Flight and Vibration Control of Flexible Air-Breathing Hypersonic Vehicles Under Actuator Faults
The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential eq...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 53; no. 5; pp. 2741 - 2752 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2022.3140536 |
Cover
Loading…
Abstract | The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently. |
---|---|
AbstractList | The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently. The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently.The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently. |
Author | Chen, Mou He, Xiuyu He, Wei Ma, Yonghao |
Author_xml | – sequence: 1 givenname: Xiuyu orcidid: 0000-0002-7929-8932 surname: He fullname: He, Xiuyu email: xiuyuhe@ieee.org organization: Institute of Artificial Intelligence and School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Yonghao orcidid: 0000-0001-6721-2874 surname: Ma fullname: Ma, Yonghao email: gzhueton@163.com organization: Institute of Artificial Intelligence and School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Mou orcidid: 0000-0001-7158-8575 surname: Chen fullname: Chen, Mou email: chenmou@nuaa.edu.cn organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 4 givenname: Wei orcidid: 0000-0002-8944-9861 surname: He fullname: He, Wei email: weihe@ieee.org organization: Institute of Artificial Intelligence and School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35263266$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vEzEQxS1UREvpB0BIyBIXLhv8Z9drH9OIUKRKXNpKnIzXO9u4cuxgeyX67XFI2kMPzMUj6_dGM--9RSchBkDoPSULSon6crP6eblghLEFpy3puHiFzhgVsmGs706ee9GfooucH0gtWb-UfINOeccEZ0KcoV9r7-43BZsw4js3JFNcDHgVQ0nR4zjhtYc_bvCAly41lwlM2bhwj68ed5ByDM7iO9g46yHj2zBCwktbZlNiwmsz-5LfodeT8Rkuju85ul1_vVldNdc_vn1fLa8by1tVmrGVExhBoZcdNUoYPpjBSjoOoxTTIJiZwLaWqpZL1qqJd309yHQMWtopMvJz9Pkwd5fi7xly0VuXLXhvAsQ563qwJJQT1VX00wv0Ic4p1O00k6Sl1U5GKvXxSM3DFka9S25r0qN-8q4C_QGwKeacYNLWlX_-lWSc15TofVB6H5TeB6WPQVUlfaF8Gv4_zYeDxgHAM696zpik_C91PJxe |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1177_01423312231154194 crossref_primary_10_1109_JAS_2024_124266 crossref_primary_10_1109_TCYB_2023_3295785 crossref_primary_10_1061_JAEEEZ_ASENG_5449 crossref_primary_10_1016_j_ast_2023_108458 crossref_primary_10_1007_s11071_024_10025_y crossref_primary_10_1109_TIE_2022_3199945 crossref_primary_10_1109_TAES_2023_3323427 crossref_primary_10_1109_TAES_2022_3210153 crossref_primary_10_1109_TSMC_2024_3461816 crossref_primary_10_1109_TFUZZ_2024_3476393 crossref_primary_10_1016_j_automatica_2025_112155 crossref_primary_10_1016_j_jfranklin_2024_107397 crossref_primary_10_1177_09544100251321933 crossref_primary_10_1016_j_ast_2025_110059 crossref_primary_10_1109_TSMC_2022_3211992 |
Cites_doi | 10.1007/s11424-020-8186-0 10.1080/00207721.2018.1479002 10.1109/TCST.2017.2780055 10.1016/j.automatica.2018.10.030 10.1007/s11432-020-3109-x 10.1002/rnc.3040 10.1137/0325078 10.1109/ACCESS.2021.3064893 10.1109/TIE.2018.2793253 10.1109/TCST.2020.3009660 10.1109/TCYB.2018.2794972 10.1016/j.ast.2018.02.016 10.1109/TRO.2017.2765334 10.1007/s11071-014-1572-1 10.1109/TFUZZ.2017.2761323 10.1109/TIE.2020.2984442 10.1109/ACCESS.2020.3047659 10.1109/TNNLS.2018.2876685 10.1109/TCYB.2020.2982168 10.1007/s11424-020-9032-0 10.1016/j.isatra.2021.06.002 10.1007/s11071-015-1958-8 10.1016/j.automatica.2017.04.017 10.2514/1.39210 10.1016/j.isatra.2019.01.031 10.1109/TAC.2016.2524202 10.1108/AA-10-2018-0170 10.1049/iet-cta.2018.5341 10.1049/iet-cta.2018.5967 10.1049/iet-cta.2011.0065 10.1016/j.automatica.2018.09.021 10.1007/s11432-018-9636-3 10.1109/JAS.2017.7510604 10.1109/TNNLS.2015.2456972 10.2514/1.23370 10.1109/TIE.2018.2815951 10.2514/1.27830 10.1007/s11432-019-2748-x 10.1080/00207179.2018.1487080 10.1007/s11432-012-4765-6 10.1109/TCYB.2020.2998984 10.1109/TCYB.2019.2933019 10.1109/TSMC.2018.2870999 10.1016/j.jsv.2018.02.005 10.1108/AA-06-2019-0103 10.1007/s11424-020-9210-0 10.1080/00207721.2010.494775 10.1109/TAC.2016.2569432 10.1007/s12613-020-2002-7 10.1109/JAS.2020.1003225 10.1016/j.automatica.2014.10.117 10.1109/JAS.2019.1911828 10.1109/TSMC.2018.2819191 10.1007/s12613-019-1937-z 10.1109/TMECH.2017.2721553 10.1016/j.actaastro.2004.05.045 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2022.3140536 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 2752 |
ExternalDocumentID | 35263266 10_1109_TCYB_2022_3140536 9732281 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing grantid: 2020BH006 funderid: 10.13039/501100018632 – fundername: National Natural Science Foundation of China grantid: U2013201; 62003029; 62073031; 62061160371 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2020TQ0029 funderid: 10.13039/501100002858 – fundername: Beijing Top Discipline for Artificial Intelligence Science and Engineering, University of Science and Technology Beijing |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-d48fea61e7851a96a3babc81dbd86fb62afec4c19438249f357000a52e41590d3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 07:13:15 EDT 2025 Mon Jun 30 07:00:39 EDT 2025 Thu Jan 02 22:52:41 EST 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 00:54:01 EDT 2025 Wed Aug 27 02:14:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-d48fea61e7851a96a3babc81dbd86fb62afec4c19438249f357000a52e41590d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7158-8575 0000-0002-7929-8932 0000-0001-6721-2874 0000-0002-8944-9861 |
PMID | 35263266 |
PQID | 2804114020 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2804114020 crossref_citationtrail_10_1109_TCYB_2022_3140536 crossref_primary_10_1109_TCYB_2022_3140536 proquest_miscellaneous_2638013095 ieee_primary_9732281 pubmed_primary_35263266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 groves (ref44) 2005 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 mofid (ref57) 2021 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ma (ref34) 2021 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 gere (ref28) 2001 mofid (ref33) 2020; 9 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref60 |
References_xml | – ident: ref10 doi: 10.1007/s11424-020-8186-0 – ident: ref42 doi: 10.1080/00207721.2018.1479002 – ident: ref23 doi: 10.1109/TCST.2017.2780055 – ident: ref9 doi: 10.1016/j.automatica.2018.10.030 – ident: ref38 doi: 10.1007/s11432-020-3109-x – ident: ref19 doi: 10.1002/rnc.3040 – ident: ref29 doi: 10.1137/0325078 – ident: ref48 doi: 10.1109/ACCESS.2021.3064893 – ident: ref40 doi: 10.1109/TIE.2018.2793253 – ident: ref24 doi: 10.1109/TCST.2020.3009660 – ident: ref8 doi: 10.1109/TCYB.2018.2794972 – ident: ref16 doi: 10.1016/j.ast.2018.02.016 – ident: ref54 doi: 10.1109/TRO.2017.2765334 – ident: ref14 doi: 10.1007/s11071-014-1572-1 – year: 2021 ident: ref57 article-title: Adaptive finite-time back-stepping global sliding mode tracker of quad-rotor UAVs under model uncertainty, wind perturbation and input saturation publication-title: IEEE Trans Aerosp Electron Syst – ident: ref45 doi: 10.1109/TFUZZ.2017.2761323 – ident: ref26 doi: 10.1109/TIE.2020.2984442 – volume: 9 start-page: 3428 year: 2020 ident: ref33 article-title: Adaptive terminal sliding mode control for attitude and position tracking control of quadrotor UAVs in the existence of external disturbance publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047659 – ident: ref51 doi: 10.1109/TNNLS.2018.2876685 – ident: ref41 doi: 10.1109/TCYB.2020.2982168 – ident: ref56 doi: 10.1007/s11424-020-9032-0 – ident: ref50 doi: 10.1016/j.isatra.2021.06.002 – ident: ref15 doi: 10.1007/s11071-015-1958-8 – ident: ref30 doi: 10.1016/j.automatica.2017.04.017 – ident: ref13 doi: 10.2514/1.39210 – year: 2005 ident: ref44 article-title: Modelling, simulation, and control design of an air-breathing hypersonic vehicle – ident: ref49 doi: 10.1016/j.isatra.2019.01.031 – ident: ref36 doi: 10.1109/TAC.2016.2524202 – ident: ref5 doi: 10.1108/AA-10-2018-0170 – ident: ref37 doi: 10.1049/iet-cta.2018.5341 – ident: ref32 doi: 10.1049/iet-cta.2018.5967 – ident: ref20 doi: 10.1049/iet-cta.2011.0065 – ident: ref35 doi: 10.1016/j.automatica.2018.09.021 – ident: ref25 doi: 10.1007/s11432-018-9636-3 – ident: ref3 doi: 10.1109/JAS.2017.7510604 – ident: ref6 doi: 10.1109/TNNLS.2015.2456972 – ident: ref17 doi: 10.2514/1.23370 – ident: ref12 doi: 10.1109/TIE.2018.2815951 – ident: ref18 doi: 10.2514/1.27830 – ident: ref59 doi: 10.1007/s11432-019-2748-x – ident: ref47 doi: 10.1080/00207179.2018.1487080 – ident: ref27 doi: 10.1007/s11432-012-4765-6 – ident: ref52 doi: 10.1109/TCYB.2020.2998984 – ident: ref53 doi: 10.1109/TCYB.2019.2933019 – ident: ref22 doi: 10.1109/TSMC.2018.2870999 – ident: ref46 doi: 10.1016/j.jsv.2018.02.005 – ident: ref4 doi: 10.1108/AA-06-2019-0103 – ident: ref11 doi: 10.1007/s11424-020-9210-0 – ident: ref43 doi: 10.1080/00207721.2010.494775 – ident: ref31 doi: 10.1109/TAC.2016.2569432 – ident: ref1 doi: 10.1007/s12613-020-2002-7 – ident: ref39 doi: 10.1109/JAS.2020.1003225 – ident: ref55 doi: 10.1016/j.automatica.2014.10.117 – year: 2021 ident: ref34 article-title: Adaptive compensation for infinite number of actuator faults and time-varying delay of a flexible manipulator system publication-title: IEEE Trans Ind Electron – year: 2001 ident: ref28 publication-title: Mechanics of Materials – ident: ref60 doi: 10.1109/JAS.2019.1911828 – ident: ref58 doi: 10.1109/TSMC.2018.2819191 – ident: ref2 doi: 10.1007/s12613-019-1937-z – ident: ref21 doi: 10.1109/TMECH.2017.2721553 – ident: ref7 doi: 10.1016/j.actaastro.2004.05.045 |
SSID | ssj0000816898 |
Score | 2.4389026 |
Snippet | The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2741 |
SubjectTerms | Actuators Adaptation models Adaptive control Airframes Algorithms Closed loops Fault tolerance Fault-tolerant control (FTC) Faults Feasibility Feedback control flexible air-breathing hypersonic vehicle (FAHV) Fuselages Hypersonic vehicles Liapunov direct method Linear matrix inequalities Mathematical analysis Mathematical models Partial differential equations Shear deformation Stability analysis Strain Symmetric matrices Timoshenko beam (TB) Vehicle dynamics Vibration control vibration suppression Vibrations |
Title | Flight and Vibration Control of Flexible Air-Breathing Hypersonic Vehicles Under Actuator Faults |
URI | https://ieeexplore.ieee.org/document/9732281 https://www.ncbi.nlm.nih.gov/pubmed/35263266 https://www.proquest.com/docview/2804114020 https://www.proquest.com/docview/2638013095 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnrgAbfkIFGQkDoDINk4cZ33crhqtkMqprcop2I4tKlZZ1E0u_HpmHG8kEFS9WYrzpfEk73lm3gC8k77gvnQ8tehOqRAtulRW2tRwBBu6rIQM2e7nX-TqUny-Lq_34NNUC-OcC8lnbkbDEMtvN3agrbITUpbJqc76ARK3sVZr2k8JDSRC69scBymiiioGMXmmTi6WX0-RDOY5clSEKAV1LiJleAQv8o8_Umix8n-0Gf469WM43z3vmGzyYzb0ZmZ__SXleN8XegKPIvxki3G9HMCe6w7hIDr4lr2PKtQfjuBbvSbeznTXsivi1GRBthwz29nGs5qkNM3ascXNbXpK2JM2s9gKiS2B-BvLrtz3kHTHQnMltqBaFaT4rNbDut8-hcv67GK5SmM7htQWQvVpK-beacldhShNK6kLo41FvGvaufRG5to7KyxXFFsUyhcknZ_pMncIElTWFs9gv9t07gUwJK2-mGfWqEqLPFOIMrgpKuust3PDZQLZziSNjVrl1DJj3QTOkqmGDNqQQZto0AQ-Tqf8HIU67pp8RMaYJkY7JHC8s3sTXXnb5KTQxIlmJ_B2OoxOSJEV3bnNgHPwK0YhYFUm8HxcL9O1d8vs5b_v-QoeUgf7MYfyGPb728G9RpzTmzdhgf8G-Pj0RQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAXoBRooICROAAi2zhxnPVxuyJaoNvTtiqnYDu2qFhlUTe58OuZcbKRQIC4WYrzpfEk73lm3gC8kj7jPnc8tuhOsRA1ulSS29hwBBs6L4QM2e7Lc7m4EB-v8qs9eDfWwjjnQvKZm9AwxPLrje1oq-yElGVSqrO-lVMxbl-tNe6ohBYSofltioMYcUUxhDF5ok5W88-nSAfTFFkqgpSMeheRNjzCF_nLPyk0Wfk73gz_nfIeLHdP3KebfJt0rZnYH7-JOf7vK92HuwMAZbN-xRzAnmsewMHg4lv2etChfnMIX8o1MXemm5pdEqsmG7J5n9vONp6VJKZp1o7Nrm_iU0KftJ3FFkhtCcZfW3bpvoa0OxbaK7EZVasgyWel7tbt9iFclO9X80U8NGSIbSZUG9di6p2W3BWI07SSOjPaWES8pp5Kb2SqvbPCckXRRaF8RuL5ic5ThzBBJXX2CPabTeOOgCFt9dk0sUYVWqSJQpzBTVZYZ72dGi4jSHYmqeygVk5NM9ZVYC2JqsigFRm0GgwawdvxlO-9VMe_Jh-SMcaJgx0iON7ZvRqceVulpNHEiWhH8HI8jG5IsRXduE2Hc_A7RkFglUfwuF8v47V3y-zJn-_5Am4vVsuz6uzD-aencIf62fcZlcew39507hmintY8D4v9J9uG940 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flight+and+Vibration+Control+of+Flexible+Air-Breathing+Hypersonic+Vehicles+Under+Actuator+Faults&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=He%2C+Xiuyu&rft.au=Ma%2C+Yonghao&rft.au=Chen%2C+Mou&rft.au=He%2C+Wei&rft.date=2023-05-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=5&rft.spage=2741&rft.epage=2752&rft_id=info:doi/10.1109%2FTCYB.2022.3140536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2022_3140536 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |