A damage threshold prediction model of CFRP panel by hail impact based on delamination mechanism

•A numerical model is established for simulating CFRP impacted by hail ice.•A damage threshold prediction model of CFRP impacted by ice ball is proposed.•A CFRP damage threshold can be derived at lower cost. Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 239; p. 107282
Main Authors Liu, Kai, Liu, Jia Long, Wang, Zhonggang
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A numerical model is established for simulating CFRP impacted by hail ice.•A damage threshold prediction model of CFRP impacted by ice ball is proposed.•A CFRP damage threshold can be derived at lower cost. Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed ice ball impact was challenging to elucidate due to inherent heterogeneity and anisotropy properties. This further leads to difficulties in theoretical prediction of the damage threshold. Simulation modelling of CFRP panel subjected to high-speed ice ball impact was conducted in this study. Through coupling SPH (Smoothed Particle Hydrodynamics) and FEM (Finite Element Method), the simulation has captured the deformation and damage of the CFRP panel and ice ball. A damage threshold prediction model of CFRP was then proposed based on the mechanism analysis of the dynamic deformation and delamination. The traditional prediction of CFRP impact damage threshold, that is, parametric studies on the damage threshold of CFRP panel influenced by different impact speed, ice ball diameter and panel thickness was performed. Finally, the results show that the CFRP damage threshold law obtained from parameterized simulation matches the previous experimental results, and a conservative damage threshold can be predicted from the proposed theoretical model. The proposed theoretical model can contribute to predicting the damage threshold of CFRP panels subject to ice ball impacts at low cost.
AbstractList Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed ice ball impact was challenging to elucidate due to inherent heterogeneity and anisotropy properties. This further leads to difficulties in theoretical prediction of the damage threshold. Simulation modelling of CFRP panel subjected to high-speed ice ball impact was conducted in this study. Through coupling SPH (Smoothed Particle Hydrodynamics) and FEM (Finite Element Method), the simulation has captured the deformation and damage of the CFRP panel and ice ball. A damage threshold prediction model of CFRP was then proposed based on the mechanism analysis of the dynamic deformation and delamination. The traditional prediction of CFRP impact damage threshold, that is, parametric studies on the damage threshold of CFRP panel influenced by different impact speed, ice ball diameter and panel thickness was performed. Finally, the results show that the CFRP damage threshold law obtained from parameterized simulation matches the previous experimental results, and a conservative damage threshold can be predicted from the proposed theoretical model. The proposed theoretical model can contribute to predicting the damage threshold of CFRP panels subject to ice ball impacts at low cost.
•A numerical model is established for simulating CFRP impacted by hail ice.•A damage threshold prediction model of CFRP impacted by ice ball is proposed.•A CFRP damage threshold can be derived at lower cost. Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed ice ball impact was challenging to elucidate due to inherent heterogeneity and anisotropy properties. This further leads to difficulties in theoretical prediction of the damage threshold. Simulation modelling of CFRP panel subjected to high-speed ice ball impact was conducted in this study. Through coupling SPH (Smoothed Particle Hydrodynamics) and FEM (Finite Element Method), the simulation has captured the deformation and damage of the CFRP panel and ice ball. A damage threshold prediction model of CFRP was then proposed based on the mechanism analysis of the dynamic deformation and delamination. The traditional prediction of CFRP impact damage threshold, that is, parametric studies on the damage threshold of CFRP panel influenced by different impact speed, ice ball diameter and panel thickness was performed. Finally, the results show that the CFRP damage threshold law obtained from parameterized simulation matches the previous experimental results, and a conservative damage threshold can be predicted from the proposed theoretical model. The proposed theoretical model can contribute to predicting the damage threshold of CFRP panels subject to ice ball impacts at low cost.
ArticleNumber 107282
Author Liu, Kai
Wang, Zhonggang
Liu, Jia Long
Author_xml – sequence: 1
  givenname: Kai
  surname: Liu
  fullname: Liu, Kai
  organization: School of Traffic & Transportation Engineering, Central South University, Changsha, Hunan, China
– sequence: 2
  givenname: Jia Long
  surname: Liu
  fullname: Liu, Jia Long
  organization: Department of Mechanical Engineering, National University of Singapore, Singapore
– sequence: 3
  givenname: Zhonggang
  surname: Wang
  fullname: Wang, Zhonggang
  email: wangzg@csu.edu.cn
  organization: School of Traffic & Transportation Engineering, Central South University, Changsha, Hunan, China
BookMark eNqNkFtLAzEQhYMoWC__IeJzay7bbvZJpHgDQRF9jrPJxKZ0kzVZBf-9qeuD-OTTzIRzzmS-A7IbYkBCTjibccYXZ-sZhleXwHRoVjPBxPa9FkrskAlXtZzWks93yYQxXvqmqvbJQc5rxli9UGxCXi6ohQ5ekQ6rhHkVN5b2Ca03g4-BdtHihkZHl1ePD7SHUKb2k67Ab6jvejADbSGjpUVblND5AKOxfAeCz90R2XOwyXj8Uw_J89Xl0_Jmend_fbu8uJsaWTXD1M5l4wx3FpgC7pQQrQElpDXCobRV6-ayYsoBVMw0NYOmFsIa5VpnWolCHpLTMbdP8e0d86DX8T2FslKLqlYLwef1VtWMKpNizgmd7pPvIH1qzvQWqF7rX0D1FqgegRbv-R-v8cP3tUMqPP6VsBwTsID48Jh0Nh6DKbgTmkHb6P-R8gVPsZzf
CitedBy_id crossref_primary_10_1016_j_engfracmech_2023_109797
crossref_primary_10_1016_j_ijdrr_2024_104853
crossref_primary_10_1016_j_ijimpeng_2023_104664
crossref_primary_10_1016_j_engfracmech_2022_108688
crossref_primary_10_1016_j_engfracmech_2023_109177
crossref_primary_10_1016_j_compscitech_2024_110710
crossref_primary_10_1016_j_dt_2022_12_014
crossref_primary_10_1016_j_ijimpeng_2024_105034
crossref_primary_10_1016_j_compscitech_2024_111023
crossref_primary_10_1016_j_oceaneng_2022_111360
crossref_primary_10_1016_j_renene_2022_03_132
crossref_primary_10_1016_j_compstruct_2022_116244
crossref_primary_10_1007_s10853_024_09331_y
crossref_primary_10_1016_j_ijimpeng_2023_104507
crossref_primary_10_1016_j_matdes_2022_110995
crossref_primary_10_1016_j_engfracmech_2022_108434
crossref_primary_10_1016_j_ijimpeng_2023_104631
crossref_primary_10_1080_09243046_2024_2369370
crossref_primary_10_1515_rams_2022_0054
crossref_primary_10_1007_s10409_024_23589_x
crossref_primary_10_1155_2023_2121209
crossref_primary_10_1016_j_tws_2022_109039
crossref_primary_10_1016_j_ijmecsci_2021_106749
crossref_primary_10_1016_j_eml_2021_101374
crossref_primary_10_1016_j_ijmecsci_2024_109808
crossref_primary_10_1080_15376494_2021_2018071
crossref_primary_10_1016_j_compstruct_2022_115563
crossref_primary_10_1016_j_mtcomm_2023_106767
crossref_primary_10_3390_app11114743
crossref_primary_10_1016_j_engstruct_2023_116731
crossref_primary_10_3390_ma17164024
crossref_primary_10_1016_j_engfracmech_2021_107764
crossref_primary_10_1016_j_engfailanal_2024_109171
crossref_primary_10_1016_j_jsamd_2025_100874
crossref_primary_10_1016_j_mtcomm_2024_110798
crossref_primary_10_1016_j_compscitech_2022_109640
crossref_primary_10_1016_j_engfracmech_2022_108757
crossref_primary_10_1016_j_ijimpeng_2021_103967
crossref_primary_10_1016_j_ijmecsci_2021_106683
Cites_doi 10.1016/j.compositesa.2019.105509
10.1007/978-1-4419-9308-3
10.1016/j.ijimpeng.2014.09.013
10.1016/S1359-835X(02)00258-0
10.1177/002199838702100904
10.1016/j.engfracmech.2017.10.020
10.1007/s13726-020-00811-x
10.1016/j.engfracmech.2020.106897
10.1093/mnras/181.3.375
10.1115/1.3153664
10.3390/app8122406
10.1016/j.matdes.2017.12.044
10.1016/j.compositesa.2007.01.017
10.1016/j.ijimpeng.2018.09.014
10.1016/j.compstruct.2012.03.039
10.1016/j.compositesb.2017.10.016
10.1016/j.compscitech.2020.108243
10.1016/j.ijsolstr.2011.05.028
10.1016/j.compositesb.2017.01.016
10.2514/2.1099
10.1007/s10443-017-9610-z
10.1016/j.compositesa.2012.02.017
10.1016/j.ijimpeng.2012.05.006
10.1016/0266-3538(96)00005-X
10.1016/j.compstruct.2011.04.029
10.1016/j.ijimpeng.2009.08.005
10.1177/002199836700100210
10.1016/j.engfracmech.2018.12.030
10.1177/002199837100500106
10.1016/j.ijsolstr.2006.08.022
10.1016/j.compstruct.2018.08.009
10.1016/j.coldregions.2013.09.008
10.1016/j.engfracmech.2017.12.044
10.13036/17533546.58.6.005
10.1016/j.ijimpeng.2017.04.024
10.1016/C2014-0-01175-6
10.1016/j.compositesb.2018.08.062
10.1016/j.ijimpeng.2016.05.010
10.4236/wjm.2012.23019
10.1029/2019RG000665
10.1016/j.compositesb.2017.09.008
10.1002/pc.24924
10.1016/j.jmrt.2019.11.089
10.1016/j.engfracmech.2020.106901
10.1007/s10853-018-2928-6
10.1016/j.engfracmech.2019.106799
10.1016/0165-232X(86)90009-1
10.1016/j.jmrt.2019.09.035
10.1016/j.compositesb.2019.02.011
10.1016/j.engfracmech.2018.12.003
10.1016/j.ijmecsci.2019.04.024
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Nov 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 2020
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.engfracmech.2020.107282
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7315
ExternalDocumentID 10_1016_j_engfracmech_2020_107282
S0013794420308651
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c349t-d539fc1fda08a1f822bca823dc2fe3d4bf53408faa40c970a9722dc8fbfcb3e23
IEDL.DBID .~1
ISSN 0013-7944
IngestDate Fri Jul 25 02:49:20 EDT 2025
Tue Jul 01 01:50:15 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Mon Apr 08 05:17:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Damage mechanics
Damage tolerance
Dynamic fracture
Delamination
Fibre reinforced materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-d539fc1fda08a1f822bca823dc2fe3d4bf53408faa40c970a9722dc8fbfcb3e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2478621572
PQPubID 2045482
ParticipantIDs proquest_journals_2478621572
crossref_primary_10_1016_j_engfracmech_2020_107282
crossref_citationtrail_10_1016_j_engfracmech_2020_107282
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2020_107282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Engineering fracture mechanics
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Heymsfield, Giammanco, Wright (b0060) 2014;41.
Benzeggagh, Kenane (b0180) 1996; 56
Monaghan J, Lattanzio J. A refined particle method for astrophysical problems. Astron Astrophys (Berlin Print); 1985.
Appleby-Thomas, Hazell, Dahini (b0035) 2011; 93
Kustron, Horak, Doubrava, Goraj (b0040) 2019; 91
Chang, Chang (b0175) 1987; 21
López-Puente, Zaera, Navarro (b0285) 2007; 44
Vedrtnam, Pawar (b0005) 2017; 186
Lapczyk, Hurtado (b0185) 2007; 38
Vedrtnam, Pawar (b0235) 2018; 190
Kim, Welch, Kedward (b0145) 2003; 34
Combescure, Chuzel-Marmot, Fabis (b0065) 2011; 48
Tang, Wang, Han, Chen (b0090) 2019; 8
Yuan, Niu, Zhang (b0195) 2020; 223
Vedrtnam, Sharma (b0100) 2019; 125
Nadreau, Michel (b0265) 1986; 13
Hashin (b0170) 1980; 47
Sencu, Yang, Wang, Withers, Soutis (b0110) 2020
Sun, Tie, Hou, Lu, Li (b0190) 2020; 228
Ren, Jiang, Ji, Zhang, Xiang, Yuan (b0230) 2018; 25
Liu, Jiang, Ren, Qian, Yuan (b0215) 2019; 40
Tippmann JD. Development of a strain rate sensitive ice material model for hail ice impact simulation; 2011.
Shi, Swait, Soutis (b0150) 2012; 94
Kim, Kedward (b0255) 2000; 38
Silberschmidt VV. Dynamic deformation, damage and fracture in composite materials and structures. Woodhead Publishing; 2016. https://doi.org/10.1016/c2014-0-01175-6.
Ren, Jiang, Liu (b0225) 2019; 157–158
Song, Le, Whisler, Kim (b0080) 2018; 122
Tang, Li, Han (b0140) 2020; 9
Liu, Falzon, Tan (b0125) 2018; 136
Kolios, Proia (b0160) 2012; 2
Pernas-Sánchez, Artero-Guerrero, Varas, López-Puente (b0260) 2016; 96
Sánchez-Gálvez, Gálvez, Sancho, Cendón (b0280) 2017; 108
Vedrtnam, Pawar (b0240) 2017; 58
Wu, Prakash (b0070) 2015; 76
Pernas-Sánchez, Artero-Guerrero, López-Puente, Varas (b0030) 2018; 141
Gingold, Monaghan (b0250) 1977; 181
Renshaw, Golding, Schulson (b0245) 2014; 97
Morozov, Jackson, Pierce (b0130) 2017; 113
Jiang, Ren, Liu, Zhang (b0210) 2019; 54
Tsai, Wu (b0155) 1971; 5
Pochiraju KV, Schoeppner GA, Tandon GP. Long-term durability of polymeric matrix composites. vol. 9781441993083. Springer US; 2012. https://doi.org/10.1007/978-1-4419-9308-3.
Vedrtnam (b0095) 2019; 157
Ren, Gao, Liu, Zheng (b0205) 2019
Hoffman (b0165) 1967; 1
Dolati, Shariati, Rezaeepazhand (b0045) 2020; 29
Rhymer, Kim, Roach (b0075) 2012; 43
Coles, Roy, Silberschmidt (b0120) 2020; 225
Sadighi, Alderliesten, Benedictus (b0020) 2012; 49
Safri, Sultan, Jawaid, Jayakrishna (b0025) 2018; 133
Liu, Zhao, Chen, Shuang, Luo (b0135) 2018; 204
Saghafi, Fotouhi, Minak (b0015) 2018; 8
Coles, Roy, Sazhenkov, Voronov, Nikhamkin, Silberschmidt (b0115) 2020; 225
Wang, Echeverry, Trevisi, Prather, Xiang, Liu (b0105) 2020;10.
Allen, Giammanco, Kumjian, Jurgen Punge, Zhang, Groenemeijer (b0055) 2020; 58
Wang (b0220) 2019; 166
Gu, Yuan, Zhu, Lu, Fang, Li (b0200) 2020; 228
Park, Kim (b0085) 2010; 37
Nadreau (10.1016/j.engfracmech.2020.107282_b0265) 1986; 13
Ren (10.1016/j.engfracmech.2020.107282_b0230) 2018; 25
10.1016/j.engfracmech.2020.107282_b0010
Pernas-Sánchez (10.1016/j.engfracmech.2020.107282_b0260) 2016; 96
Sánchez-Gálvez (10.1016/j.engfracmech.2020.107282_b0280) 2017; 108
Combescure (10.1016/j.engfracmech.2020.107282_b0065) 2011; 48
Saghafi (10.1016/j.engfracmech.2020.107282_b0015) 2018; 8
Hoffman (10.1016/j.engfracmech.2020.107282_b0165) 1967; 1
Chang (10.1016/j.engfracmech.2020.107282_b0175) 1987; 21
Yuan (10.1016/j.engfracmech.2020.107282_b0195) 2020; 223
Dolati (10.1016/j.engfracmech.2020.107282_b0045) 2020; 29
Park (10.1016/j.engfracmech.2020.107282_b0085) 2010; 37
Vedrtnam (10.1016/j.engfracmech.2020.107282_b0100) 2019; 125
Coles (10.1016/j.engfracmech.2020.107282_b0115) 2020; 225
Tsai (10.1016/j.engfracmech.2020.107282_b0155) 1971; 5
Vedrtnam (10.1016/j.engfracmech.2020.107282_b0235) 2018; 190
Benzeggagh (10.1016/j.engfracmech.2020.107282_b0180) 1996; 56
10.1016/j.engfracmech.2020.107282_b0050
Vedrtnam (10.1016/j.engfracmech.2020.107282_b0005) 2017; 186
Wang (10.1016/j.engfracmech.2020.107282_b0105) 202010
Gu (10.1016/j.engfracmech.2020.107282_b0200) 2020; 228
Appleby-Thomas (10.1016/j.engfracmech.2020.107282_b0035) 2011; 93
Vedrtnam (10.1016/j.engfracmech.2020.107282_b0240) 2017; 58
Wang (10.1016/j.engfracmech.2020.107282_b0220) 2019; 166
Sadighi (10.1016/j.engfracmech.2020.107282_b0020) 2012; 49
Wu (10.1016/j.engfracmech.2020.107282_b0070) 2015; 76
Song (10.1016/j.engfracmech.2020.107282_b0080) 2018; 122
Jiang (10.1016/j.engfracmech.2020.107282_b0210) 2019; 54
López-Puente (10.1016/j.engfracmech.2020.107282_b0285) 2007; 44
Coles (10.1016/j.engfracmech.2020.107282_b0120) 2020; 225
Ren (10.1016/j.engfracmech.2020.107282_b0225) 2019; 157–158
Heymsfield (10.1016/j.engfracmech.2020.107282_b0060) 201441
Liu (10.1016/j.engfracmech.2020.107282_b0215) 2019; 40
Ren (10.1016/j.engfracmech.2020.107282_b0205) 2019
Hashin (10.1016/j.engfracmech.2020.107282_b0170) 1980; 47
Renshaw (10.1016/j.engfracmech.2020.107282_b0245) 2014; 97
Rhymer (10.1016/j.engfracmech.2020.107282_b0075) 2012; 43
Vedrtnam (10.1016/j.engfracmech.2020.107282_b0095) 2019; 157
Sun (10.1016/j.engfracmech.2020.107282_b0190) 2020; 228
10.1016/j.engfracmech.2020.107282_b0275
Liu (10.1016/j.engfracmech.2020.107282_b0135) 2018; 204
Morozov (10.1016/j.engfracmech.2020.107282_b0130) 2017; 113
Lapczyk (10.1016/j.engfracmech.2020.107282_b0185) 2007; 38
Safri (10.1016/j.engfracmech.2020.107282_b0025) 2018; 133
Kolios (10.1016/j.engfracmech.2020.107282_b0160) 2012; 2
Kim (10.1016/j.engfracmech.2020.107282_b0255) 2000; 38
Allen (10.1016/j.engfracmech.2020.107282_b0055) 2020; 58
Kim (10.1016/j.engfracmech.2020.107282_b0145) 2003; 34
Sencu (10.1016/j.engfracmech.2020.107282_b0110) 2020
Gingold (10.1016/j.engfracmech.2020.107282_b0250) 1977; 181
Kustron (10.1016/j.engfracmech.2020.107282_b0040) 2019; 91
Tang (10.1016/j.engfracmech.2020.107282_b0140) 2020; 9
Tang (10.1016/j.engfracmech.2020.107282_b0090) 2019; 8
Shi (10.1016/j.engfracmech.2020.107282_b0150) 2012; 94
10.1016/j.engfracmech.2020.107282_b0270
Liu (10.1016/j.engfracmech.2020.107282_b0125) 2018; 136
Pernas-Sánchez (10.1016/j.engfracmech.2020.107282_b0030) 2018; 141
References_xml – reference: Pochiraju KV, Schoeppner GA, Tandon GP. Long-term durability of polymeric matrix composites. vol. 9781441993083. Springer US; 2012. https://doi.org/10.1007/978-1-4419-9308-3.
– volume: 8
  start-page: 5671
  year: 2019
  end-page: 5686
  ident: b0090
  article-title: Microscopic damage modes and physical mechanisms of CFRP Laminates Impacted by Ice projectile at High Velocity
  publication-title: J Mater Res Technol
– volume: 58
  start-page: 169
  year: 2017
  end-page: 178
  ident: b0240
  article-title: Experimental and simulation studies on fracture of laminated glass having polyvinyl butyral and ethyl vinyl acetate interlayers of different critical thicknesses due to impact load
  publication-title: Glas Technol Eur J Glas Sci Technol Part A
– reference: Silberschmidt VV. Dynamic deformation, damage and fracture in composite materials and structures. Woodhead Publishing; 2016. https://doi.org/10.1016/c2014-0-01175-6.
– volume: 133
  start-page: 112
  year: 2018
  end-page: 121
  ident: b0025
  article-title: Impact behaviour of hybrid composites for structural applications: a review
  publication-title: Compos Part B Eng
– year: 2020;10.
  ident: b0105
  article-title: Ultrahigh resolution pulsed laser-induced photoacoustic detection of multi-scale damage in CFRP composites
  publication-title: Appl Sci
– year: 2019
  ident: b0205
  article-title: The crashworthiness prediction of 2D triaxially braided composite fuselage frame under transverse impact load
  publication-title: Int J Crashworthiness
– volume: 181
  year: 1977
  ident: b0250
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon Not R Astron Soc
– volume: 108
  start-page: 322
  year: 2017
  end-page: 333
  ident: b0280
  article-title: A new analytical model to simulate high-speed impact onto composite materials targets
  publication-title: Int J Impact Eng
– volume: 93
  start-page: 2619
  year: 2011
  end-page: 2627
  ident: b0035
  article-title: On the response of two commercially-important CFRP structures to multiple ice impacts
  publication-title: Compos Struct
– volume: 136
  start-page: 101
  year: 2018
  end-page: 118
  ident: b0125
  article-title: Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates
  publication-title: Compos Part B Eng
– volume: 29
  year: 2020
  ident: b0045
  article-title: The hail impactor shape with an ice impact response of the laminated composites reinforced with different nanomaterials: an experimental approach
  publication-title: Iran Polym J
– volume: 44
  start-page: 2837
  year: 2007
  end-page: 2851
  ident: b0285
  article-title: An analytical model for high velocity impacts on thin CFRPs woven laminated plates
  publication-title: Int J Solids Struct
– volume: 49
  start-page: 77
  year: 2012
  end-page: 90
  ident: b0020
  article-title: Impact resistance of fiber-metal laminates: a review
  publication-title: Int J Impact Eng
– volume: 125
  year: 2019
  ident: b0100
  article-title: Study on the performance of different nano-species used for surface modification of carbon fiber for interface strengthening
  publication-title: Compos Part A Appl Sci Manuf
– volume: 25
  start-page: 45
  year: 2018
  end-page: 66
  ident: b0230
  article-title: Improvement of progressive damage model to predicting crashworthy composite corrugated plate
  publication-title: Appl Compos Mater
– volume: 38
  year: 2000
  ident: b0255
  article-title: Modeling hail ice impacts and predicting impact damage initiation in composite structures
  publication-title: AIAA J
– volume: 21
  year: 1987
  ident: b0175
  article-title: A progressive damage model for laminated composites containing stress concentrations
  publication-title: J Compos Mater
– volume: 190
  start-page: 461
  year: 2018
  end-page: 470
  ident: b0235
  article-title: Experimental and simulation studies on fracture and adhesion test of laminated glass
  publication-title: Eng Fract Mech
– volume: 48
  start-page: 2779
  year: 2011
  end-page: 2790
  ident: b0065
  article-title: Experimental study of high-velocity impact and fracture of ice
  publication-title: Int J Solids Struct
– volume: 186
  year: 2017
  ident: b0005
  article-title: Laminated plate theories and fracture of laminated glass plate – a review
  publication-title: Eng Fract Mech
– volume: 204
  start-page: 645
  year: 2018
  end-page: 657
  ident: b0135
  article-title: An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites
  publication-title: Compos Struct
– volume: 94
  start-page: 2902
  year: 2012
  end-page: 2913
  ident: b0150
  article-title: Modelling damage evolution in composite laminates subjected to low velocity impact
  publication-title: Compos Struct
– reference: Tippmann JD. Development of a strain rate sensitive ice material model for hail ice impact simulation; 2011.
– volume: 113
  start-page: 65
  year: 2017
  end-page: 71
  ident: b0130
  article-title: Capacitive imaging of impact damage in composite material
  publication-title: Compos Part B Eng
– volume: 13
  year: 1986
  ident: b0265
  article-title: Yield and failure envelope for ice under multiaxial compressive stresses
  publication-title: Cold Reg Sci Technol
– volume: 34
  start-page: 25
  year: 2003
  end-page: 41
  ident: b0145
  article-title: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels
  publication-title: Compos Part A Appl Sci Manuf
– year: 2020
  ident: b0110
  article-title: Multiscale image-based modelling of damage and fracture in carbon fibre reinforced polymer composites
  publication-title: Compos Sci Technol
– volume: 38
  year: 2007
  ident: b0185
  article-title: Progressive damage modeling in fiber-reinforced materials
  publication-title: Compos Part A Appl Sci Manuf
– volume: 76
  start-page: 155
  year: 2015
  end-page: 165
  ident: b0070
  article-title: Dynamic strength of distill water and lake water ice at high strain rates
  publication-title: Int J Impact Eng
– volume: 96
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0260
  article-title: Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates
  publication-title: Int J Impact Eng
– volume: 40
  start-page: 1708
  year: 2019
  end-page: 1717
  ident: b0215
  article-title: Energy-absorption performance of composite corrugated plates with corrugated-shape ditch plug initiator
  publication-title: Polym Compos
– volume: 223
  year: 2020
  ident: b0195
  article-title: Compressive damage mode manipulation of fiber-reinforced polymer composites
  publication-title: Eng Fract Mech
– volume: 228
  year: 2020
  ident: b0200
  article-title: Numerical study of composite laminates subjected to low-velocity impact using a localized damage algorithm of Puck’s 3D IFF criterion
  publication-title: Eng Fract Mech
– volume: 2
  year: 2012
  ident: b0160
  article-title: Evaluation of the reliability performance of failure criteria for composite structures
  publication-title: World J Mech
– year: 2014;41.
  ident: b0060
  article-title: Terminal velocities and kinetic energies of natural hailstones
  publication-title: Geophys Res Lett
– volume: 47
  year: 1980
  ident: b0170
  article-title: Failure criteria for unidirectional fiber composites
  publication-title: J Appl Mech Trans ASME
– volume: 56
  year: 1996
  ident: b0180
  article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
  publication-title: Compos Sci Technol
– volume: 97
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0245
  article-title: Maps for brittle and brittle-like failure in ice
  publication-title: Cold Reg Sci Technol
– volume: 225
  start-page: 106270
  year: 2020
  ident: b0115
  article-title: Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part I - Deformation and damage behaviour
  publication-title: Eng Fract Mech
– volume: 54
  start-page: 1363
  year: 2019
  end-page: 1381
  ident: b0210
  article-title: Microscale finite element analysis for predicting effects of air voids on mechanical properties of single fiber bundle in composites
  publication-title: J Mater Sci
– volume: 166
  start-page: 731
  year: 2019
  end-page: 741
  ident: b0220
  article-title: Recent advances in novel metallic honeycomb structure
  publication-title: Compos Part B Eng
– volume: 225
  start-page: 106297
  year: 2020
  ident: b0120
  article-title: Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part II – Numerical modelling
  publication-title: Eng Fract Mech
– volume: 43
  start-page: 1134
  year: 2012
  end-page: 1144
  ident: b0075
  article-title: The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice
  publication-title: Compos Part A Appl Sci Manuf
– volume: 157–158
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0225
  article-title: Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes
  publication-title: Int J Mech Sci
– volume: 8
  year: 2018
  ident: b0015
  article-title: Improvement of the impact properties of composite laminates by means of nano-modification of the matrix-a review
  publication-title: Appl Sci
– volume: 157
  start-page: 305
  year: 2019
  end-page: 321
  ident: b0095
  article-title: Novel method for improving fatigue behavior of carbon fiber reinforced epoxy composite
  publication-title: Compos Part B Eng
– reference: Monaghan J, Lattanzio J. A refined particle method for astrophysical problems. Astron Astrophys (Berlin Print); 1985.
– volume: 122
  start-page: 439
  year: 2018
  end-page: 450
  ident: b0080
  article-title: Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact
  publication-title: Int J Impact Eng
– volume: 141
  start-page: 350
  year: 2018
  end-page: 360
  ident: b0030
  article-title: Numerical methodology to analyze the ice impact threat: application to composite structures
  publication-title: Mater Des
– volume: 5
  start-page: 58
  year: 1971
  end-page: 80
  ident: b0155
  article-title: A general theory of strength for anisotropic materials
  publication-title: J Compos Mater
– volume: 91
  year: 2019
  ident: b0040
  article-title: New hail impact simulation models on composite laminated wing leading edge
  publication-title: Aircr Eng Aerosp Technol
– volume: 9
  start-page: 1640
  year: 2020
  end-page: 1651
  ident: b0140
  article-title: Research on the interacting duration and microscopic characteristics created by high-velocity impact on CFRP/Al HC SP structure
  publication-title: J Mater Res Technol
– volume: 37
  start-page: 177
  year: 2010
  end-page: 184
  ident: b0085
  article-title: Damage resistance of single lap adhesive composite joints by transverse ice impact
  publication-title: Int J Impact Eng
– volume: 228
  year: 2020
  ident: b0190
  article-title: Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model
  publication-title: Eng Fract Mech
– volume: 58
  year: 2020
  ident: b0055
  article-title: Understanding hail in the earth system
  publication-title: Rev Geophys
– volume: 1
  year: 1967
  ident: b0165
  article-title: The brittle strength of orthotropic materials
  publication-title: J Compos Mater
– volume: 125
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0100
  article-title: Study on the performance of different nano-species used for surface modification of carbon fiber for interface strengthening
  publication-title: Compos Part A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2019.105509
– ident: 10.1016/j.engfracmech.2020.107282_b0050
  doi: 10.1007/978-1-4419-9308-3
– year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0205
  article-title: The crashworthiness prediction of 2D triaxially braided composite fuselage frame under transverse impact load
  publication-title: Int J Crashworthiness
– volume: 76
  start-page: 155
  year: 2015
  ident: 10.1016/j.engfracmech.2020.107282_b0070
  article-title: Dynamic strength of distill water and lake water ice at high strain rates
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2014.09.013
– volume: 34
  start-page: 25
  year: 2003
  ident: 10.1016/j.engfracmech.2020.107282_b0145
  article-title: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels
  publication-title: Compos Part A Appl Sci Manuf
  doi: 10.1016/S1359-835X(02)00258-0
– volume: 21
  year: 1987
  ident: 10.1016/j.engfracmech.2020.107282_b0175
  article-title: A progressive damage model for laminated composites containing stress concentrations
  publication-title: J Compos Mater
  doi: 10.1177/002199838702100904
– volume: 186
  year: 2017
  ident: 10.1016/j.engfracmech.2020.107282_b0005
  article-title: Laminated plate theories and fracture of laminated glass plate – a review
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.10.020
– volume: 29
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0045
  article-title: The hail impactor shape with an ice impact response of the laminated composites reinforced with different nanomaterials: an experimental approach
  publication-title: Iran Polym J
  doi: 10.1007/s13726-020-00811-x
– volume: 228
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0190
  article-title: Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.106897
– volume: 181
  year: 1977
  ident: 10.1016/j.engfracmech.2020.107282_b0250
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/181.3.375
– volume: 47
  year: 1980
  ident: 10.1016/j.engfracmech.2020.107282_b0170
  article-title: Failure criteria for unidirectional fiber composites
  publication-title: J Appl Mech Trans ASME
  doi: 10.1115/1.3153664
– ident: 10.1016/j.engfracmech.2020.107282_b0270
– volume: 8
  year: 2018
  ident: 10.1016/j.engfracmech.2020.107282_b0015
  article-title: Improvement of the impact properties of composite laminates by means of nano-modification of the matrix-a review
  publication-title: Appl Sci
  doi: 10.3390/app8122406
– volume: 141
  start-page: 350
  year: 2018
  ident: 10.1016/j.engfracmech.2020.107282_b0030
  article-title: Numerical methodology to analyze the ice impact threat: application to composite structures
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.12.044
– volume: 38
  year: 2007
  ident: 10.1016/j.engfracmech.2020.107282_b0185
  article-title: Progressive damage modeling in fiber-reinforced materials
  publication-title: Compos Part A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2007.01.017
– volume: 122
  start-page: 439
  year: 2018
  ident: 10.1016/j.engfracmech.2020.107282_b0080
  article-title: Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2018.09.014
– year: 201441
  ident: 10.1016/j.engfracmech.2020.107282_b0060
  article-title: Terminal velocities and kinetic energies of natural hailstones
  publication-title: Geophys Res Lett
– volume: 94
  start-page: 2902
  year: 2012
  ident: 10.1016/j.engfracmech.2020.107282_b0150
  article-title: Modelling damage evolution in composite laminates subjected to low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.03.039
– volume: 136
  start-page: 101
  year: 2018
  ident: 10.1016/j.engfracmech.2020.107282_b0125
  article-title: Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2017.10.016
– year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0110
  article-title: Multiscale image-based modelling of damage and fracture in carbon fibre reinforced polymer composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2020.108243
– volume: 48
  start-page: 2779
  year: 2011
  ident: 10.1016/j.engfracmech.2020.107282_b0065
  article-title: Experimental study of high-velocity impact and fracture of ice
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2011.05.028
– volume: 113
  start-page: 65
  year: 2017
  ident: 10.1016/j.engfracmech.2020.107282_b0130
  article-title: Capacitive imaging of impact damage in composite material
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2017.01.016
– volume: 38
  year: 2000
  ident: 10.1016/j.engfracmech.2020.107282_b0255
  article-title: Modeling hail ice impacts and predicting impact damage initiation in composite structures
  publication-title: AIAA J
  doi: 10.2514/2.1099
– volume: 25
  start-page: 45
  year: 2018
  ident: 10.1016/j.engfracmech.2020.107282_b0230
  article-title: Improvement of progressive damage model to predicting crashworthy composite corrugated plate
  publication-title: Appl Compos Mater
  doi: 10.1007/s10443-017-9610-z
– volume: 43
  start-page: 1134
  year: 2012
  ident: 10.1016/j.engfracmech.2020.107282_b0075
  article-title: The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice
  publication-title: Compos Part A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2012.02.017
– volume: 49
  start-page: 77
  year: 2012
  ident: 10.1016/j.engfracmech.2020.107282_b0020
  article-title: Impact resistance of fiber-metal laminates: a review
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.05.006
– ident: 10.1016/j.engfracmech.2020.107282_b0275
– volume: 56
  year: 1996
  ident: 10.1016/j.engfracmech.2020.107282_b0180
  article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
  publication-title: Compos Sci Technol
  doi: 10.1016/0266-3538(96)00005-X
– volume: 93
  start-page: 2619
  year: 2011
  ident: 10.1016/j.engfracmech.2020.107282_b0035
  article-title: On the response of two commercially-important CFRP structures to multiple ice impacts
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2011.04.029
– year: 202010
  ident: 10.1016/j.engfracmech.2020.107282_b0105
  article-title: Ultrahigh resolution pulsed laser-induced photoacoustic detection of multi-scale damage in CFRP composites
  publication-title: Appl Sci
– volume: 37
  start-page: 177
  year: 2010
  ident: 10.1016/j.engfracmech.2020.107282_b0085
  article-title: Damage resistance of single lap adhesive composite joints by transverse ice impact
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.08.005
– volume: 1
  year: 1967
  ident: 10.1016/j.engfracmech.2020.107282_b0165
  article-title: The brittle strength of orthotropic materials
  publication-title: J Compos Mater
  doi: 10.1177/002199836700100210
– volume: 225
  start-page: 106297
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0120
  article-title: Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part II – Numerical modelling
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.12.030
– volume: 5
  start-page: 58
  year: 1971
  ident: 10.1016/j.engfracmech.2020.107282_b0155
  article-title: A general theory of strength for anisotropic materials
  publication-title: J Compos Mater
  doi: 10.1177/002199837100500106
– volume: 44
  start-page: 2837
  year: 2007
  ident: 10.1016/j.engfracmech.2020.107282_b0285
  article-title: An analytical model for high velocity impacts on thin CFRPs woven laminated plates
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2006.08.022
– volume: 204
  start-page: 645
  year: 2018
  ident: 10.1016/j.engfracmech.2020.107282_b0135
  article-title: An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.08.009
– volume: 97
  start-page: 1
  year: 2014
  ident: 10.1016/j.engfracmech.2020.107282_b0245
  article-title: Maps for brittle and brittle-like failure in ice
  publication-title: Cold Reg Sci Technol
  doi: 10.1016/j.coldregions.2013.09.008
– volume: 190
  start-page: 461
  year: 2018
  ident: 10.1016/j.engfracmech.2020.107282_b0235
  article-title: Experimental and simulation studies on fracture and adhesion test of laminated glass
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.12.044
– volume: 58
  start-page: 169
  year: 2017
  ident: 10.1016/j.engfracmech.2020.107282_b0240
  article-title: Experimental and simulation studies on fracture of laminated glass having polyvinyl butyral and ethyl vinyl acetate interlayers of different critical thicknesses due to impact load
  publication-title: Glas Technol Eur J Glas Sci Technol Part A
  doi: 10.13036/17533546.58.6.005
– volume: 91
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0040
  article-title: New hail impact simulation models on composite laminated wing leading edge
  publication-title: Aircr Eng Aerosp Technol
– volume: 108
  start-page: 322
  year: 2017
  ident: 10.1016/j.engfracmech.2020.107282_b0280
  article-title: A new analytical model to simulate high-speed impact onto composite materials targets
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2017.04.024
– ident: 10.1016/j.engfracmech.2020.107282_b0010
  doi: 10.1016/C2014-0-01175-6
– volume: 157
  start-page: 305
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0095
  article-title: Novel method for improving fatigue behavior of carbon fiber reinforced epoxy composite
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2018.08.062
– volume: 96
  start-page: 1
  year: 2016
  ident: 10.1016/j.engfracmech.2020.107282_b0260
  article-title: Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.05.010
– volume: 2
  year: 2012
  ident: 10.1016/j.engfracmech.2020.107282_b0160
  article-title: Evaluation of the reliability performance of failure criteria for composite structures
  publication-title: World J Mech
  doi: 10.4236/wjm.2012.23019
– volume: 58
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0055
  article-title: Understanding hail in the earth system
  publication-title: Rev Geophys
  doi: 10.1029/2019RG000665
– volume: 133
  start-page: 112
  year: 2018
  ident: 10.1016/j.engfracmech.2020.107282_b0025
  article-title: Impact behaviour of hybrid composites for structural applications: a review
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2017.09.008
– volume: 40
  start-page: 1708
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0215
  article-title: Energy-absorption performance of composite corrugated plates with corrugated-shape ditch plug initiator
  publication-title: Polym Compos
  doi: 10.1002/pc.24924
– volume: 9
  start-page: 1640
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0140
  article-title: Research on the interacting duration and microscopic characteristics created by high-velocity impact on CFRP/Al HC SP structure
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2019.11.089
– volume: 228
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0200
  article-title: Numerical study of composite laminates subjected to low-velocity impact using a localized damage algorithm of Puck’s 3D IFF criterion
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.106901
– volume: 54
  start-page: 1363
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0210
  article-title: Microscale finite element analysis for predicting effects of air voids on mechanical properties of single fiber bundle in composites
  publication-title: J Mater Sci
  doi: 10.1007/s10853-018-2928-6
– volume: 223
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0195
  article-title: Compressive damage mode manipulation of fiber-reinforced polymer composites
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2019.106799
– volume: 13
  year: 1986
  ident: 10.1016/j.engfracmech.2020.107282_b0265
  article-title: Yield and failure envelope for ice under multiaxial compressive stresses
  publication-title: Cold Reg Sci Technol
  doi: 10.1016/0165-232X(86)90009-1
– volume: 8
  start-page: 5671
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0090
  article-title: Microscopic damage modes and physical mechanisms of CFRP Laminates Impacted by Ice projectile at High Velocity
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2019.09.035
– volume: 166
  start-page: 731
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0220
  article-title: Recent advances in novel metallic honeycomb structure
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2019.02.011
– volume: 225
  start-page: 106270
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107282_b0115
  article-title: Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part I - Deformation and damage behaviour
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.12.003
– volume: 157–158
  start-page: 1
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107282_b0225
  article-title: Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.04.024
SSID ssj0007680
Score 2.4806838
Snippet •A numerical model is established for simulating CFRP impacted by hail ice.•A damage threshold prediction model of CFRP impacted by ice ball is proposed.•A...
Dynamic response mechanism of CFRP (Carbon Fiber Reinforced Polymer) panel under high-speed ice ball impact was challenging to elucidate due to inherent...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107282
SubjectTerms Anisotropy
Carbon fiber reinforced plastics
Computational fluid dynamics
Damage mechanics
Damage tolerance
Deformation
Delamination
Diameters
Dynamic fracture
Dynamic response
Fiber reinforced polymers
Fibre reinforced materials
Finite element method
Fluid flow
Hail
Heterogeneity
High speed
Impact damage
Impact velocity
Prediction models
Simulation
Smooth particle hydrodynamics
Yield point
Title A damage threshold prediction model of CFRP panel by hail impact based on delamination mechanism
URI https://dx.doi.org/10.1016/j.engfracmech.2020.107282
https://www.proquest.com/docview/2478621572
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGK1lghe1-4m2U0WvJRiqQpFxEJvMZtNtNIXbT148beb2YetgiB4TMgsy8zszCz5vhmELowrUoVNlCeYth6LLPGUstyzIlaxMYHLuBnaohd1--x2EA4qqF1yYQBWWcT-PKZn0brYaRbabM6GQ-D4BtR5EyPQciXKaNSMcfDyy48VzMOV0345xQBOb6LzFcbLTJ7tXOmxye4lCOxzIshvOepHtM5SUGcX7RS1I27lr7eHKmayj7bXOgoeoKcWTtXYxQi8dEZawN0Sns3hMgYMgLO5N3hqcbvzcI9dIHCr5B2_qOEI53xJDGktxe4stI8EnEwuaIAhPFyMD1G_c_3Y7nrFEAVPUxYvvTSksdWBTZUvVGBdPZBoJQhNNbGGpiyxIWW-sEoxX8fcVzEnJNXOflYn1BB6hKqT6cQcI0xNFGiuRZQC-5XECbeaBommOqDMGr-GRKk2qYsO4zDoYiRLKNmrXNO4BI3LXOM1RL5EZ3mbjb8IXZW2kd98Rrp08BfxemlPWXy4C0kYd_94QcjJyf-efoq2YJXTFuuoupy_mTNXvyyTRuagDbTRurnr9j4B5Grx8g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC5EIYkPkhPXKx1IHidOHzPTA_ogxmWNRkJQ8K3t6elOVtx12V0RX_xT_kGr5lATEITg4xw1zHxV81U1XQfAZ49Bqg6FjbRyIVJpEJG1IYuCzm3uPUePW2VbHKS9I_X9ODmegZu2FobSKhvurzm9YuvmzHqD5vqo36caXy7RmpSglitpwpvMyj1_dYnrtsnm7jdU8hchujuH272oGS0QOanyaVQmMg-Oh9LG2vKAXrJwVgtZOhG8LFUREqliHaxVscuz2OaZEKXDrwqukJ66HSDvzymkCxqb8PX6Pq8E4_e4HZtAr_cCPt0nlfnh7zC2buCrjRBB5zOhxWNO8R_3UPm87mtYaIJVtlXj8QZm_PAtzD9oYfgOTrZYaQdISmyKVjGhzSw2GtPuD2mcVYN22Hlg291fPxkyDx4VV-yP7Z-xukCTkR8tGd5L_SopMacW9FSS3J8M3sPRs0D7AWaH50O_CEz6lLvM6bSkcluRF1lwkhdOOi5V8HEHdAubcU1Lc5qscWba3LVT8wBxQ4ibGvEOiDvRUd3X4ylCG61uzF9GatD_PEV8pdWnaZhiYoTKcFHJk0ws_d_TP8LL3uGPfbO_e7C3DK_oSl0zuQKz0_GFX8XgaVqsVcbK4OS5_45b814v7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+damage+threshold+prediction+model+of+CFRP+panel+by+hail+impact+based+on+delamination+mechanism&rft.jtitle=Engineering+fracture+mechanics&rft.au=Liu%2C+Kai&rft.au=Liu%2C+Jia+Long&rft.au=Wang%2C+Zhonggang&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=239&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engfracmech.2020.107282&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon