An Oscillating Wave Energy Converter with Nonlinear Snap-Through Power-Take-Off Systems in Regular Waves

Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring a...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 30; no. 4; pp. 565 - 580
Main Author 张显涛 杨建民 肖龙飞
Format Journal Article
LanguageEnglish
Published Nanjing Chinese Ocean Engineering Society 01.07.2016
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Subjects
Online AccessGet full text
ISSN0890-5487
2191-8945
DOI10.1007/s13344-016-0035-5

Cover

Loading…
Abstract Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
AbstractList Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ , which is different from linear converters characteristics of sinusoidal response in regular waves.
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
Author 张显涛 杨建民 肖龙飞
AuthorAffiliation State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
AuthorAffiliation_xml – name: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Author_xml – sequence: 1
  fullname: 张显涛 杨建民 肖龙飞
BookMark eNp9kMFu1DAURS3USkxbPoCdxY6F4TmxE3tZjUpBqhjUjtSl5YlfnJTULnamo-Hr8WgqkFh09Tb33Pt0zshJiAEJec_hEwdoP2de10Iw4A0DqCWTb8ii4pozpYU8IQtQGpgUqn1LznJ-AJBcCr4gw2Wgq9yN02TnMXh6b5-RXgVMfk-XMTxjmjHR3TgP9HsM0xjQJnoX7BNbDylu_UB_xB0mtrY_ka36nt7t84yPmY6B3qLfTiV-6MwX5LS3U8Z3L_ecrL9crZdf2c3q-tvy8oZ1tdAzc-BEpVC3yLmSm1o5pXQj2w3aVld9K4TAxjnrtKxdp50GuXENKGV1x11Xn5OPx9qdDb0N3jzEbQpl0Pz2w953BqviCARAU7LtMdulmHPC3nTjXDTEMCc7ToaDObg1R7emcObg1shC8v_IpzQ-2rR_lamOTC7Z4DH9e-016MPL0BCD_1W4v0tNo6XQWvL6D8ofmaM
CitedBy_id crossref_primary_10_1016_j_oceaneng_2019_02_028
crossref_primary_10_1109_TSTE_2020_3033785
crossref_primary_10_1007_s11071_022_07679_x
crossref_primary_10_1063_5_0227165
crossref_primary_10_1016_j_oceaneng_2020_107816
crossref_primary_10_1016_j_ymssp_2022_109168
crossref_primary_10_1007_s13344_023_0064_9
crossref_primary_10_1016_j_energy_2019_115984
crossref_primary_10_1016_j_joes_2021_09_011
crossref_primary_10_1007_s40684_020_00253_z
crossref_primary_10_3390_su8121255
crossref_primary_10_1016_j_renene_2024_122338
crossref_primary_10_1007_s11071_024_09794_3
crossref_primary_10_1016_j_apor_2018_02_009
crossref_primary_10_1016_j_renene_2023_119775
crossref_primary_10_1007_s10483_022_2864_6
crossref_primary_10_1177_1475090220913687
crossref_primary_10_1016_j_oceaneng_2022_111295
crossref_primary_10_1007_s40430_022_03882_4
crossref_primary_10_1016_j_oceaneng_2021_110342
crossref_primary_10_1016_j_oceaneng_2022_110983
crossref_primary_10_1016_j_oceaneng_2022_112841
crossref_primary_10_1007_s11071_022_07507_2
crossref_primary_10_1016_j_oceaneng_2024_117090
crossref_primary_10_1007_s13344_024_0054_6
crossref_primary_10_1016_j_apenergy_2018_06_100
crossref_primary_10_1016_S1001_6058_16_60798_9
Cites_doi 10.1007/s13344-014-0008-5
10.1016/j.renene.2012.01.105
10.1016/j.oceaneng.2012.12.008
10.1007/s13344-014-0023-6
10.1017/S0022112082001980
10.1007/s11071-009-9561-5
10.1016/j.jsv.2008.06.011
10.1016/j.oceaneng.2010.11.004
10.1016/j.oceaneng.2007.11.002
10.1017/CBO9780511754630
10.1016/j.rser.2009.11.003
10.1088/0964-1726/22/2/023001
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13344-016-0035-5
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
DocumentTitleAlternate An Oscillating Wave Energy Converter with Nonlinear Snap-Through Power-Take-Off Systems in Regular Waves
EISSN 2191-8945
EndPage 580
ExternalDocumentID zghygc_e201604006
10_1007_s13344_016_0035_5
669549951
GrantInformation_xml – fundername: This work was financially supported by the National Natural Science Foundation of China; the Independent Research Project of State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University
  funderid: (Grant 51239007); (Grant GKZD010023)
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
2RA
30V
4.4
406
408
5GY
5VR
5XA
5XB
5XL
8RM
92E
92I
92L
92M
92Q
93N
96X
9D9
9DA
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
W94
WK8
Z7R
ZMTXR
~A9
~LH
~WA
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
H13
HG6
ROL
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
4A8
PSX
ID FETCH-LOGICAL-c349t-d0d428e97e1185b38d889657bea792f7444e6ddad953dc9d905bd6088a9c1dc3
IEDL.DBID AGYKE
ISSN 0890-5487
IngestDate Thu May 29 03:55:51 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
Tue Jul 01 01:29:46 EDT 2025
Fri Feb 21 02:36:04 EST 2025
Wed Feb 14 10:17:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords power-take-off
snap-through
state space
wave energy
dynamic response
time domain equation
power-take-off,snap-through
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-d0d428e97e1185b38d889657bea792f7444e6ddad953dc9d905bd6088a9c1dc3
Notes 32-1441/P
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
wave energy; power-take-off, snap-through; time domain equation; state space; dynamic response
ZHANG Xian-tao, YANG Jian-min, XIAO Long-fei ( State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
PageCount 16
ParticipantIDs wanfang_journals_zghygc_e201604006
crossref_citationtrail_10_1007_s13344_016_0035_5
crossref_primary_10_1007_s13344_016_0035_5
springer_journals_10_1007_s13344_016_0035_5
chongqing_primary_669549951
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationTitleAlternate China Ocean Engineering
PublicationTitle_FL China Ocean Engineering
PublicationYear 2016
Publisher Chinese Ocean Engineering Society
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Publisher_xml – name: Chinese Ocean Engineering Society
– name: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
References MaT. W.Opportunities for using nonlinear oscillators to enhance energy harvesting from impulsively loaded structuresJournal of Systems and Control Engineering20112254467474
HarneR. L.WangK. W.A review of the recent research on vibration energy harvesting via bistable systemsSmart Materials and Structures201322202300110.1088/0964-1726/22/2/023001
GomesR. P. F.HenriquesJ. C. C.GatoL. M. C.FalcãoA. F. O.Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversionRenewable Energy20124432833910.1016/j.renene.2012.01.105
HulmeA.The wave forces acting on a floating hemisphere undergoing forced periodic oscillationsJ. Fluid Mech.198212144346367759310.1017/S00221120820019800492.76022
MannB. P.SimsN. D.Energy harvesting from the nonlinear oscillation of magnetic levitationJournal of Sound and Vibration20093191–251553010.1016/j.jsv.2008.06.011
FalnesJ.Ocean Waves and Oscillating Systems200210.1017/CBO9780511754630
BurrowS. G.ClareL. R.A resonant generator with nonlinear compliance for energy harvesting in high vibrational environments2007715720
PerezT.FossenT. I.Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic dataOcean Eng.201138242643510.1016/j.oceaneng.2010.11.004
RamlanR.BrennanM. J.MaceB. R.KovacicR.Potential benefits of a nonlinear stiffness in an energy harvesting deviceNonlinear Dynamics201059454555810.1007/s11071-009-9561-51189.70106
ZhangD. H.LiW.ZhaoH. T.BaoJ. W.LinY. G.Design of a hydraulic power take-off system for the wave energy device with an inverse pendulumChina Ocean Eng.201428228329210.1007/s13344-014-0023-6
ZhangY. Q.ShengS. W.YouY. G.WuB. J.LiuY.Research on energy conversion system of floating wave energy converterChina Ocean Eng.201428110511310.1007/s13344-014-0008-5
EvansD. V.CountB.Some analytic results for two and three dimensional wave energy absorbersPower from Sea Waves, Academic Press1980213249
VicenteP. C.FalcãoA. F. O.JustinoP. A. P.Nonlinear dynamics of a tightly moored point-absorber wave energy converterOcean Eng.201359203610.1016/j.oceaneng.2012.12.008
TaghipourR.PerezT.MoanT.Hybrid frequency–time domain models for dynamic response analysis of marine structuresOcean Eng.200835768570510.1016/j.oceaneng.2007.11.002
AlvesM.Numerical Simulation of the Dynamics of Point Absorber Wave Energy Converters Using Frequency and Time Domain Approaches2012
CumminsW. E.The impulse response function and ship motionsSchiffstechnik19629101109
FalcãoA. F. O.Wave energy utilization: a review of the technologiesRenewable and Sustainable Energy Reviews201014389991810.1016/j.rser.2009.11.003
S. G. Burrow (35_CR2) 2007
D. H. Zhang (35_CR16) 2014; 28
R. Taghipour (35_CR14) 2008; 35
P. C. Vicente (35_CR15) 2013; 59
D. V. Evans (35_CR4) 1980
A. Hulme (35_CR9) 1982; 121
R. P. F. Gomes (35_CR7) 2012; 44
Y. Q. Zhang (35_CR17) 2014; 28
B. P. Mann (35_CR11) 2009; 319
A. F. O. Falcão (35_CR5) 2010; 14
R. L. Harne (35_CR8) 2013; 22
T. W. Ma (35_CR10) 2011; 225
R. Ramlan (35_CR13) 2010; 59
W. E. Cummins (35_CR3) 1962; 9
T. Perez (35_CR12) 2011; 38
J. Falnes (35_CR6) 2002
M. Alves (35_CR1) 2012
References_xml – reference: FalcãoA. F. O.Wave energy utilization: a review of the technologiesRenewable and Sustainable Energy Reviews201014389991810.1016/j.rser.2009.11.003
– reference: HarneR. L.WangK. W.A review of the recent research on vibration energy harvesting via bistable systemsSmart Materials and Structures201322202300110.1088/0964-1726/22/2/023001
– reference: MaT. W.Opportunities for using nonlinear oscillators to enhance energy harvesting from impulsively loaded structuresJournal of Systems and Control Engineering20112254467474
– reference: HulmeA.The wave forces acting on a floating hemisphere undergoing forced periodic oscillationsJ. Fluid Mech.198212144346367759310.1017/S00221120820019800492.76022
– reference: ZhangD. H.LiW.ZhaoH. T.BaoJ. W.LinY. G.Design of a hydraulic power take-off system for the wave energy device with an inverse pendulumChina Ocean Eng.201428228329210.1007/s13344-014-0023-6
– reference: BurrowS. G.ClareL. R.A resonant generator with nonlinear compliance for energy harvesting in high vibrational environments2007715720
– reference: TaghipourR.PerezT.MoanT.Hybrid frequency–time domain models for dynamic response analysis of marine structuresOcean Eng.200835768570510.1016/j.oceaneng.2007.11.002
– reference: FalnesJ.Ocean Waves and Oscillating Systems200210.1017/CBO9780511754630
– reference: RamlanR.BrennanM. J.MaceB. R.KovacicR.Potential benefits of a nonlinear stiffness in an energy harvesting deviceNonlinear Dynamics201059454555810.1007/s11071-009-9561-51189.70106
– reference: CumminsW. E.The impulse response function and ship motionsSchiffstechnik19629101109
– reference: ZhangY. Q.ShengS. W.YouY. G.WuB. J.LiuY.Research on energy conversion system of floating wave energy converterChina Ocean Eng.201428110511310.1007/s13344-014-0008-5
– reference: GomesR. P. F.HenriquesJ. C. C.GatoL. M. C.FalcãoA. F. O.Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversionRenewable Energy20124432833910.1016/j.renene.2012.01.105
– reference: EvansD. V.CountB.Some analytic results for two and three dimensional wave energy absorbersPower from Sea Waves, Academic Press1980213249
– reference: MannB. P.SimsN. D.Energy harvesting from the nonlinear oscillation of magnetic levitationJournal of Sound and Vibration20093191–251553010.1016/j.jsv.2008.06.011
– reference: VicenteP. C.FalcãoA. F. O.JustinoP. A. P.Nonlinear dynamics of a tightly moored point-absorber wave energy converterOcean Eng.201359203610.1016/j.oceaneng.2012.12.008
– reference: AlvesM.Numerical Simulation of the Dynamics of Point Absorber Wave Energy Converters Using Frequency and Time Domain Approaches2012
– reference: PerezT.FossenT. I.Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic dataOcean Eng.201138242643510.1016/j.oceaneng.2010.11.004
– volume: 28
  start-page: 105
  issue: 1
  year: 2014
  ident: 35_CR17
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-014-0008-5
– volume: 44
  start-page: 328
  year: 2012
  ident: 35_CR7
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2012.01.105
– volume: 59
  start-page: 20
  year: 2013
  ident: 35_CR15
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.12.008
– volume: 28
  start-page: 283
  issue: 2
  year: 2014
  ident: 35_CR16
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-014-0023-6
– start-page: 213
  volume-title: Power from Sea Waves, Academic Press
  year: 1980
  ident: 35_CR4
– start-page: 715
  volume-title: A resonant generator with nonlinear compliance for energy harvesting in high vibrational environments
  year: 2007
  ident: 35_CR2
– volume: 121
  start-page: 443
  year: 1982
  ident: 35_CR9
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112082001980
– volume: 59
  start-page: 545
  issue: 4
  year: 2010
  ident: 35_CR13
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-009-9561-5
– volume-title: Numerical Simulation of the Dynamics of Point Absorber Wave Energy Converters Using Frequency and Time Domain Approaches
  year: 2012
  ident: 35_CR1
– volume: 319
  start-page: 515
  issue: 1–2
  year: 2009
  ident: 35_CR11
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2008.06.011
– volume: 225
  start-page: 467
  issue: 4
  year: 2011
  ident: 35_CR10
  publication-title: Journal of Systems and Control Engineering
– volume: 38
  start-page: 426
  issue: 2
  year: 2011
  ident: 35_CR12
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2010.11.004
– volume: 35
  start-page: 685
  issue: 7
  year: 2008
  ident: 35_CR14
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2007.11.002
– volume-title: Ocean Waves and Oscillating Systems
  year: 2002
  ident: 35_CR6
  doi: 10.1017/CBO9780511754630
– volume: 14
  start-page: 899
  issue: 3
  year: 2010
  ident: 35_CR5
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2009.11.003
– volume: 9
  start-page: 101
  year: 1962
  ident: 35_CR3
  publication-title: Schiffstechnik
– volume: 22
  start-page: 023001
  issue: 2
  year: 2013
  ident: 35_CR8
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/22/2/023001
SSID ssj0051541
Score 2.194125
Snippet Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a...
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is...
SourceID wanfang
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 565
SubjectTerms Coastal Sciences
Engineering
Fluid- and Aerodynamics
Marine & Freshwater Sciences
Numerical and Computational Physics
Oceanography
Offshore Engineering
Simulation
单元
振动波
状态空间模型
能量变换器
能量转换器
规则波
非线性动力系统
非线性参数
Title An Oscillating Wave Energy Converter with Nonlinear Snap-Through Power-Take-Off Systems in Regular Waves
URI http://lib.cqvip.com/qk/86654A/201604/669549951.html
https://link.springer.com/article/10.1007/s13344-016-0035-5
https://d.wanfangdata.com.cn/periodical/zghygc-e201604006
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEJ7I8aImqKjxBEljfNKUlO2P2z5eCEg0ER-OBJ823U53z0Aq3h4a-etpd1sOjSHhfXa2206nM9tvvgF4h9IUDceSIqKkQjlOa7SGCqMVMtZoND3b5xd1dCI-ncrTVMfdZbR7vpLsPfWq2I1zERETIQOOPItyDdblXqnLEaxPP377fJAdcDih-4aVrNSMxoA8X2b-T0mkVJj_8O3P8MK_j6Y8iL6axzfGt7cOnsMnMMtDHvAmZ7uXy3rXXv3D5njPb3oKGykQJdPBcp7BA-c34dEtesJNeHxsnfGJ0_o5zKeeROrL8wif8y35bX454vraQdKD1yM6lMQfu8QPBBxmQTpvLmhqBkS-xpZsdGbOHD1uGjKwSHfkuycL10Y8bK-zewGzw4PZ_hFNjRqo5UIvKTIMWYzTExfSFVnzEstSKzmpnZnoopkIIZxCNKglR6tRM1mjCv7NaLuHlr-EURiXewUkWJRTzhXGOCvQhvCDK2mwbrAwDDkbw9bNclUXAx9HpVS8qwyh4hhYXsDKJorz2GnjvFqRM8cJryKsLU54Jcfw_uaRrO8O4Q95Gau01bu7pN8mw1kJX7XzP62tXBGJ_YL7VK_vpXILHha9sUS48DaMlotL9yYERct6J22CHVg7KabXlOcFTg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHHhICAqIpTwsxAlkycSPjY8rRLVAaTlspd4sxzPJIipTNgsIfj0eb9ItEqrE3ZlYHmdmHH_zfYy9ABOqVkEtAMAIbVGJBmIQOjgLUrYOQmH7PLTzY_3-xJwMfdz9iHYfryRLpN42uymlCTGRT8DEs2iusmu5FqhJtuC4mo3hN-fnIlcpaycFlePjVea_TBChwvJr6r7l1_2dmMYplF6e1IbUXUg7-3fY7aFe5LONg--yK5h22c0LLIK77NZRxJAG6ul7bDlLnBgqTwnlljr-M_xAjqXFjxeMOYE4Of1_5WnDkxFWvE_hTAyaPfwTKaeJRfiC4qht-YbsueefE18V5fpVsdnfZ4v9t4s3czHoKYiotFsLkJAPG-immE8VplE11LWzZtpgmLqqnWqt0QIEcEZBdOCkacDmMBRcfA1RPWA7eV74kPHseLSIVQgYNcRcJShrAjQtVEGCkhO2d76u_mxDm-GtpSvFXNFNmBxX2seBiZwEMU79lkOZHOUJfUaO8mbCXp4_Mtq7ZPCr0X1--CL7y0Y_Hzy8Hfy7W_7qoseK-PdylLOP_svkM3Z9vvh44A_eHX7YYzeqsuEI4fuY7axX3_FJrmPWzdOyb_8AzzTqeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9aQWxBtCo960cQn5TQdPNxm8dDPeoHbR-u0LeQzWT3iiW93p5K_evNZHd7FaTge3Y2ZGYnk81vfj9C3oJyRS2gZACgmNRBsAq8Y9IZDZzXBlxm-zzUByfyy6k67XVO2wHtPlxJdj0NyNIUV3sLqPfWjW9CSERPpNMwci6qu-Reysb7GOgnxWRIxWmvztKVvDScYWk-XGv-ywSSK8wvYnOZXv33JjVMJ_f1xNrF5sYWNH1EHva1I510zn5M7oS4TTZvMApuk60jH1zsaaifkPkkUmSrPEfEW2zoL_cz0JDb_WjGmyOgk-K_WBo7zgy3pG10C9br99BjVFFjM_c9sKO6ph3xc0vPIl1mFftlttk-JbPpp9mHA9ZrKzAvpFkx4JAOHsGMQzphqEqUUJZGq3EV3NgU9VhKGTSAA6MEeAOGqwp0SknO-H3w4hnZSPMKO4SmIAg6hMK54CX4VDEIrRxUNRSOg-Ajsnu9rnbRUWhYrfF6MVV3I8KHlba-ZyVHcYxzu-ZTRkdZRKKho6wakXfXjwz2bhn8fnCf7b_O9rbRb3oPrwf_buZXjbehQC6-lPH08_8y-ZrcP_44td8-H37dJQ-KHG8I9n1BNlbLH-FlKmlW1asctn8ARUrutQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Oscillating+Wave+Energy+Converter+with+Nonlinear+Snap-Through+Power-Take-Off+Systems+in+Regular+Waves&rft.jtitle=%E4%B8%AD%E5%9B%BD%E6%B5%B7%E6%B4%8B%E5%B7%A5%E7%A8%8B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BC%A0%E6%98%BE%E6%B6%9B+%E6%9D%A8%E5%BB%BA%E6%B0%91+%E8%82%96%E9%BE%99%E9%A3%9E&rft.date=2016-07-01&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=30&rft.issue=4&rft.spage=565&rft.epage=580&rft_id=info:doi/10.1007%2Fs13344-016-0035-5&rft.externalDocID=669549951
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86654A%2F86654A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg