., Graves-Morris, P.: Padé Approximants, 2nd edn. Cambridge University Press (1996)
– reference: SauerTComputational aspects of multivariate polynomial interpolationAdv. Comput. Math.1995332192370831.6500610.1007/BF024320001325032
– reference: CuytALeninRBBecuweSVerdonkBAdaptive multivariate rational data fitting with applications in electromagneticsIEEE Trans. Microwave Theor. Tech.2006542265227410.1109/TMTT.2006.873637
– reference: Becuwe, S., Cuyt, A., Verdonk, B.: Multivariate rational interpolation of scattered data. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds.) LNCS, vol. 2907, pp. 204–213 (2004)
– reference: LiMApproximate inversion of the Black-Scholes formula using rational functionsEur. J. Oper. Res.200818527437591137.9145910.1016/j.ejor.2006.12.028
– reference: CuytAWuytackLNonlinear Methods in Numerical Analysis1987AmsterdamNorth-Holland0609.65001
– reference: GascaMSauerTPolynomial interpolation in several variablesAdv. Comput. Math.20001243774100943.4100110.1023/A:10189815057521768957
– reference: Salazar CelisOCuytAVerdonkBRational approximation of vertical segmentsNumer. Algorithms2007453753881151.4101110.1007/s11075-007-9077-32355995
– ident: 9380_CR1
  doi: 10.1017/CBO9780511530074
– volume: 185
  start-page: 743
  issue: 2
  year: 2008
  ident: 9380_CR7
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.12.028
– volume: 3
  start-page: 219
  issue: 3
  year: 1995
  ident: 9380_CR10
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02432000
– ident: 9380_CR6
  doi: 10.1017/CBO9780511800948
– volume: 64
  start-page: 1147
  issue: 211
  year: 1995
  ident: 9380_CR11
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1995-1297477-5
– volume-title: Nonlinear Methods in Numerical Analysis
  year: 1987
  ident: 9380_CR4
– ident: 9380_CR2
  doi: 10.1007/978-3-540-24588-9_22
– volume: 54
  start-page: 2265
  year: 2006
  ident: 9380_CR3
  publication-title: IEEE Trans. Microwave Theor. Tech.
  doi: 10.1109/TMTT.2006.873637
– volume: 12
  start-page: 377
  issue: 4
  year: 2000
  ident: 9380_CR5
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018981505752
– ident: 9380_CR8
  doi: 10.1063/1.2990963
– volume: 45
  start-page: 375
  year: 2007
  ident: 9380_CR9
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-007-9077-3
SSID ssj0010027
Score 1.9088961
Snippet We consider exact and approximate multivariate interpolation of a function f ( x 1  , . . . ,  x d ) by a rational function p n , m / q n , m ( x 1  , . . . , ...
We consider exact and approximate multivariate interpolation of a function f(x1 , . . . , xd) by a rational function pn,m/qn,m(x1 , . . . , xd) and develop an...
We consider exact and approximate multivariate interpolation of a function f(x 1,...,x d ) by a rational function p n,m /q n,m (x 1,...,x d ) and develop an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 233
SubjectTerms Algebra
Algorithms
Approximation
Computer Science
Error analysis
Errors
Interpolation
Intervals
Mathematical analysis
Mathematical models
Multivariate analysis
Numeric Computing
Numerical Analysis
Original Paper
Permissible error
Polynomials
Rational functions
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuNBDCwuo20JlJE4gCyeOs86pQlW3CAkusBK3yLEdCQllt8luxc_vjOPsqkhwyiF-SDOe8TeeF8CZkToXzkjuva95Zo3gWhWeBK9QRaIpNoyiLe7y61l286ge44NbF8MqB50YFLWbW3ojv0xxoiqoWtqPxR9OXaPIuxpbaHyAnQRvGjrnevp77UUgmyt4O1ETI9LRg1czpM6h3UNha4IXUgue_n8vbcDmK_9ouHame_Ap4kV21TN4H7Z8M4LPETuyKJndCD7eruuvdgdwf8Vi-hPO9W07bxmB09WzoS8LUYR_0UpGoMna-BzInvqWW31wHDONY6Hg-MtTn914CLPpr4ef1zy2T-BWZsWSOySIrpXMbF5JnTktpbDk96uVSFxqUkR6eZXWokAVZ3NpK-8SUzhZ57ZWOPwItpt5478AE8pPjHFoW_gkU9ZXDnHlBDkycV45YccgBuKVNtYWpxYXz-WmKjLRu0R6l0TvMh3D-XrKoi-s8d7g44EjZZSxrtyciDGcrn-jdJDLwzR-vurKZIIaLUWIp8ZwMXBys8SbG359f8NvsBuiCEJO4jFsL9uVP0Fwsqy-hxP4Dx5h4J0
  priority: 102
  providerName: ProQuest
Title A practical error formula for multivariate rational interpolation and approximation
URI https://link.springer.com/article/10.1007/s11075-010-9380-2
https://www.proquest.com/docview/2918595977
https://www.proquest.com/docview/1770326235
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH9s6WU7tF23sfQjaLBTh4tsWY50TErSsrEw1ga6k5ElGcqKU-yklP71fbKlhJZt0JNAkiVb0nv6Pb8vgC-KiYwaxSJrbRmlWtFIcGkd4UkuY-Fsw5y1xSw7n6ffrviV9-NugrV7UEm2nHrj7IaSijM0o5FkgkbId7d4LKTowdbo7Pf3yVp54EStVsmJDBgBjgjKzL8N8vQ62mDMZ2rR9raZ7sBleM_OyOTPyWpZnOiHZyEcX_ghu7Dt0ScZdcflHbyy1R7seCRKPJ03WBWSPYS6PXj7Yx3gtXkPFyPi_atwOFvXi5o49Lu6Ua4krZniHYrhiGRJ7f83kusup1dnfUdUZUgb0fz-unOf_ADz6eTy9Dzy-RkizVK5jAyiFVFyluqsYCI1gjGqnWKx5DQ2iUoQSmZFUlKJPFRnTBfWxEoaVma65Nj9I_SqRWU_AaHcDpUyKLzYOOXaFgaB6xDPytBYbqjuAw3blGsfvNzl0LjJN2GX3armuKq5W9U86cPx-pHbLnLH_zofhr3PPRE3eYLzc-kC9PXh87oZyc_pVFRlF6smj4fIMhPEkLwPX8N2b4b454T7L-p9AG9aq4XWB_IQest6ZY8QDC2LAbwW07MBksB0PJ4NPClgOZ7Mfv7C1nkyegSigAT-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE48Cggti1gJLiALBwnziYHhNrSakvbFYJW6s11bEeqVGXbZJfCn-I3MpM4uwKJ3nrKIX5I45nxN54XwBsTZ6lwJube-5In1gieqdyT4OUqjzKKDaNoi0k6Pkm-nKrTFfjd58JQWGWvE1tF7aaW3sg_SJyocqqW9unyilPXKPKu9i00OrY48L-u0WRrPu5_xvN9K-Xe7vHOmIeuAtzGST7jDu_YrFRxYtMizhKXoUVvyR1WKhE5aSQCoLSQpchR8m0a28K7yOQuLlNbKhyO696B1YQyWgewur07-fpt4bcgK6_1r6LuR2yV9X7UNlkPLS0KlBM8jzPB5d834RLe_uORbS-6vUfwICBUttWx1GNY8dUaPAxolQVd0KzB_aNFxdfmCXzfYiHhCuf6up7WjODw_MLQl7Vxiz_QLkdoy-rwAMnOuyZfXTgeM5VjbYnzn-ddPuVTOLkV0j6DQTWt_HNgQvmRMQ6tGR8lyvrCIZIdIQ-MnFdO2CGInnjahmrm1FTjQi_rMBO9NdJbE721HMK7xZTLrpTHTYM3-xPRQaobveTBIbxe_EZ5JCeLqfx03uhohDpUIqhUQ3jfn-Ryif9uuH7zhq_g7vj46FAf7k8ONuBeG8PQZkRuwmBWz_0LhEaz4mXgRwZnty0CfwDzrB8t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7IBNEH7-K8RvBJKUubpmsfhzq8I-jAt5AmKQxGJ-0m_nxP2nRDUcGnQpqm0JNz8p1-5wJwKlkcUS2ZZ4zJvFBJ6sU8MVbxEp74sY0Ns9EWj9H1ILx95a-uz2nZRLs3lGSd02CrNOWTzpvOOvPEN_RabNAZ9RIWUw9t8CJaY99u9EHQm9EI1umq6E40xQh14obW_GmJrwfTHG1-I0irc6e_DqsOMJJeLeENWDD5Jqw58EicapY41PRnaMY2YeVhVpO13ILnHnEpUbicKYpxQSxgnY6kvZIqsvAdPWcEn6RwvwjJsG7DVQfMEZlrUhUh_xjWGY_bMOhfvVxce66lgqdYmEw8jQAjzjgLVZSyONQxY1RZLjDj1NeBDBD9RWmQ0QTNnoqYSo32ZaJZFqmM4_QdaOXj3OwCodx0pdTobxg_5MqkGrFmF8Xb1YZrqtpAm-8plKs3bttejMS8UrIVgUARCCsCEbThbPbIW11s46_JB42QhNO7UgT4fp7YmnptOJndRo2xNIjMzXhaCr-LVi5A2MfbcN4Id77Ery_c-9fsY1h6uuyL-5vHu31YrmIOqgzGA2hNiqk5RCgzSY-q7foJ32XqZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+error+formula+for+multivariate+rational+interpolation+and+approximation&rft.jtitle=Numerical+algorithms&rft.au=Cuyt%2C+Annie&rft.au=Yang%2C+Xianglan&rft.date=2010-11-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=55&rft.issue=2-3&rft.spage=233&rft.epage=243&rft_id=info:doi/10.1007%2Fs11075-010-9380-2&rft.externalDocID=10_1007_s11075_010_9380_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon