Flight and Vibration Control of Flexible Air-Breathing Hypersonic Vehicles Under Actuator Faults

The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential eq...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 5; pp. 2741 - 2752
Main Authors He, Xiuyu, Ma, Yonghao, Chen, Mou, He, Wei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2022.3140536

Cover

Loading…
Abstract The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently.
AbstractList The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently.
The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently.The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently.
Author Chen, Mou
He, Xiuyu
He, Wei
Ma, Yonghao
Author_xml – sequence: 1
  givenname: Xiuyu
  orcidid: 0000-0002-7929-8932
  surname: He
  fullname: He, Xiuyu
  email: xiuyuhe@ieee.org
  organization: Institute of Artificial Intelligence and School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Yonghao
  orcidid: 0000-0001-6721-2874
  surname: Ma
  fullname: Ma, Yonghao
  email: gzhueton@163.com
  organization: Institute of Artificial Intelligence and School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Mou
  orcidid: 0000-0001-7158-8575
  surname: Chen
  fullname: Chen, Mou
  email: chenmou@nuaa.edu.cn
  organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-8944-9861
  surname: He
  fullname: He, Wei
  email: weihe@ieee.org
  organization: Institute of Artificial Intelligence and School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35263266$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1UREvpB0BIyBIXLhv8Z9drH9OIUKRKXNpKnIzXO9u4cuxgeyX67XFI2kMPzMUj6_dGM--9RSchBkDoPSULSon6crP6eblghLEFpy3puHiFzhgVsmGs706ee9GfooucH0gtWb-UfINOeccEZ0KcoV9r7-43BZsw4js3JFNcDHgVQ0nR4zjhtYc_bvCAly41lwlM2bhwj68ed5ByDM7iO9g46yHj2zBCwktbZlNiwmsz-5LfodeT8Rkuju85ul1_vVldNdc_vn1fLa8by1tVmrGVExhBoZcdNUoYPpjBSjoOoxTTIJiZwLaWqpZL1qqJd309yHQMWtopMvJz9Pkwd5fi7xly0VuXLXhvAsQ563qwJJQT1VX00wv0Ic4p1O00k6Sl1U5GKvXxSM3DFka9S25r0qN-8q4C_QGwKeacYNLWlX_-lWSc15TofVB6H5TeB6WPQVUlfaF8Gv4_zYeDxgHAM696zpik_C91PJxe
CODEN ITCEB8
CitedBy_id crossref_primary_10_1177_01423312231154194
crossref_primary_10_1109_JAS_2024_124266
crossref_primary_10_1109_TCYB_2023_3295785
crossref_primary_10_1061_JAEEEZ_ASENG_5449
crossref_primary_10_1016_j_ast_2023_108458
crossref_primary_10_1007_s11071_024_10025_y
crossref_primary_10_1109_TIE_2022_3199945
crossref_primary_10_1109_TAES_2023_3323427
crossref_primary_10_1109_TAES_2022_3210153
crossref_primary_10_1109_TSMC_2024_3461816
crossref_primary_10_1109_TFUZZ_2024_3476393
crossref_primary_10_1016_j_automatica_2025_112155
crossref_primary_10_1016_j_jfranklin_2024_107397
crossref_primary_10_1177_09544100251321933
crossref_primary_10_1016_j_ast_2025_110059
crossref_primary_10_1109_TSMC_2022_3211992
Cites_doi 10.1007/s11424-020-8186-0
10.1080/00207721.2018.1479002
10.1109/TCST.2017.2780055
10.1016/j.automatica.2018.10.030
10.1007/s11432-020-3109-x
10.1002/rnc.3040
10.1137/0325078
10.1109/ACCESS.2021.3064893
10.1109/TIE.2018.2793253
10.1109/TCST.2020.3009660
10.1109/TCYB.2018.2794972
10.1016/j.ast.2018.02.016
10.1109/TRO.2017.2765334
10.1007/s11071-014-1572-1
10.1109/TFUZZ.2017.2761323
10.1109/TIE.2020.2984442
10.1109/ACCESS.2020.3047659
10.1109/TNNLS.2018.2876685
10.1109/TCYB.2020.2982168
10.1007/s11424-020-9032-0
10.1016/j.isatra.2021.06.002
10.1007/s11071-015-1958-8
10.1016/j.automatica.2017.04.017
10.2514/1.39210
10.1016/j.isatra.2019.01.031
10.1109/TAC.2016.2524202
10.1108/AA-10-2018-0170
10.1049/iet-cta.2018.5341
10.1049/iet-cta.2018.5967
10.1049/iet-cta.2011.0065
10.1016/j.automatica.2018.09.021
10.1007/s11432-018-9636-3
10.1109/JAS.2017.7510604
10.1109/TNNLS.2015.2456972
10.2514/1.23370
10.1109/TIE.2018.2815951
10.2514/1.27830
10.1007/s11432-019-2748-x
10.1080/00207179.2018.1487080
10.1007/s11432-012-4765-6
10.1109/TCYB.2020.2998984
10.1109/TCYB.2019.2933019
10.1109/TSMC.2018.2870999
10.1016/j.jsv.2018.02.005
10.1108/AA-06-2019-0103
10.1007/s11424-020-9210-0
10.1080/00207721.2010.494775
10.1109/TAC.2016.2569432
10.1007/s12613-020-2002-7
10.1109/JAS.2020.1003225
10.1016/j.automatica.2014.10.117
10.1109/JAS.2019.1911828
10.1109/TSMC.2018.2819191
10.1007/s12613-019-1937-z
10.1109/TMECH.2017.2721553
10.1016/j.actaastro.2004.05.045
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3140536
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Aerospace Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2752
ExternalDocumentID 35263266
10_1109_TCYB_2022_3140536
9732281
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing
  grantid: 2020BH006
  funderid: 10.13039/501100018632
– fundername: National Natural Science Foundation of China
  grantid: U2013201; 62003029; 62073031; 62061160371
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2020TQ0029
  funderid: 10.13039/501100002858
– fundername: Beijing Top Discipline for Artificial Intelligence Science and Engineering, University of Science and Technology Beijing
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-d48fea61e7851a96a3babc81dbd86fb62afec4c19438249f357000a52e41590d3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 07:13:15 EDT 2025
Mon Jun 30 07:00:39 EDT 2025
Thu Jan 02 22:52:41 EST 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 00:54:01 EDT 2025
Wed Aug 27 02:14:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-d48fea61e7851a96a3babc81dbd86fb62afec4c19438249f357000a52e41590d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7158-8575
0000-0002-7929-8932
0000-0001-6721-2874
0000-0002-8944-9861
PMID 35263266
PQID 2804114020
PQPubID 85422
PageCount 12
ParticipantIDs proquest_journals_2804114020
crossref_citationtrail_10_1109_TCYB_2022_3140536
crossref_primary_10_1109_TCYB_2022_3140536
proquest_miscellaneous_2638013095
ieee_primary_9732281
pubmed_primary_35263266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
groves (ref44) 2005
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
mofid (ref57) 2021
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ma (ref34) 2021
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
gere (ref28) 2001
mofid (ref33) 2020; 9
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref60
References_xml – ident: ref10
  doi: 10.1007/s11424-020-8186-0
– ident: ref42
  doi: 10.1080/00207721.2018.1479002
– ident: ref23
  doi: 10.1109/TCST.2017.2780055
– ident: ref9
  doi: 10.1016/j.automatica.2018.10.030
– ident: ref38
  doi: 10.1007/s11432-020-3109-x
– ident: ref19
  doi: 10.1002/rnc.3040
– ident: ref29
  doi: 10.1137/0325078
– ident: ref48
  doi: 10.1109/ACCESS.2021.3064893
– ident: ref40
  doi: 10.1109/TIE.2018.2793253
– ident: ref24
  doi: 10.1109/TCST.2020.3009660
– ident: ref8
  doi: 10.1109/TCYB.2018.2794972
– ident: ref16
  doi: 10.1016/j.ast.2018.02.016
– ident: ref54
  doi: 10.1109/TRO.2017.2765334
– ident: ref14
  doi: 10.1007/s11071-014-1572-1
– year: 2021
  ident: ref57
  article-title: Adaptive finite-time back-stepping global sliding mode tracker of quad-rotor UAVs under model uncertainty, wind perturbation and input saturation
  publication-title: IEEE Trans Aerosp Electron Syst
– ident: ref45
  doi: 10.1109/TFUZZ.2017.2761323
– ident: ref26
  doi: 10.1109/TIE.2020.2984442
– volume: 9
  start-page: 3428
  year: 2020
  ident: ref33
  article-title: Adaptive terminal sliding mode control for attitude and position tracking control of quadrotor UAVs in the existence of external disturbance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047659
– ident: ref51
  doi: 10.1109/TNNLS.2018.2876685
– ident: ref41
  doi: 10.1109/TCYB.2020.2982168
– ident: ref56
  doi: 10.1007/s11424-020-9032-0
– ident: ref50
  doi: 10.1016/j.isatra.2021.06.002
– ident: ref15
  doi: 10.1007/s11071-015-1958-8
– ident: ref30
  doi: 10.1016/j.automatica.2017.04.017
– ident: ref13
  doi: 10.2514/1.39210
– year: 2005
  ident: ref44
  article-title: Modelling, simulation, and control design of an air-breathing hypersonic vehicle
– ident: ref49
  doi: 10.1016/j.isatra.2019.01.031
– ident: ref36
  doi: 10.1109/TAC.2016.2524202
– ident: ref5
  doi: 10.1108/AA-10-2018-0170
– ident: ref37
  doi: 10.1049/iet-cta.2018.5341
– ident: ref32
  doi: 10.1049/iet-cta.2018.5967
– ident: ref20
  doi: 10.1049/iet-cta.2011.0065
– ident: ref35
  doi: 10.1016/j.automatica.2018.09.021
– ident: ref25
  doi: 10.1007/s11432-018-9636-3
– ident: ref3
  doi: 10.1109/JAS.2017.7510604
– ident: ref6
  doi: 10.1109/TNNLS.2015.2456972
– ident: ref17
  doi: 10.2514/1.23370
– ident: ref12
  doi: 10.1109/TIE.2018.2815951
– ident: ref18
  doi: 10.2514/1.27830
– ident: ref59
  doi: 10.1007/s11432-019-2748-x
– ident: ref47
  doi: 10.1080/00207179.2018.1487080
– ident: ref27
  doi: 10.1007/s11432-012-4765-6
– ident: ref52
  doi: 10.1109/TCYB.2020.2998984
– ident: ref53
  doi: 10.1109/TCYB.2019.2933019
– ident: ref22
  doi: 10.1109/TSMC.2018.2870999
– ident: ref46
  doi: 10.1016/j.jsv.2018.02.005
– ident: ref4
  doi: 10.1108/AA-06-2019-0103
– ident: ref11
  doi: 10.1007/s11424-020-9210-0
– ident: ref43
  doi: 10.1080/00207721.2010.494775
– ident: ref31
  doi: 10.1109/TAC.2016.2569432
– ident: ref1
  doi: 10.1007/s12613-020-2002-7
– ident: ref39
  doi: 10.1109/JAS.2020.1003225
– ident: ref55
  doi: 10.1016/j.automatica.2014.10.117
– year: 2021
  ident: ref34
  article-title: Adaptive compensation for infinite number of actuator faults and time-varying delay of a flexible manipulator system
  publication-title: IEEE Trans Ind Electron
– year: 2001
  ident: ref28
  publication-title: Mechanics of Materials
– ident: ref60
  doi: 10.1109/JAS.2019.1911828
– ident: ref58
  doi: 10.1109/TSMC.2018.2819191
– ident: ref2
  doi: 10.1007/s12613-019-1937-z
– ident: ref21
  doi: 10.1109/TMECH.2017.2721553
– ident: ref7
  doi: 10.1016/j.actaastro.2004.05.045
SSID ssj0000816898
Score 2.4389026
Snippet The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2741
SubjectTerms Actuators
Adaptation models
Adaptive control
Airframes
Algorithms
Closed loops
Fault tolerance
Fault-tolerant control (FTC)
Faults
Feasibility
Feedback control
flexible air-breathing hypersonic vehicle (FAHV)
Fuselages
Hypersonic vehicles
Liapunov direct method
Linear matrix inequalities
Mathematical analysis
Mathematical models
Partial differential equations
Shear deformation
Stability analysis
Strain
Symmetric matrices
Timoshenko beam (TB)
Vehicle dynamics
Vibration control
vibration suppression
Vibrations
Title Flight and Vibration Control of Flexible Air-Breathing Hypersonic Vehicles Under Actuator Faults
URI https://ieeexplore.ieee.org/document/9732281
https://www.ncbi.nlm.nih.gov/pubmed/35263266
https://www.proquest.com/docview/2804114020
https://www.proquest.com/docview/2638013095
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnrgAbfkIFGQkDoDINk4cZ33crhqtkMqprcop2I4tKlZZ1E0u_HpmHG8kEFS9WYrzpfEk73lm3gC8k77gvnQ8tehOqRAtulRW2tRwBBu6rIQM2e7nX-TqUny-Lq_34NNUC-OcC8lnbkbDEMtvN3agrbITUpbJqc76ARK3sVZr2k8JDSRC69scBymiiioGMXmmTi6WX0-RDOY5clSEKAV1LiJleAQv8o8_Umix8n-0Gf469WM43z3vmGzyYzb0ZmZ__SXleN8XegKPIvxki3G9HMCe6w7hIDr4lr2PKtQfjuBbvSbeznTXsivi1GRBthwz29nGs5qkNM3ascXNbXpK2JM2s9gKiS2B-BvLrtz3kHTHQnMltqBaFaT4rNbDut8-hcv67GK5SmM7htQWQvVpK-beacldhShNK6kLo41FvGvaufRG5to7KyxXFFsUyhcknZ_pMncIElTWFs9gv9t07gUwJK2-mGfWqEqLPFOIMrgpKuust3PDZQLZziSNjVrl1DJj3QTOkqmGDNqQQZto0AQ-Tqf8HIU67pp8RMaYJkY7JHC8s3sTXXnb5KTQxIlmJ_B2OoxOSJEV3bnNgHPwK0YhYFUm8HxcL9O1d8vs5b_v-QoeUgf7MYfyGPb728G9RpzTmzdhgf8G-Pj0RQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAXoBRooICROAAi2zhxnPVxuyJaoNvTtiqnYDu2qFhlUTe58OuZcbKRQIC4WYrzpfEk73lm3gC8kj7jPnc8tuhOsRA1ulSS29hwBBs6L4QM2e7Lc7m4EB-v8qs9eDfWwjjnQvKZm9AwxPLrje1oq-yElGVSqrO-lVMxbl-tNe6ohBYSofltioMYcUUxhDF5ok5W88-nSAfTFFkqgpSMeheRNjzCF_nLPyk0Wfk73gz_nfIeLHdP3KebfJt0rZnYH7-JOf7vK92HuwMAZbN-xRzAnmsewMHg4lv2etChfnMIX8o1MXemm5pdEqsmG7J5n9vONp6VJKZp1o7Nrm_iU0KftJ3FFkhtCcZfW3bpvoa0OxbaK7EZVasgyWel7tbt9iFclO9X80U8NGSIbSZUG9di6p2W3BWI07SSOjPaWES8pp5Kb2SqvbPCckXRRaF8RuL5ic5ThzBBJXX2CPabTeOOgCFt9dk0sUYVWqSJQpzBTVZYZ72dGi4jSHYmqeygVk5NM9ZVYC2JqsigFRm0GgwawdvxlO-9VMe_Jh-SMcaJgx0iON7ZvRqceVulpNHEiWhH8HI8jG5IsRXduE2Hc_A7RkFglUfwuF8v47V3y-zJn-_5Am4vVsuz6uzD-aencIf62fcZlcew39507hmintY8D4v9J9uG940
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flight+and+Vibration+Control+of+Flexible+Air-Breathing+Hypersonic+Vehicles+Under+Actuator+Faults&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=He%2C+Xiuyu&rft.au=Ma%2C+Yonghao&rft.au=Chen%2C+Mou&rft.au=He%2C+Wei&rft.date=2023-05-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=5&rft.spage=2741&rft.epage=2752&rft_id=info:doi/10.1109%2FTCYB.2022.3140536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2022_3140536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon