An Oscillating Wave Energy Converter with Nonlinear Snap-Through Power-Take-Off Systems in Regular Waves
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring a...
Saved in:
Published in | China ocean engineering Vol. 30; no. 4; pp. 565 - 580 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Nanjing
Chinese Ocean Engineering Society
01.07.2016
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
Subjects | |
Online Access | Get full text |
ISSN | 0890-5487 2191-8945 |
DOI | 10.1007/s13344-016-0035-5 |
Cover
Loading…
Abstract | Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves. |
---|---|
AbstractList | Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter
γ
is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter
γ
affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter
γ
, which is different from linear converters characteristics of sinusoidal response in regular waves. Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves. |
Author | 张显涛 杨建民 肖龙飞 |
AuthorAffiliation | State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
AuthorAffiliation_xml | – name: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
Author_xml | – sequence: 1 fullname: 张显涛 杨建民 肖龙飞 |
BookMark | eNp9kMFu1DAURS3USkxbPoCdxY6F4TmxE3tZjUpBqhjUjtSl5YlfnJTULnamo-Hr8WgqkFh09Tb33Pt0zshJiAEJec_hEwdoP2de10Iw4A0DqCWTb8ii4pozpYU8IQtQGpgUqn1LznJ-AJBcCr4gw2Wgq9yN02TnMXh6b5-RXgVMfk-XMTxjmjHR3TgP9HsM0xjQJnoX7BNbDylu_UB_xB0mtrY_ka36nt7t84yPmY6B3qLfTiV-6MwX5LS3U8Z3L_ecrL9crZdf2c3q-tvy8oZ1tdAzc-BEpVC3yLmSm1o5pXQj2w3aVld9K4TAxjnrtKxdp50GuXENKGV1x11Xn5OPx9qdDb0N3jzEbQpl0Pz2w953BqviCARAU7LtMdulmHPC3nTjXDTEMCc7ToaDObg1R7emcObg1shC8v_IpzQ-2rR_lamOTC7Z4DH9e-016MPL0BCD_1W4v0tNo6XQWvL6D8ofmaM |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2019_02_028 crossref_primary_10_1109_TSTE_2020_3033785 crossref_primary_10_1007_s11071_022_07679_x crossref_primary_10_1063_5_0227165 crossref_primary_10_1016_j_oceaneng_2020_107816 crossref_primary_10_1016_j_ymssp_2022_109168 crossref_primary_10_1007_s13344_023_0064_9 crossref_primary_10_1016_j_energy_2019_115984 crossref_primary_10_1016_j_joes_2021_09_011 crossref_primary_10_1007_s40684_020_00253_z crossref_primary_10_3390_su8121255 crossref_primary_10_1016_j_renene_2024_122338 crossref_primary_10_1007_s11071_024_09794_3 crossref_primary_10_1016_j_apor_2018_02_009 crossref_primary_10_1016_j_renene_2023_119775 crossref_primary_10_1007_s10483_022_2864_6 crossref_primary_10_1177_1475090220913687 crossref_primary_10_1016_j_oceaneng_2022_111295 crossref_primary_10_1007_s40430_022_03882_4 crossref_primary_10_1016_j_oceaneng_2021_110342 crossref_primary_10_1016_j_oceaneng_2022_110983 crossref_primary_10_1016_j_oceaneng_2022_112841 crossref_primary_10_1007_s11071_022_07507_2 crossref_primary_10_1016_j_oceaneng_2024_117090 crossref_primary_10_1007_s13344_024_0054_6 crossref_primary_10_1016_j_apenergy_2018_06_100 crossref_primary_10_1016_S1001_6058_16_60798_9 |
Cites_doi | 10.1007/s13344-014-0008-5 10.1016/j.renene.2012.01.105 10.1016/j.oceaneng.2012.12.008 10.1007/s13344-014-0023-6 10.1017/S0022112082001980 10.1007/s11071-009-9561-5 10.1016/j.jsv.2008.06.011 10.1016/j.oceaneng.2010.11.004 10.1016/j.oceaneng.2007.11.002 10.1017/CBO9780511754630 10.1016/j.rser.2009.11.003 10.1088/0964-1726/22/2/023001 |
ContentType | Journal Article |
Copyright | Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s13344-016-0035-5 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
DocumentTitleAlternate | An Oscillating Wave Energy Converter with Nonlinear Snap-Through Power-Take-Off Systems in Regular Waves |
EISSN | 2191-8945 |
EndPage | 580 |
ExternalDocumentID | zghygc_e201604006 10_1007_s13344_016_0035_5 669549951 |
GrantInformation_xml | – fundername: This work was financially supported by the National Natural Science Foundation of China; the Independent Research Project of State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University funderid: (Grant 51239007); (Grant GKZD010023) |
GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 0VY 188 29B 29~ 2B. 2C. 2KG 2KM 2RA 30V 4.4 406 408 5GY 5VR 5XA 5XB 5XL 8RM 92E 92I 92L 92M 92Q 93N 96X 9D9 9DA AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR J-C JBSCW JUIAU JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 Q-- Q-0 R-A R9I RLLFE RSV RT1 S.. S1Z S27 S3B SCL SEG SHX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T8Q TCJ TGP TSG U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 W94 WK8 Z7R ZMTXR ~A9 ~LH ~WA AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU H13 HG6 ROL SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 4A8 PSX |
ID | FETCH-LOGICAL-c349t-d0d428e97e1185b38d889657bea792f7444e6ddad953dc9d905bd6088a9c1dc3 |
IEDL.DBID | AGYKE |
ISSN | 0890-5487 |
IngestDate | Thu May 29 03:55:51 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 Tue Jul 01 01:29:46 EDT 2025 Fri Feb 21 02:36:04 EST 2025 Wed Feb 14 10:17:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | power-take-off snap-through state space wave energy dynamic response time domain equation power-take-off,snap-through |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-d0d428e97e1185b38d889657bea792f7444e6ddad953dc9d905bd6088a9c1dc3 |
Notes | 32-1441/P Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves. wave energy; power-take-off, snap-through; time domain equation; state space; dynamic response ZHANG Xian-tao, YANG Jian-min, XIAO Long-fei ( State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China) |
PageCount | 16 |
ParticipantIDs | wanfang_journals_zghygc_e201604006 crossref_citationtrail_10_1007_s13344_016_0035_5 crossref_primary_10_1007_s13344_016_0035_5 springer_journals_10_1007_s13344_016_0035_5 chongqing_primary_669549951 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Nanjing |
PublicationPlace_xml | – name: Nanjing |
PublicationTitle | China ocean engineering |
PublicationTitleAbbrev | China Ocean Eng |
PublicationTitleAlternate | China Ocean Engineering |
PublicationTitle_FL | China Ocean Engineering |
PublicationYear | 2016 |
Publisher | Chinese Ocean Engineering Society State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
Publisher_xml | – name: Chinese Ocean Engineering Society – name: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
References | MaT. W.Opportunities for using nonlinear oscillators to enhance energy harvesting from impulsively loaded structuresJournal of Systems and Control Engineering20112254467474 HarneR. L.WangK. W.A review of the recent research on vibration energy harvesting via bistable systemsSmart Materials and Structures201322202300110.1088/0964-1726/22/2/023001 GomesR. P. F.HenriquesJ. C. C.GatoL. M. C.FalcãoA. F. O.Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversionRenewable Energy20124432833910.1016/j.renene.2012.01.105 HulmeA.The wave forces acting on a floating hemisphere undergoing forced periodic oscillationsJ. Fluid Mech.198212144346367759310.1017/S00221120820019800492.76022 MannB. P.SimsN. D.Energy harvesting from the nonlinear oscillation of magnetic levitationJournal of Sound and Vibration20093191–251553010.1016/j.jsv.2008.06.011 FalnesJ.Ocean Waves and Oscillating Systems200210.1017/CBO9780511754630 BurrowS. G.ClareL. R.A resonant generator with nonlinear compliance for energy harvesting in high vibrational environments2007715720 PerezT.FossenT. I.Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic dataOcean Eng.201138242643510.1016/j.oceaneng.2010.11.004 RamlanR.BrennanM. J.MaceB. R.KovacicR.Potential benefits of a nonlinear stiffness in an energy harvesting deviceNonlinear Dynamics201059454555810.1007/s11071-009-9561-51189.70106 ZhangD. H.LiW.ZhaoH. T.BaoJ. W.LinY. G.Design of a hydraulic power take-off system for the wave energy device with an inverse pendulumChina Ocean Eng.201428228329210.1007/s13344-014-0023-6 ZhangY. Q.ShengS. W.YouY. G.WuB. J.LiuY.Research on energy conversion system of floating wave energy converterChina Ocean Eng.201428110511310.1007/s13344-014-0008-5 EvansD. V.CountB.Some analytic results for two and three dimensional wave energy absorbersPower from Sea Waves, Academic Press1980213249 VicenteP. C.FalcãoA. F. O.JustinoP. A. P.Nonlinear dynamics of a tightly moored point-absorber wave energy converterOcean Eng.201359203610.1016/j.oceaneng.2012.12.008 TaghipourR.PerezT.MoanT.Hybrid frequency–time domain models for dynamic response analysis of marine structuresOcean Eng.200835768570510.1016/j.oceaneng.2007.11.002 AlvesM.Numerical Simulation of the Dynamics of Point Absorber Wave Energy Converters Using Frequency and Time Domain Approaches2012 CumminsW. E.The impulse response function and ship motionsSchiffstechnik19629101109 FalcãoA. F. O.Wave energy utilization: a review of the technologiesRenewable and Sustainable Energy Reviews201014389991810.1016/j.rser.2009.11.003 S. G. Burrow (35_CR2) 2007 D. H. Zhang (35_CR16) 2014; 28 R. Taghipour (35_CR14) 2008; 35 P. C. Vicente (35_CR15) 2013; 59 D. V. Evans (35_CR4) 1980 A. Hulme (35_CR9) 1982; 121 R. P. F. Gomes (35_CR7) 2012; 44 Y. Q. Zhang (35_CR17) 2014; 28 B. P. Mann (35_CR11) 2009; 319 A. F. O. Falcão (35_CR5) 2010; 14 R. L. Harne (35_CR8) 2013; 22 T. W. Ma (35_CR10) 2011; 225 R. Ramlan (35_CR13) 2010; 59 W. E. Cummins (35_CR3) 1962; 9 T. Perez (35_CR12) 2011; 38 J. Falnes (35_CR6) 2002 M. Alves (35_CR1) 2012 |
References_xml | – reference: FalcãoA. F. O.Wave energy utilization: a review of the technologiesRenewable and Sustainable Energy Reviews201014389991810.1016/j.rser.2009.11.003 – reference: HarneR. L.WangK. W.A review of the recent research on vibration energy harvesting via bistable systemsSmart Materials and Structures201322202300110.1088/0964-1726/22/2/023001 – reference: MaT. W.Opportunities for using nonlinear oscillators to enhance energy harvesting from impulsively loaded structuresJournal of Systems and Control Engineering20112254467474 – reference: HulmeA.The wave forces acting on a floating hemisphere undergoing forced periodic oscillationsJ. Fluid Mech.198212144346367759310.1017/S00221120820019800492.76022 – reference: ZhangD. H.LiW.ZhaoH. T.BaoJ. W.LinY. G.Design of a hydraulic power take-off system for the wave energy device with an inverse pendulumChina Ocean Eng.201428228329210.1007/s13344-014-0023-6 – reference: BurrowS. G.ClareL. R.A resonant generator with nonlinear compliance for energy harvesting in high vibrational environments2007715720 – reference: TaghipourR.PerezT.MoanT.Hybrid frequency–time domain models for dynamic response analysis of marine structuresOcean Eng.200835768570510.1016/j.oceaneng.2007.11.002 – reference: FalnesJ.Ocean Waves and Oscillating Systems200210.1017/CBO9780511754630 – reference: RamlanR.BrennanM. J.MaceB. R.KovacicR.Potential benefits of a nonlinear stiffness in an energy harvesting deviceNonlinear Dynamics201059454555810.1007/s11071-009-9561-51189.70106 – reference: CumminsW. E.The impulse response function and ship motionsSchiffstechnik19629101109 – reference: ZhangY. Q.ShengS. W.YouY. G.WuB. J.LiuY.Research on energy conversion system of floating wave energy converterChina Ocean Eng.201428110511310.1007/s13344-014-0008-5 – reference: GomesR. P. F.HenriquesJ. C. C.GatoL. M. C.FalcãoA. F. O.Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversionRenewable Energy20124432833910.1016/j.renene.2012.01.105 – reference: EvansD. V.CountB.Some analytic results for two and three dimensional wave energy absorbersPower from Sea Waves, Academic Press1980213249 – reference: MannB. P.SimsN. D.Energy harvesting from the nonlinear oscillation of magnetic levitationJournal of Sound and Vibration20093191–251553010.1016/j.jsv.2008.06.011 – reference: VicenteP. C.FalcãoA. F. O.JustinoP. A. P.Nonlinear dynamics of a tightly moored point-absorber wave energy converterOcean Eng.201359203610.1016/j.oceaneng.2012.12.008 – reference: AlvesM.Numerical Simulation of the Dynamics of Point Absorber Wave Energy Converters Using Frequency and Time Domain Approaches2012 – reference: PerezT.FossenT. I.Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic dataOcean Eng.201138242643510.1016/j.oceaneng.2010.11.004 – volume: 28 start-page: 105 issue: 1 year: 2014 ident: 35_CR17 publication-title: China Ocean Eng. doi: 10.1007/s13344-014-0008-5 – volume: 44 start-page: 328 year: 2012 ident: 35_CR7 publication-title: Renewable Energy doi: 10.1016/j.renene.2012.01.105 – volume: 59 start-page: 20 year: 2013 ident: 35_CR15 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.12.008 – volume: 28 start-page: 283 issue: 2 year: 2014 ident: 35_CR16 publication-title: China Ocean Eng. doi: 10.1007/s13344-014-0023-6 – start-page: 213 volume-title: Power from Sea Waves, Academic Press year: 1980 ident: 35_CR4 – start-page: 715 volume-title: A resonant generator with nonlinear compliance for energy harvesting in high vibrational environments year: 2007 ident: 35_CR2 – volume: 121 start-page: 443 year: 1982 ident: 35_CR9 publication-title: J. Fluid Mech. doi: 10.1017/S0022112082001980 – volume: 59 start-page: 545 issue: 4 year: 2010 ident: 35_CR13 publication-title: Nonlinear Dynamics doi: 10.1007/s11071-009-9561-5 – volume-title: Numerical Simulation of the Dynamics of Point Absorber Wave Energy Converters Using Frequency and Time Domain Approaches year: 2012 ident: 35_CR1 – volume: 319 start-page: 515 issue: 1–2 year: 2009 ident: 35_CR11 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2008.06.011 – volume: 225 start-page: 467 issue: 4 year: 2011 ident: 35_CR10 publication-title: Journal of Systems and Control Engineering – volume: 38 start-page: 426 issue: 2 year: 2011 ident: 35_CR12 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2010.11.004 – volume: 35 start-page: 685 issue: 7 year: 2008 ident: 35_CR14 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2007.11.002 – volume-title: Ocean Waves and Oscillating Systems year: 2002 ident: 35_CR6 doi: 10.1017/CBO9780511754630 – volume: 14 start-page: 899 issue: 3 year: 2010 ident: 35_CR5 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2009.11.003 – volume: 9 start-page: 101 year: 1962 ident: 35_CR3 publication-title: Schiffstechnik – volume: 22 start-page: 023001 issue: 2 year: 2013 ident: 35_CR8 publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/22/2/023001 |
SSID | ssj0051541 |
Score | 2.194125 |
Snippet | Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a... Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is... |
SourceID | wanfang crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 565 |
SubjectTerms | Coastal Sciences Engineering Fluid- and Aerodynamics Marine & Freshwater Sciences Numerical and Computational Physics Oceanography Offshore Engineering Simulation 单元 振动波 状态空间模型 能量变换器 能量转换器 规则波 非线性动力系统 非线性参数 |
Title | An Oscillating Wave Energy Converter with Nonlinear Snap-Through Power-Take-Off Systems in Regular Waves |
URI | http://lib.cqvip.com/qk/86654A/201604/669549951.html https://link.springer.com/article/10.1007/s13344-016-0035-5 https://d.wanfangdata.com.cn/periodical/zghygc-e201604006 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEJ7I8aImqKjxBEljfNKUlO2P2z5eCEg0ER-OBJ823U53z0Aq3h4a-etpd1sOjSHhfXa2206nM9tvvgF4h9IUDceSIqKkQjlOa7SGCqMVMtZoND3b5xd1dCI-ncrTVMfdZbR7vpLsPfWq2I1zERETIQOOPItyDdblXqnLEaxPP377fJAdcDih-4aVrNSMxoA8X2b-T0mkVJj_8O3P8MK_j6Y8iL6axzfGt7cOnsMnMMtDHvAmZ7uXy3rXXv3D5njPb3oKGykQJdPBcp7BA-c34dEtesJNeHxsnfGJ0_o5zKeeROrL8wif8y35bX454vraQdKD1yM6lMQfu8QPBBxmQTpvLmhqBkS-xpZsdGbOHD1uGjKwSHfkuycL10Y8bK-zewGzw4PZ_hFNjRqo5UIvKTIMWYzTExfSFVnzEstSKzmpnZnoopkIIZxCNKglR6tRM1mjCv7NaLuHlr-EURiXewUkWJRTzhXGOCvQhvCDK2mwbrAwDDkbw9bNclUXAx9HpVS8qwyh4hhYXsDKJorz2GnjvFqRM8cJryKsLU54Jcfw_uaRrO8O4Q95Gau01bu7pN8mw1kJX7XzP62tXBGJ_YL7VK_vpXILHha9sUS48DaMlotL9yYERct6J22CHVg7KabXlOcFTg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHHhICAqIpTwsxAlkycSPjY8rRLVAaTlspd4sxzPJIipTNgsIfj0eb9ItEqrE3ZlYHmdmHH_zfYy9ABOqVkEtAMAIbVGJBmIQOjgLUrYOQmH7PLTzY_3-xJwMfdz9iHYfryRLpN42uymlCTGRT8DEs2iusmu5FqhJtuC4mo3hN-fnIlcpaycFlePjVea_TBChwvJr6r7l1_2dmMYplF6e1IbUXUg7-3fY7aFe5LONg--yK5h22c0LLIK77NZRxJAG6ul7bDlLnBgqTwnlljr-M_xAjqXFjxeMOYE4Of1_5WnDkxFWvE_hTAyaPfwTKaeJRfiC4qht-YbsueefE18V5fpVsdnfZ4v9t4s3czHoKYiotFsLkJAPG-immE8VplE11LWzZtpgmLqqnWqt0QIEcEZBdOCkacDmMBRcfA1RPWA7eV74kPHseLSIVQgYNcRcJShrAjQtVEGCkhO2d76u_mxDm-GtpSvFXNFNmBxX2seBiZwEMU79lkOZHOUJfUaO8mbCXp4_Mtq7ZPCr0X1--CL7y0Y_Hzy8Hfy7W_7qoseK-PdylLOP_svkM3Z9vvh44A_eHX7YYzeqsuEI4fuY7axX3_FJrmPWzdOyb_8AzzTqeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9aQWxBtCo960cQn5TQdPNxm8dDPeoHbR-u0LeQzWT3iiW93p5K_evNZHd7FaTge3Y2ZGYnk81vfj9C3oJyRS2gZACgmNRBsAq8Y9IZDZzXBlxm-zzUByfyy6k67XVO2wHtPlxJdj0NyNIUV3sLqPfWjW9CSERPpNMwci6qu-Reysb7GOgnxWRIxWmvztKVvDScYWk-XGv-ywSSK8wvYnOZXv33JjVMJ_f1xNrF5sYWNH1EHva1I510zn5M7oS4TTZvMApuk60jH1zsaaifkPkkUmSrPEfEW2zoL_cz0JDb_WjGmyOgk-K_WBo7zgy3pG10C9br99BjVFFjM_c9sKO6ph3xc0vPIl1mFftlttk-JbPpp9mHA9ZrKzAvpFkx4JAOHsGMQzphqEqUUJZGq3EV3NgU9VhKGTSAA6MEeAOGqwp0SknO-H3w4hnZSPMKO4SmIAg6hMK54CX4VDEIrRxUNRSOg-Ajsnu9rnbRUWhYrfF6MVV3I8KHlba-ZyVHcYxzu-ZTRkdZRKKho6wakXfXjwz2bhn8fnCf7b_O9rbRb3oPrwf_buZXjbehQC6-lPH08_8y-ZrcP_44td8-H37dJQ-KHG8I9n1BNlbLH-FlKmlW1asctn8ARUrutQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Oscillating+Wave+Energy+Converter+with+Nonlinear+Snap-Through+Power-Take-Off+Systems+in+Regular+Waves&rft.jtitle=%E4%B8%AD%E5%9B%BD%E6%B5%B7%E6%B4%8B%E5%B7%A5%E7%A8%8B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BC%A0%E6%98%BE%E6%B6%9B+%E6%9D%A8%E5%BB%BA%E6%B0%91+%E8%82%96%E9%BE%99%E9%A3%9E&rft.date=2016-07-01&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=30&rft.issue=4&rft.spage=565&rft.epage=580&rft_id=info:doi/10.1007%2Fs13344-016-0035-5&rft.externalDocID=669549951 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86654A%2F86654A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg |