A damage threshold prediction model of CFRP panel by hail impact based on delamination mechanism
•A numerical model is established for simulating CFRP impacted by hail ice.•A damage threshold prediction model of CFRP impacted by ice ball is proposed.•A CFRP damage threshold can be derived at lower cost. Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed...
Saved in:
Published in | Engineering fracture mechanics Vol. 239; p. 107282 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A numerical model is established for simulating CFRP impacted by hail ice.•A damage threshold prediction model of CFRP impacted by ice ball is proposed.•A CFRP damage threshold can be derived at lower cost.
Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed ice ball impact was challenging to elucidate due to inherent heterogeneity and anisotropy properties. This further leads to difficulties in theoretical prediction of the damage threshold. Simulation modelling of CFRP panel subjected to high-speed ice ball impact was conducted in this study. Through coupling SPH (Smoothed Particle Hydrodynamics) and FEM (Finite Element Method), the simulation has captured the deformation and damage of the CFRP panel and ice ball. A damage threshold prediction model of CFRP was then proposed based on the mechanism analysis of the dynamic deformation and delamination. The traditional prediction of CFRP impact damage threshold, that is, parametric studies on the damage threshold of CFRP panel influenced by different impact speed, ice ball diameter and panel thickness was performed. Finally, the results show that the CFRP damage threshold law obtained from parameterized simulation matches the previous experimental results, and a conservative damage threshold can be predicted from the proposed theoretical model. The proposed theoretical model can contribute to predicting the damage threshold of CFRP panels subject to ice ball impacts at low cost. |
---|---|
AbstractList | Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed ice ball impact was challenging to elucidate due to inherent heterogeneity and anisotropy properties. This further leads to difficulties in theoretical prediction of the damage threshold. Simulation modelling of CFRP panel subjected to high-speed ice ball impact was conducted in this study. Through coupling SPH (Smoothed Particle Hydrodynamics) and FEM (Finite Element Method), the simulation has captured the deformation and damage of the CFRP panel and ice ball. A damage threshold prediction model of CFRP was then proposed based on the mechanism analysis of the dynamic deformation and delamination. The traditional prediction of CFRP impact damage threshold, that is, parametric studies on the damage threshold of CFRP panel influenced by different impact speed, ice ball diameter and panel thickness was performed. Finally, the results show that the CFRP damage threshold law obtained from parameterized simulation matches the previous experimental results, and a conservative damage threshold can be predicted from the proposed theoretical model. The proposed theoretical model can contribute to predicting the damage threshold of CFRP panels subject to ice ball impacts at low cost. •A numerical model is established for simulating CFRP impacted by hail ice.•A damage threshold prediction model of CFRP impacted by ice ball is proposed.•A CFRP damage threshold can be derived at lower cost. Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed ice ball impact was challenging to elucidate due to inherent heterogeneity and anisotropy properties. This further leads to difficulties in theoretical prediction of the damage threshold. Simulation modelling of CFRP panel subjected to high-speed ice ball impact was conducted in this study. Through coupling SPH (Smoothed Particle Hydrodynamics) and FEM (Finite Element Method), the simulation has captured the deformation and damage of the CFRP panel and ice ball. A damage threshold prediction model of CFRP was then proposed based on the mechanism analysis of the dynamic deformation and delamination. The traditional prediction of CFRP impact damage threshold, that is, parametric studies on the damage threshold of CFRP panel influenced by different impact speed, ice ball diameter and panel thickness was performed. Finally, the results show that the CFRP damage threshold law obtained from parameterized simulation matches the previous experimental results, and a conservative damage threshold can be predicted from the proposed theoretical model. The proposed theoretical model can contribute to predicting the damage threshold of CFRP panels subject to ice ball impacts at low cost. |
ArticleNumber | 107282 |
Author | Liu, Kai Wang, Zhonggang Liu, Jia Long |
Author_xml | – sequence: 1 givenname: Kai surname: Liu fullname: Liu, Kai organization: School of Traffic & Transportation Engineering, Central South University, Changsha, Hunan, China – sequence: 2 givenname: Jia Long surname: Liu fullname: Liu, Jia Long organization: Department of Mechanical Engineering, National University of Singapore, Singapore – sequence: 3 givenname: Zhonggang surname: Wang fullname: Wang, Zhonggang email: wangzg@csu.edu.cn organization: School of Traffic & Transportation Engineering, Central South University, Changsha, Hunan, China |
BookMark | eNqNkFtLAzEQhYMoWC__IeJzay7bbvZJpHgDQRF9jrPJxKZ0kzVZBf-9qeuD-OTTzIRzzmS-A7IbYkBCTjibccYXZ-sZhleXwHRoVjPBxPa9FkrskAlXtZzWks93yYQxXvqmqvbJQc5rxli9UGxCXi6ohQ5ekQ6rhHkVN5b2Ca03g4-BdtHihkZHl1ePD7SHUKb2k67Ab6jvejADbSGjpUVblND5AKOxfAeCz90R2XOwyXj8Uw_J89Xl0_Jmend_fbu8uJsaWTXD1M5l4wx3FpgC7pQQrQElpDXCobRV6-ayYsoBVMw0NYOmFsIa5VpnWolCHpLTMbdP8e0d86DX8T2FslKLqlYLwef1VtWMKpNizgmd7pPvIH1qzvQWqF7rX0D1FqgegRbv-R-v8cP3tUMqPP6VsBwTsID48Jh0Nh6DKbgTmkHb6P-R8gVPsZzf |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2023_109797 crossref_primary_10_1016_j_ijdrr_2024_104853 crossref_primary_10_1016_j_ijimpeng_2023_104664 crossref_primary_10_1016_j_engfracmech_2022_108688 crossref_primary_10_1016_j_engfracmech_2023_109177 crossref_primary_10_1016_j_compscitech_2024_110710 crossref_primary_10_1016_j_dt_2022_12_014 crossref_primary_10_1016_j_ijimpeng_2024_105034 crossref_primary_10_1016_j_compscitech_2024_111023 crossref_primary_10_1016_j_oceaneng_2022_111360 crossref_primary_10_1016_j_renene_2022_03_132 crossref_primary_10_1016_j_compstruct_2022_116244 crossref_primary_10_1007_s10853_024_09331_y crossref_primary_10_1016_j_ijimpeng_2023_104507 crossref_primary_10_1016_j_matdes_2022_110995 crossref_primary_10_1016_j_engfracmech_2022_108434 crossref_primary_10_1016_j_ijimpeng_2023_104631 crossref_primary_10_1080_09243046_2024_2369370 crossref_primary_10_1515_rams_2022_0054 crossref_primary_10_1007_s10409_024_23589_x crossref_primary_10_1155_2023_2121209 crossref_primary_10_1016_j_tws_2022_109039 crossref_primary_10_1016_j_ijmecsci_2021_106749 crossref_primary_10_1016_j_eml_2021_101374 crossref_primary_10_1016_j_ijmecsci_2024_109808 crossref_primary_10_1080_15376494_2021_2018071 crossref_primary_10_1016_j_compstruct_2022_115563 crossref_primary_10_1016_j_mtcomm_2023_106767 crossref_primary_10_3390_app11114743 crossref_primary_10_1016_j_engstruct_2023_116731 crossref_primary_10_3390_ma17164024 crossref_primary_10_1016_j_engfracmech_2021_107764 crossref_primary_10_1016_j_engfailanal_2024_109171 crossref_primary_10_1016_j_jsamd_2025_100874 crossref_primary_10_1016_j_mtcomm_2024_110798 crossref_primary_10_1016_j_compscitech_2022_109640 crossref_primary_10_1016_j_engfracmech_2022_108757 crossref_primary_10_1016_j_ijimpeng_2021_103967 crossref_primary_10_1016_j_ijmecsci_2021_106683 |
Cites_doi | 10.1016/j.compositesa.2019.105509 10.1007/978-1-4419-9308-3 10.1016/j.ijimpeng.2014.09.013 10.1016/S1359-835X(02)00258-0 10.1177/002199838702100904 10.1016/j.engfracmech.2017.10.020 10.1007/s13726-020-00811-x 10.1016/j.engfracmech.2020.106897 10.1093/mnras/181.3.375 10.1115/1.3153664 10.3390/app8122406 10.1016/j.matdes.2017.12.044 10.1016/j.compositesa.2007.01.017 10.1016/j.ijimpeng.2018.09.014 10.1016/j.compstruct.2012.03.039 10.1016/j.compositesb.2017.10.016 10.1016/j.compscitech.2020.108243 10.1016/j.ijsolstr.2011.05.028 10.1016/j.compositesb.2017.01.016 10.2514/2.1099 10.1007/s10443-017-9610-z 10.1016/j.compositesa.2012.02.017 10.1016/j.ijimpeng.2012.05.006 10.1016/0266-3538(96)00005-X 10.1016/j.compstruct.2011.04.029 10.1016/j.ijimpeng.2009.08.005 10.1177/002199836700100210 10.1016/j.engfracmech.2018.12.030 10.1177/002199837100500106 10.1016/j.ijsolstr.2006.08.022 10.1016/j.compstruct.2018.08.009 10.1016/j.coldregions.2013.09.008 10.1016/j.engfracmech.2017.12.044 10.13036/17533546.58.6.005 10.1016/j.ijimpeng.2017.04.024 10.1016/C2014-0-01175-6 10.1016/j.compositesb.2018.08.062 10.1016/j.ijimpeng.2016.05.010 10.4236/wjm.2012.23019 10.1029/2019RG000665 10.1016/j.compositesb.2017.09.008 10.1002/pc.24924 10.1016/j.jmrt.2019.11.089 10.1016/j.engfracmech.2020.106901 10.1007/s10853-018-2928-6 10.1016/j.engfracmech.2019.106799 10.1016/0165-232X(86)90009-1 10.1016/j.jmrt.2019.09.035 10.1016/j.compositesb.2019.02.011 10.1016/j.engfracmech.2018.12.003 10.1016/j.ijmecsci.2019.04.024 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Nov 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Nov 2020 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.engfracmech.2020.107282 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7315 |
ExternalDocumentID | 10_1016_j_engfracmech_2020_107282 S0013794420308651 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c349t-d539fc1fda08a1f822bca823dc2fe3d4bf53408faa40c970a9722dc8fbfcb3e23 |
IEDL.DBID | .~1 |
ISSN | 0013-7944 |
IngestDate | Fri Jul 25 02:49:20 EDT 2025 Tue Jul 01 01:50:15 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Mon Apr 08 05:17:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Damage mechanics Damage tolerance Dynamic fracture Delamination Fibre reinforced materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-d539fc1fda08a1f822bca823dc2fe3d4bf53408faa40c970a9722dc8fbfcb3e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2478621572 |
PQPubID | 2045482 |
ParticipantIDs | proquest_journals_2478621572 crossref_primary_10_1016_j_engfracmech_2020_107282 crossref_citationtrail_10_1016_j_engfracmech_2020_107282 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2020_107282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Engineering fracture mechanics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Heymsfield, Giammanco, Wright (b0060) 2014;41. Benzeggagh, Kenane (b0180) 1996; 56 Monaghan J, Lattanzio J. A refined particle method for astrophysical problems. Astron Astrophys (Berlin Print); 1985. Appleby-Thomas, Hazell, Dahini (b0035) 2011; 93 Kustron, Horak, Doubrava, Goraj (b0040) 2019; 91 Chang, Chang (b0175) 1987; 21 López-Puente, Zaera, Navarro (b0285) 2007; 44 Vedrtnam, Pawar (b0005) 2017; 186 Lapczyk, Hurtado (b0185) 2007; 38 Vedrtnam, Pawar (b0235) 2018; 190 Kim, Welch, Kedward (b0145) 2003; 34 Combescure, Chuzel-Marmot, Fabis (b0065) 2011; 48 Tang, Wang, Han, Chen (b0090) 2019; 8 Yuan, Niu, Zhang (b0195) 2020; 223 Vedrtnam, Sharma (b0100) 2019; 125 Nadreau, Michel (b0265) 1986; 13 Hashin (b0170) 1980; 47 Sencu, Yang, Wang, Withers, Soutis (b0110) 2020 Sun, Tie, Hou, Lu, Li (b0190) 2020; 228 Ren, Jiang, Ji, Zhang, Xiang, Yuan (b0230) 2018; 25 Liu, Jiang, Ren, Qian, Yuan (b0215) 2019; 40 Tippmann JD. Development of a strain rate sensitive ice material model for hail ice impact simulation; 2011. Shi, Swait, Soutis (b0150) 2012; 94 Kim, Kedward (b0255) 2000; 38 Silberschmidt VV. Dynamic deformation, damage and fracture in composite materials and structures. Woodhead Publishing; 2016. https://doi.org/10.1016/c2014-0-01175-6. Ren, Jiang, Liu (b0225) 2019; 157–158 Song, Le, Whisler, Kim (b0080) 2018; 122 Tang, Li, Han (b0140) 2020; 9 Liu, Falzon, Tan (b0125) 2018; 136 Kolios, Proia (b0160) 2012; 2 Pernas-Sánchez, Artero-Guerrero, Varas, López-Puente (b0260) 2016; 96 Sánchez-Gálvez, Gálvez, Sancho, Cendón (b0280) 2017; 108 Vedrtnam, Pawar (b0240) 2017; 58 Wu, Prakash (b0070) 2015; 76 Pernas-Sánchez, Artero-Guerrero, López-Puente, Varas (b0030) 2018; 141 Gingold, Monaghan (b0250) 1977; 181 Renshaw, Golding, Schulson (b0245) 2014; 97 Morozov, Jackson, Pierce (b0130) 2017; 113 Jiang, Ren, Liu, Zhang (b0210) 2019; 54 Tsai, Wu (b0155) 1971; 5 Pochiraju KV, Schoeppner GA, Tandon GP. Long-term durability of polymeric matrix composites. vol. 9781441993083. Springer US; 2012. https://doi.org/10.1007/978-1-4419-9308-3. Vedrtnam (b0095) 2019; 157 Ren, Gao, Liu, Zheng (b0205) 2019 Hoffman (b0165) 1967; 1 Dolati, Shariati, Rezaeepazhand (b0045) 2020; 29 Rhymer, Kim, Roach (b0075) 2012; 43 Coles, Roy, Silberschmidt (b0120) 2020; 225 Sadighi, Alderliesten, Benedictus (b0020) 2012; 49 Safri, Sultan, Jawaid, Jayakrishna (b0025) 2018; 133 Liu, Zhao, Chen, Shuang, Luo (b0135) 2018; 204 Saghafi, Fotouhi, Minak (b0015) 2018; 8 Coles, Roy, Sazhenkov, Voronov, Nikhamkin, Silberschmidt (b0115) 2020; 225 Wang, Echeverry, Trevisi, Prather, Xiang, Liu (b0105) 2020;10. Allen, Giammanco, Kumjian, Jurgen Punge, Zhang, Groenemeijer (b0055) 2020; 58 Wang (b0220) 2019; 166 Gu, Yuan, Zhu, Lu, Fang, Li (b0200) 2020; 228 Park, Kim (b0085) 2010; 37 Nadreau (10.1016/j.engfracmech.2020.107282_b0265) 1986; 13 Ren (10.1016/j.engfracmech.2020.107282_b0230) 2018; 25 10.1016/j.engfracmech.2020.107282_b0010 Pernas-Sánchez (10.1016/j.engfracmech.2020.107282_b0260) 2016; 96 Sánchez-Gálvez (10.1016/j.engfracmech.2020.107282_b0280) 2017; 108 Combescure (10.1016/j.engfracmech.2020.107282_b0065) 2011; 48 Saghafi (10.1016/j.engfracmech.2020.107282_b0015) 2018; 8 Hoffman (10.1016/j.engfracmech.2020.107282_b0165) 1967; 1 Chang (10.1016/j.engfracmech.2020.107282_b0175) 1987; 21 Yuan (10.1016/j.engfracmech.2020.107282_b0195) 2020; 223 Dolati (10.1016/j.engfracmech.2020.107282_b0045) 2020; 29 Park (10.1016/j.engfracmech.2020.107282_b0085) 2010; 37 Vedrtnam (10.1016/j.engfracmech.2020.107282_b0100) 2019; 125 Coles (10.1016/j.engfracmech.2020.107282_b0115) 2020; 225 Tsai (10.1016/j.engfracmech.2020.107282_b0155) 1971; 5 Vedrtnam (10.1016/j.engfracmech.2020.107282_b0235) 2018; 190 Benzeggagh (10.1016/j.engfracmech.2020.107282_b0180) 1996; 56 10.1016/j.engfracmech.2020.107282_b0050 Vedrtnam (10.1016/j.engfracmech.2020.107282_b0005) 2017; 186 Wang (10.1016/j.engfracmech.2020.107282_b0105) 202010 Gu (10.1016/j.engfracmech.2020.107282_b0200) 2020; 228 Appleby-Thomas (10.1016/j.engfracmech.2020.107282_b0035) 2011; 93 Vedrtnam (10.1016/j.engfracmech.2020.107282_b0240) 2017; 58 Wang (10.1016/j.engfracmech.2020.107282_b0220) 2019; 166 Sadighi (10.1016/j.engfracmech.2020.107282_b0020) 2012; 49 Wu (10.1016/j.engfracmech.2020.107282_b0070) 2015; 76 Song (10.1016/j.engfracmech.2020.107282_b0080) 2018; 122 Jiang (10.1016/j.engfracmech.2020.107282_b0210) 2019; 54 López-Puente (10.1016/j.engfracmech.2020.107282_b0285) 2007; 44 Coles (10.1016/j.engfracmech.2020.107282_b0120) 2020; 225 Ren (10.1016/j.engfracmech.2020.107282_b0225) 2019; 157–158 Heymsfield (10.1016/j.engfracmech.2020.107282_b0060) 201441 Liu (10.1016/j.engfracmech.2020.107282_b0215) 2019; 40 Ren (10.1016/j.engfracmech.2020.107282_b0205) 2019 Hashin (10.1016/j.engfracmech.2020.107282_b0170) 1980; 47 Renshaw (10.1016/j.engfracmech.2020.107282_b0245) 2014; 97 Rhymer (10.1016/j.engfracmech.2020.107282_b0075) 2012; 43 Vedrtnam (10.1016/j.engfracmech.2020.107282_b0095) 2019; 157 Sun (10.1016/j.engfracmech.2020.107282_b0190) 2020; 228 10.1016/j.engfracmech.2020.107282_b0275 Liu (10.1016/j.engfracmech.2020.107282_b0135) 2018; 204 Morozov (10.1016/j.engfracmech.2020.107282_b0130) 2017; 113 Lapczyk (10.1016/j.engfracmech.2020.107282_b0185) 2007; 38 Safri (10.1016/j.engfracmech.2020.107282_b0025) 2018; 133 Kolios (10.1016/j.engfracmech.2020.107282_b0160) 2012; 2 Kim (10.1016/j.engfracmech.2020.107282_b0255) 2000; 38 Allen (10.1016/j.engfracmech.2020.107282_b0055) 2020; 58 Kim (10.1016/j.engfracmech.2020.107282_b0145) 2003; 34 Sencu (10.1016/j.engfracmech.2020.107282_b0110) 2020 Gingold (10.1016/j.engfracmech.2020.107282_b0250) 1977; 181 Kustron (10.1016/j.engfracmech.2020.107282_b0040) 2019; 91 Tang (10.1016/j.engfracmech.2020.107282_b0140) 2020; 9 Tang (10.1016/j.engfracmech.2020.107282_b0090) 2019; 8 Shi (10.1016/j.engfracmech.2020.107282_b0150) 2012; 94 10.1016/j.engfracmech.2020.107282_b0270 Liu (10.1016/j.engfracmech.2020.107282_b0125) 2018; 136 Pernas-Sánchez (10.1016/j.engfracmech.2020.107282_b0030) 2018; 141 |
References_xml | – reference: Pochiraju KV, Schoeppner GA, Tandon GP. Long-term durability of polymeric matrix composites. vol. 9781441993083. Springer US; 2012. https://doi.org/10.1007/978-1-4419-9308-3. – volume: 8 start-page: 5671 year: 2019 end-page: 5686 ident: b0090 article-title: Microscopic damage modes and physical mechanisms of CFRP Laminates Impacted by Ice projectile at High Velocity publication-title: J Mater Res Technol – volume: 58 start-page: 169 year: 2017 end-page: 178 ident: b0240 article-title: Experimental and simulation studies on fracture of laminated glass having polyvinyl butyral and ethyl vinyl acetate interlayers of different critical thicknesses due to impact load publication-title: Glas Technol Eur J Glas Sci Technol Part A – reference: Silberschmidt VV. Dynamic deformation, damage and fracture in composite materials and structures. Woodhead Publishing; 2016. https://doi.org/10.1016/c2014-0-01175-6. – volume: 133 start-page: 112 year: 2018 end-page: 121 ident: b0025 article-title: Impact behaviour of hybrid composites for structural applications: a review publication-title: Compos Part B Eng – year: 2020;10. ident: b0105 article-title: Ultrahigh resolution pulsed laser-induced photoacoustic detection of multi-scale damage in CFRP composites publication-title: Appl Sci – year: 2019 ident: b0205 article-title: The crashworthiness prediction of 2D triaxially braided composite fuselage frame under transverse impact load publication-title: Int J Crashworthiness – volume: 181 year: 1977 ident: b0250 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon Not R Astron Soc – volume: 108 start-page: 322 year: 2017 end-page: 333 ident: b0280 article-title: A new analytical model to simulate high-speed impact onto composite materials targets publication-title: Int J Impact Eng – volume: 93 start-page: 2619 year: 2011 end-page: 2627 ident: b0035 article-title: On the response of two commercially-important CFRP structures to multiple ice impacts publication-title: Compos Struct – volume: 136 start-page: 101 year: 2018 end-page: 118 ident: b0125 article-title: Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates publication-title: Compos Part B Eng – volume: 29 year: 2020 ident: b0045 article-title: The hail impactor shape with an ice impact response of the laminated composites reinforced with different nanomaterials: an experimental approach publication-title: Iran Polym J – volume: 44 start-page: 2837 year: 2007 end-page: 2851 ident: b0285 article-title: An analytical model for high velocity impacts on thin CFRPs woven laminated plates publication-title: Int J Solids Struct – volume: 49 start-page: 77 year: 2012 end-page: 90 ident: b0020 article-title: Impact resistance of fiber-metal laminates: a review publication-title: Int J Impact Eng – volume: 125 year: 2019 ident: b0100 article-title: Study on the performance of different nano-species used for surface modification of carbon fiber for interface strengthening publication-title: Compos Part A Appl Sci Manuf – volume: 25 start-page: 45 year: 2018 end-page: 66 ident: b0230 article-title: Improvement of progressive damage model to predicting crashworthy composite corrugated plate publication-title: Appl Compos Mater – volume: 38 year: 2000 ident: b0255 article-title: Modeling hail ice impacts and predicting impact damage initiation in composite structures publication-title: AIAA J – volume: 21 year: 1987 ident: b0175 article-title: A progressive damage model for laminated composites containing stress concentrations publication-title: J Compos Mater – volume: 190 start-page: 461 year: 2018 end-page: 470 ident: b0235 article-title: Experimental and simulation studies on fracture and adhesion test of laminated glass publication-title: Eng Fract Mech – volume: 48 start-page: 2779 year: 2011 end-page: 2790 ident: b0065 article-title: Experimental study of high-velocity impact and fracture of ice publication-title: Int J Solids Struct – volume: 186 year: 2017 ident: b0005 article-title: Laminated plate theories and fracture of laminated glass plate – a review publication-title: Eng Fract Mech – volume: 204 start-page: 645 year: 2018 end-page: 657 ident: b0135 article-title: An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites publication-title: Compos Struct – volume: 94 start-page: 2902 year: 2012 end-page: 2913 ident: b0150 article-title: Modelling damage evolution in composite laminates subjected to low velocity impact publication-title: Compos Struct – reference: Tippmann JD. Development of a strain rate sensitive ice material model for hail ice impact simulation; 2011. – volume: 113 start-page: 65 year: 2017 end-page: 71 ident: b0130 article-title: Capacitive imaging of impact damage in composite material publication-title: Compos Part B Eng – volume: 13 year: 1986 ident: b0265 article-title: Yield and failure envelope for ice under multiaxial compressive stresses publication-title: Cold Reg Sci Technol – volume: 34 start-page: 25 year: 2003 end-page: 41 ident: b0145 article-title: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels publication-title: Compos Part A Appl Sci Manuf – year: 2020 ident: b0110 article-title: Multiscale image-based modelling of damage and fracture in carbon fibre reinforced polymer composites publication-title: Compos Sci Technol – volume: 38 year: 2007 ident: b0185 article-title: Progressive damage modeling in fiber-reinforced materials publication-title: Compos Part A Appl Sci Manuf – volume: 76 start-page: 155 year: 2015 end-page: 165 ident: b0070 article-title: Dynamic strength of distill water and lake water ice at high strain rates publication-title: Int J Impact Eng – volume: 96 start-page: 1 year: 2016 end-page: 10 ident: b0260 article-title: Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates publication-title: Int J Impact Eng – volume: 40 start-page: 1708 year: 2019 end-page: 1717 ident: b0215 article-title: Energy-absorption performance of composite corrugated plates with corrugated-shape ditch plug initiator publication-title: Polym Compos – volume: 223 year: 2020 ident: b0195 article-title: Compressive damage mode manipulation of fiber-reinforced polymer composites publication-title: Eng Fract Mech – volume: 228 year: 2020 ident: b0200 article-title: Numerical study of composite laminates subjected to low-velocity impact using a localized damage algorithm of Puck’s 3D IFF criterion publication-title: Eng Fract Mech – volume: 2 year: 2012 ident: b0160 article-title: Evaluation of the reliability performance of failure criteria for composite structures publication-title: World J Mech – year: 2014;41. ident: b0060 article-title: Terminal velocities and kinetic energies of natural hailstones publication-title: Geophys Res Lett – volume: 47 year: 1980 ident: b0170 article-title: Failure criteria for unidirectional fiber composites publication-title: J Appl Mech Trans ASME – volume: 56 year: 1996 ident: b0180 article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus publication-title: Compos Sci Technol – volume: 97 start-page: 1 year: 2014 end-page: 6 ident: b0245 article-title: Maps for brittle and brittle-like failure in ice publication-title: Cold Reg Sci Technol – volume: 225 start-page: 106270 year: 2020 ident: b0115 article-title: Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part I - Deformation and damage behaviour publication-title: Eng Fract Mech – volume: 54 start-page: 1363 year: 2019 end-page: 1381 ident: b0210 article-title: Microscale finite element analysis for predicting effects of air voids on mechanical properties of single fiber bundle in composites publication-title: J Mater Sci – volume: 166 start-page: 731 year: 2019 end-page: 741 ident: b0220 article-title: Recent advances in novel metallic honeycomb structure publication-title: Compos Part B Eng – volume: 225 start-page: 106297 year: 2020 ident: b0120 article-title: Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part II – Numerical modelling publication-title: Eng Fract Mech – volume: 43 start-page: 1134 year: 2012 end-page: 1144 ident: b0075 article-title: The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice publication-title: Compos Part A Appl Sci Manuf – volume: 157–158 start-page: 1 year: 2019 end-page: 12 ident: b0225 article-title: Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes publication-title: Int J Mech Sci – volume: 8 year: 2018 ident: b0015 article-title: Improvement of the impact properties of composite laminates by means of nano-modification of the matrix-a review publication-title: Appl Sci – volume: 157 start-page: 305 year: 2019 end-page: 321 ident: b0095 article-title: Novel method for improving fatigue behavior of carbon fiber reinforced epoxy composite publication-title: Compos Part B Eng – reference: Monaghan J, Lattanzio J. A refined particle method for astrophysical problems. Astron Astrophys (Berlin Print); 1985. – volume: 122 start-page: 439 year: 2018 end-page: 450 ident: b0080 article-title: Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact publication-title: Int J Impact Eng – volume: 141 start-page: 350 year: 2018 end-page: 360 ident: b0030 article-title: Numerical methodology to analyze the ice impact threat: application to composite structures publication-title: Mater Des – volume: 5 start-page: 58 year: 1971 end-page: 80 ident: b0155 article-title: A general theory of strength for anisotropic materials publication-title: J Compos Mater – volume: 91 year: 2019 ident: b0040 article-title: New hail impact simulation models on composite laminated wing leading edge publication-title: Aircr Eng Aerosp Technol – volume: 9 start-page: 1640 year: 2020 end-page: 1651 ident: b0140 article-title: Research on the interacting duration and microscopic characteristics created by high-velocity impact on CFRP/Al HC SP structure publication-title: J Mater Res Technol – volume: 37 start-page: 177 year: 2010 end-page: 184 ident: b0085 article-title: Damage resistance of single lap adhesive composite joints by transverse ice impact publication-title: Int J Impact Eng – volume: 228 year: 2020 ident: b0190 article-title: Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model publication-title: Eng Fract Mech – volume: 58 year: 2020 ident: b0055 article-title: Understanding hail in the earth system publication-title: Rev Geophys – volume: 1 year: 1967 ident: b0165 article-title: The brittle strength of orthotropic materials publication-title: J Compos Mater – volume: 125 year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0100 article-title: Study on the performance of different nano-species used for surface modification of carbon fiber for interface strengthening publication-title: Compos Part A Appl Sci Manuf doi: 10.1016/j.compositesa.2019.105509 – ident: 10.1016/j.engfracmech.2020.107282_b0050 doi: 10.1007/978-1-4419-9308-3 – year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0205 article-title: The crashworthiness prediction of 2D triaxially braided composite fuselage frame under transverse impact load publication-title: Int J Crashworthiness – volume: 76 start-page: 155 year: 2015 ident: 10.1016/j.engfracmech.2020.107282_b0070 article-title: Dynamic strength of distill water and lake water ice at high strain rates publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.09.013 – volume: 34 start-page: 25 year: 2003 ident: 10.1016/j.engfracmech.2020.107282_b0145 article-title: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels publication-title: Compos Part A Appl Sci Manuf doi: 10.1016/S1359-835X(02)00258-0 – volume: 21 year: 1987 ident: 10.1016/j.engfracmech.2020.107282_b0175 article-title: A progressive damage model for laminated composites containing stress concentrations publication-title: J Compos Mater doi: 10.1177/002199838702100904 – volume: 186 year: 2017 ident: 10.1016/j.engfracmech.2020.107282_b0005 article-title: Laminated plate theories and fracture of laminated glass plate – a review publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.10.020 – volume: 29 year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0045 article-title: The hail impactor shape with an ice impact response of the laminated composites reinforced with different nanomaterials: an experimental approach publication-title: Iran Polym J doi: 10.1007/s13726-020-00811-x – volume: 228 year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0190 article-title: Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.106897 – volume: 181 year: 1977 ident: 10.1016/j.engfracmech.2020.107282_b0250 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon Not R Astron Soc doi: 10.1093/mnras/181.3.375 – volume: 47 year: 1980 ident: 10.1016/j.engfracmech.2020.107282_b0170 article-title: Failure criteria for unidirectional fiber composites publication-title: J Appl Mech Trans ASME doi: 10.1115/1.3153664 – ident: 10.1016/j.engfracmech.2020.107282_b0270 – volume: 8 year: 2018 ident: 10.1016/j.engfracmech.2020.107282_b0015 article-title: Improvement of the impact properties of composite laminates by means of nano-modification of the matrix-a review publication-title: Appl Sci doi: 10.3390/app8122406 – volume: 141 start-page: 350 year: 2018 ident: 10.1016/j.engfracmech.2020.107282_b0030 article-title: Numerical methodology to analyze the ice impact threat: application to composite structures publication-title: Mater Des doi: 10.1016/j.matdes.2017.12.044 – volume: 38 year: 2007 ident: 10.1016/j.engfracmech.2020.107282_b0185 article-title: Progressive damage modeling in fiber-reinforced materials publication-title: Compos Part A Appl Sci Manuf doi: 10.1016/j.compositesa.2007.01.017 – volume: 122 start-page: 439 year: 2018 ident: 10.1016/j.engfracmech.2020.107282_b0080 article-title: Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2018.09.014 – year: 201441 ident: 10.1016/j.engfracmech.2020.107282_b0060 article-title: Terminal velocities and kinetic energies of natural hailstones publication-title: Geophys Res Lett – volume: 94 start-page: 2902 year: 2012 ident: 10.1016/j.engfracmech.2020.107282_b0150 article-title: Modelling damage evolution in composite laminates subjected to low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.03.039 – volume: 136 start-page: 101 year: 2018 ident: 10.1016/j.engfracmech.2020.107282_b0125 article-title: Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2017.10.016 – year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0110 article-title: Multiscale image-based modelling of damage and fracture in carbon fibre reinforced polymer composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2020.108243 – volume: 48 start-page: 2779 year: 2011 ident: 10.1016/j.engfracmech.2020.107282_b0065 article-title: Experimental study of high-velocity impact and fracture of ice publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2011.05.028 – volume: 113 start-page: 65 year: 2017 ident: 10.1016/j.engfracmech.2020.107282_b0130 article-title: Capacitive imaging of impact damage in composite material publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2017.01.016 – volume: 38 year: 2000 ident: 10.1016/j.engfracmech.2020.107282_b0255 article-title: Modeling hail ice impacts and predicting impact damage initiation in composite structures publication-title: AIAA J doi: 10.2514/2.1099 – volume: 25 start-page: 45 year: 2018 ident: 10.1016/j.engfracmech.2020.107282_b0230 article-title: Improvement of progressive damage model to predicting crashworthy composite corrugated plate publication-title: Appl Compos Mater doi: 10.1007/s10443-017-9610-z – volume: 43 start-page: 1134 year: 2012 ident: 10.1016/j.engfracmech.2020.107282_b0075 article-title: The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice publication-title: Compos Part A Appl Sci Manuf doi: 10.1016/j.compositesa.2012.02.017 – volume: 49 start-page: 77 year: 2012 ident: 10.1016/j.engfracmech.2020.107282_b0020 article-title: Impact resistance of fiber-metal laminates: a review publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.05.006 – ident: 10.1016/j.engfracmech.2020.107282_b0275 – volume: 56 year: 1996 ident: 10.1016/j.engfracmech.2020.107282_b0180 article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus publication-title: Compos Sci Technol doi: 10.1016/0266-3538(96)00005-X – volume: 93 start-page: 2619 year: 2011 ident: 10.1016/j.engfracmech.2020.107282_b0035 article-title: On the response of two commercially-important CFRP structures to multiple ice impacts publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.04.029 – year: 202010 ident: 10.1016/j.engfracmech.2020.107282_b0105 article-title: Ultrahigh resolution pulsed laser-induced photoacoustic detection of multi-scale damage in CFRP composites publication-title: Appl Sci – volume: 37 start-page: 177 year: 2010 ident: 10.1016/j.engfracmech.2020.107282_b0085 article-title: Damage resistance of single lap adhesive composite joints by transverse ice impact publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.08.005 – volume: 1 year: 1967 ident: 10.1016/j.engfracmech.2020.107282_b0165 article-title: The brittle strength of orthotropic materials publication-title: J Compos Mater doi: 10.1177/002199836700100210 – volume: 225 start-page: 106297 year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0120 article-title: Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part II – Numerical modelling publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2018.12.030 – volume: 5 start-page: 58 year: 1971 ident: 10.1016/j.engfracmech.2020.107282_b0155 article-title: A general theory of strength for anisotropic materials publication-title: J Compos Mater doi: 10.1177/002199837100500106 – volume: 44 start-page: 2837 year: 2007 ident: 10.1016/j.engfracmech.2020.107282_b0285 article-title: An analytical model for high velocity impacts on thin CFRPs woven laminated plates publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2006.08.022 – volume: 204 start-page: 645 year: 2018 ident: 10.1016/j.engfracmech.2020.107282_b0135 article-title: An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.08.009 – volume: 97 start-page: 1 year: 2014 ident: 10.1016/j.engfracmech.2020.107282_b0245 article-title: Maps for brittle and brittle-like failure in ice publication-title: Cold Reg Sci Technol doi: 10.1016/j.coldregions.2013.09.008 – volume: 190 start-page: 461 year: 2018 ident: 10.1016/j.engfracmech.2020.107282_b0235 article-title: Experimental and simulation studies on fracture and adhesion test of laminated glass publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.12.044 – volume: 58 start-page: 169 year: 2017 ident: 10.1016/j.engfracmech.2020.107282_b0240 article-title: Experimental and simulation studies on fracture of laminated glass having polyvinyl butyral and ethyl vinyl acetate interlayers of different critical thicknesses due to impact load publication-title: Glas Technol Eur J Glas Sci Technol Part A doi: 10.13036/17533546.58.6.005 – volume: 91 year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0040 article-title: New hail impact simulation models on composite laminated wing leading edge publication-title: Aircr Eng Aerosp Technol – volume: 108 start-page: 322 year: 2017 ident: 10.1016/j.engfracmech.2020.107282_b0280 article-title: A new analytical model to simulate high-speed impact onto composite materials targets publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.04.024 – ident: 10.1016/j.engfracmech.2020.107282_b0010 doi: 10.1016/C2014-0-01175-6 – volume: 157 start-page: 305 year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0095 article-title: Novel method for improving fatigue behavior of carbon fiber reinforced epoxy composite publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2018.08.062 – volume: 96 start-page: 1 year: 2016 ident: 10.1016/j.engfracmech.2020.107282_b0260 article-title: Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.05.010 – volume: 2 year: 2012 ident: 10.1016/j.engfracmech.2020.107282_b0160 article-title: Evaluation of the reliability performance of failure criteria for composite structures publication-title: World J Mech doi: 10.4236/wjm.2012.23019 – volume: 58 year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0055 article-title: Understanding hail in the earth system publication-title: Rev Geophys doi: 10.1029/2019RG000665 – volume: 133 start-page: 112 year: 2018 ident: 10.1016/j.engfracmech.2020.107282_b0025 article-title: Impact behaviour of hybrid composites for structural applications: a review publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2017.09.008 – volume: 40 start-page: 1708 year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0215 article-title: Energy-absorption performance of composite corrugated plates with corrugated-shape ditch plug initiator publication-title: Polym Compos doi: 10.1002/pc.24924 – volume: 9 start-page: 1640 year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0140 article-title: Research on the interacting duration and microscopic characteristics created by high-velocity impact on CFRP/Al HC SP structure publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2019.11.089 – volume: 228 year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0200 article-title: Numerical study of composite laminates subjected to low-velocity impact using a localized damage algorithm of Puck’s 3D IFF criterion publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.106901 – volume: 54 start-page: 1363 year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0210 article-title: Microscale finite element analysis for predicting effects of air voids on mechanical properties of single fiber bundle in composites publication-title: J Mater Sci doi: 10.1007/s10853-018-2928-6 – volume: 223 year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0195 article-title: Compressive damage mode manipulation of fiber-reinforced polymer composites publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.106799 – volume: 13 year: 1986 ident: 10.1016/j.engfracmech.2020.107282_b0265 article-title: Yield and failure envelope for ice under multiaxial compressive stresses publication-title: Cold Reg Sci Technol doi: 10.1016/0165-232X(86)90009-1 – volume: 8 start-page: 5671 year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0090 article-title: Microscopic damage modes and physical mechanisms of CFRP Laminates Impacted by Ice projectile at High Velocity publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2019.09.035 – volume: 166 start-page: 731 year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0220 article-title: Recent advances in novel metallic honeycomb structure publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2019.02.011 – volume: 225 start-page: 106270 year: 2020 ident: 10.1016/j.engfracmech.2020.107282_b0115 article-title: Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part I - Deformation and damage behaviour publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2018.12.003 – volume: 157–158 start-page: 1 year: 2019 ident: 10.1016/j.engfracmech.2020.107282_b0225 article-title: Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.04.024 |
SSID | ssj0007680 |
Score | 2.4806838 |
Snippet | •A numerical model is established for simulating CFRP impacted by hail ice.•A damage threshold prediction model of CFRP impacted by ice ball is proposed.•A... Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed ice ball impact was challenging to elucidate due to inherent... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107282 |
SubjectTerms | Anisotropy Carbon fiber reinforced plastics Computational fluid dynamics Damage mechanics Damage tolerance Deformation Delamination Diameters Dynamic fracture Dynamic response Fiber reinforced polymers Fibre reinforced materials Finite element method Fluid flow Hail Heterogeneity High speed Impact damage Impact velocity Prediction models Simulation Smooth particle hydrodynamics Yield point |
Title | A damage threshold prediction model of CFRP panel by hail impact based on delamination mechanism |
URI | https://dx.doi.org/10.1016/j.engfracmech.2020.107282 https://www.proquest.com/docview/2478621572 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGK1lghe1-4m2U0WvJRiqQpFxEJvMZtNtNIXbT148beb2YetgiB4TMgsy8zszCz5vhmELowrUoVNlCeYth6LLPGUstyzIlaxMYHLuBnaohd1--x2EA4qqF1yYQBWWcT-PKZn0brYaRbabM6GQ-D4BtR5EyPQciXKaNSMcfDyy48VzMOV0345xQBOb6LzFcbLTJ7tXOmxye4lCOxzIshvOepHtM5SUGcX7RS1I27lr7eHKmayj7bXOgoeoKcWTtXYxQi8dEZawN0Sns3hMgYMgLO5N3hqcbvzcI9dIHCr5B2_qOEI53xJDGktxe4stI8EnEwuaIAhPFyMD1G_c_3Y7nrFEAVPUxYvvTSksdWBTZUvVGBdPZBoJQhNNbGGpiyxIWW-sEoxX8fcVzEnJNXOflYn1BB6hKqT6cQcI0xNFGiuRZQC-5XECbeaBommOqDMGr-GRKk2qYsO4zDoYiRLKNmrXNO4BI3LXOM1RL5EZ3mbjb8IXZW2kd98Rrp08BfxemlPWXy4C0kYd_94QcjJyf-efoq2YJXTFuuoupy_mTNXvyyTRuagDbTRurnr9j4B5Grx8g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC5EIYkPkhPXKx1IHidOHzPTA_ogxmWNRkJQ8K3t6elOVtx12V0RX_xT_kGr5lATEITg4xw1zHxV81U1XQfAZ49Bqg6FjbRyIVJpEJG1IYuCzm3uPUePW2VbHKS9I_X9ODmegZu2FobSKhvurzm9YuvmzHqD5vqo36caXy7RmpSglitpwpvMyj1_dYnrtsnm7jdU8hchujuH272oGS0QOanyaVQmMg-Oh9LG2vKAXrJwVgtZOhG8LFUREqliHaxVscuz2OaZEKXDrwqukJ66HSDvzymkCxqb8PX6Pq8E4_e4HZtAr_cCPt0nlfnh7zC2buCrjRBB5zOhxWNO8R_3UPm87mtYaIJVtlXj8QZm_PAtzD9oYfgOTrZYaQdISmyKVjGhzSw2GtPuD2mcVYN22Hlg291fPxkyDx4VV-yP7Z-xukCTkR8tGd5L_SopMacW9FSS3J8M3sPRs0D7AWaH50O_CEz6lLvM6bSkcluRF1lwkhdOOi5V8HEHdAubcU1Lc5qscWba3LVT8wBxQ4ibGvEOiDvRUd3X4ylCG61uzF9GatD_PEV8pdWnaZhiYoTKcFHJk0ws_d_TP8LL3uGPfbO_e7C3DK_oSl0zuQKz0_GFX8XgaVqsVcbK4OS5_45b814v7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+damage+threshold+prediction+model+of+CFRP+panel+by+hail+impact+based+on+delamination+mechanism&rft.jtitle=Engineering+fracture+mechanics&rft.au=Liu%2C+Kai&rft.au=Liu%2C+Jia+Long&rft.au=Wang%2C+Zhonggang&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=239&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engfracmech.2020.107282&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |