Machinery fault diagnosis with imbalanced data using deep generative adversarial networks

•A deep learning method is proposed to address the data imbalance problem.•Deep generative adversarial networks are designed to generate fake samples.•Fake samples are similar with real machinery vibration data.•Experiments validate the proposed method on data augmentation in diagnosis. Despite the...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 152; p. 107377
Main Authors Zhang, Wei, Li, Xiang, Jia, Xiao-Dong, Ma, Hui, Luo, Zhong, Li, Xu
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.02.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A deep learning method is proposed to address the data imbalance problem.•Deep generative adversarial networks are designed to generate fake samples.•Fake samples are similar with real machinery vibration data.•Experiments validate the proposed method on data augmentation in diagnosis. Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating machines, balanced training data for different machine health conditions are assumed in most studies. However, the signals in machine faulty states are usually difficult and expensive to collect, resulting in imbalanced training dataset in most cases. That significantly deteriorates the effectiveness of the existing data-driven approaches. This paper proposes a deep learning-based fault diagnosis method to address the imbalanced data problem by explicitly creating additional training data. Generative adversarial networks are firstly used to learn the mapping between the distributions of noise and real machinery temporal vibration data, and additional realistic fake samples can be generated to balance and further expand the available dataset afterwards. Through experiments on two rotating machinery datasets, it is validated that the data-driven methods can significantly benefit from the data augmentation, and the proposed method offers a promising tool on fault diagnosis with imbalanced training data.
AbstractList •A deep learning method is proposed to address the data imbalance problem.•Deep generative adversarial networks are designed to generate fake samples.•Fake samples are similar with real machinery vibration data.•Experiments validate the proposed method on data augmentation in diagnosis. Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating machines, balanced training data for different machine health conditions are assumed in most studies. However, the signals in machine faulty states are usually difficult and expensive to collect, resulting in imbalanced training dataset in most cases. That significantly deteriorates the effectiveness of the existing data-driven approaches. This paper proposes a deep learning-based fault diagnosis method to address the imbalanced data problem by explicitly creating additional training data. Generative adversarial networks are firstly used to learn the mapping between the distributions of noise and real machinery temporal vibration data, and additional realistic fake samples can be generated to balance and further expand the available dataset afterwards. Through experiments on two rotating machinery datasets, it is validated that the data-driven methods can significantly benefit from the data augmentation, and the proposed method offers a promising tool on fault diagnosis with imbalanced training data.
Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating machines, balanced training data for different machine health conditions are assumed in most studies. However, the signals in machine faulty states are usually difficult and expensive to collect, resulting in imbalanced training dataset in most cases. That significantly deteriorates the effectiveness of the existing data-driven approaches. This paper proposes a deep learning-based fault diagnosis method to address the imbalanced data problem by explicitly creating additional training data. Generative adversarial networks are firstly used to learn the mapping between the distributions of noise and real machinery temporal vibration data, and additional realistic fake samples can be generated to balance and further expand the available dataset afterwards. Through experiments on two rotating machinery datasets, it is validated that the data-driven methods can significantly benefit from the data augmentation, and the proposed method offers a promising tool on fault diagnosis with imbalanced training data.
ArticleNumber 107377
Author Luo, Zhong
Li, Xu
Li, Xiang
Jia, Xiao-Dong
Ma, Hui
Zhang, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
– sequence: 2
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  email: xiangli@mail.neu.edu.cn
  organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Xiao-Dong
  surname: Jia
  fullname: Jia, Xiao-Dong
  organization: NSF I/UCR Center for Intelligent Maintenance Systems, Department of Mechanical Engineering, University of Cincinnati, Cincinnati 45221, USA
– sequence: 4
  givenname: Hui
  surname: Ma
  fullname: Ma, Hui
  organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China
– sequence: 5
  givenname: Zhong
  surname: Luo
  fullname: Luo, Zhong
  organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China
– sequence: 6
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  organization: State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
BookMark eNqNkM1rGzEQxUVJobbb_0Gl53X1sV86lWCSNOCQSwvtScxKY1vuWutIWhv_95VxDiEnnwaG997M-03JjR88EvKVszlnvP6-ne8Q4hhwhz7NBeMq7xvZNB_IhLeNLEou_tyQCRO1LIQo-ScyjXHLGKulqifk7xOYjfMYTnQFY5-odbD2Q3SRHl3aULfroAdv0FILCegYnV9Ti7ina8w2SO6AFOwBQ4TgoKce03EI_-Jn8nEFfcQvr3NGft_f_Vr8LJbPD4-L22VhZKlSYRS0suZtVYKoqnqFBspOAGtaITohbMWs5QJMZS3rUJmWl53sWtG0nKkuV52Rb5fcfRheRoxJb4cx-HxSC5lLMiWUzKofF5UJQ4wBV9q4lJ8ffArges2ZPvPUW_2Gpz7z1BeeOUG9S9gHt4Nwusq7uHgxgzg4DDoah2eqLqBJ2g7uipT_YLebfA
CitedBy_id crossref_primary_10_1016_j_neunet_2020_06_014
crossref_primary_10_1155_2021_9927151
crossref_primary_10_3390_batteries9030177
crossref_primary_10_1016_j_knosys_2022_108217
crossref_primary_10_3390_en18051158
crossref_primary_10_1088_1361_6501_abe5e3
crossref_primary_10_1021_acsami_3c00566
crossref_primary_10_1016_j_measurement_2022_111993
crossref_primary_10_1016_j_measurement_2024_115433
crossref_primary_10_1007_s12206_024_0806_5
crossref_primary_10_32604_cmes_2023_025307
crossref_primary_10_1016_j_ymssp_2021_108487
crossref_primary_10_3233_JIFS_212679
crossref_primary_10_1016_j_asoc_2023_111089
crossref_primary_10_1109_JSEN_2024_3372438
crossref_primary_10_1109_JSEN_2023_3279290
crossref_primary_10_1109_TIM_2024_3400344
crossref_primary_10_1016_j_eswa_2023_121039
crossref_primary_10_1088_1742_6596_1732_1_012033
crossref_primary_10_3390_app142411910
crossref_primary_10_1016_j_marpolbul_2024_116475
crossref_primary_10_1016_j_apacoust_2022_108727
crossref_primary_10_1109_TIM_2022_3160533
crossref_primary_10_1109_TIM_2022_3214494
crossref_primary_10_1109_JSEN_2024_3418413
crossref_primary_10_1016_j_knosys_2024_111999
crossref_primary_10_1088_1742_6596_2762_1_012056
crossref_primary_10_1016_j_compind_2021_103399
crossref_primary_10_1016_j_ymssp_2021_108139
crossref_primary_10_1109_TIM_2023_3307759
crossref_primary_10_1016_j_knosys_2021_107892
crossref_primary_10_1109_TIM_2023_3307757
crossref_primary_10_1016_j_eswa_2022_117288
crossref_primary_10_1016_j_aei_2022_101795
crossref_primary_10_1016_j_measurement_2020_107811
crossref_primary_10_1109_JSEN_2022_3222535
crossref_primary_10_3390_math12030481
crossref_primary_10_1007_s44443_025_00021_6
crossref_primary_10_3390_s22239410
crossref_primary_10_1155_2021_4428964
crossref_primary_10_1109_TIM_2022_3166786
crossref_primary_10_1088_1361_6501_ad3fd4
crossref_primary_10_1016_j_ijepes_2020_106595
crossref_primary_10_3390_app11177983
crossref_primary_10_1016_j_aei_2024_103032
crossref_primary_10_1007_s11709_022_0829_x
crossref_primary_10_1109_TMECH_2020_2992331
crossref_primary_10_1109_TII_2021_3064377
crossref_primary_10_1109_TETCI_2023_3300740
crossref_primary_10_1016_j_knosys_2020_106178
crossref_primary_10_1016_j_asoc_2024_112677
crossref_primary_10_1109_TII_2022_3230684
crossref_primary_10_1007_s10489_024_05960_7
crossref_primary_10_1016_j_eswa_2021_116027
crossref_primary_10_1016_j_jmatprotec_2021_117484
crossref_primary_10_1109_JSEN_2023_3235370
crossref_primary_10_1088_1361_6501_acad20
crossref_primary_10_3390_make3010011
crossref_primary_10_1007_s11465_021_0652_4
crossref_primary_10_1016_j_engappai_2023_106911
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1109_TIM_2022_3196948
crossref_primary_10_1109_TIM_2020_3041905
crossref_primary_10_1142_S1469026824500135
crossref_primary_10_1016_j_eswa_2021_115234
crossref_primary_10_1155_2022_5420478
crossref_primary_10_1088_1757_899X_1136_1_012059
crossref_primary_10_1007_s00170_021_08427_y
crossref_primary_10_1007_s13735_020_00196_w
crossref_primary_10_1016_j_neucom_2023_126257
crossref_primary_10_1063_5_0085354
crossref_primary_10_1088_1361_6501_ace928
crossref_primary_10_1007_s00500_021_06533_3
crossref_primary_10_1007_s10462_022_10230_4
crossref_primary_10_1088_1742_6596_2216_1_012063
crossref_primary_10_1007_s10845_020_01549_2
crossref_primary_10_1109_TII_2021_3107781
crossref_primary_10_1016_j_ins_2024_120835
crossref_primary_10_1115_1_4054392
crossref_primary_10_1016_j_measurement_2021_109197
crossref_primary_10_1016_j_aei_2024_102436
crossref_primary_10_1088_1361_6501_abd650
crossref_primary_10_1016_j_apenergy_2024_125059
crossref_primary_10_1016_j_measurement_2023_112806
crossref_primary_10_1016_j_measurement_2020_107965
crossref_primary_10_3390_lubricants11020074
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1177_14759217241271000
crossref_primary_10_1007_s11063_021_10719_z
crossref_primary_10_3390_s21155173
crossref_primary_10_1007_s10489_023_04870_4
crossref_primary_10_1109_TNNLS_2021_3137172
crossref_primary_10_1177_14759217231165223
crossref_primary_10_3390_s21020501
crossref_primary_10_1016_j_compind_2020_103331
crossref_primary_10_1177_01423312231157118
crossref_primary_10_3390_app12010527
crossref_primary_10_1109_JSEN_2023_3255203
crossref_primary_10_3390_app122211552
crossref_primary_10_1016_j_aei_2023_102027
crossref_primary_10_1016_j_asoc_2023_110243
crossref_primary_10_1088_1361_6501_ad02b2
crossref_primary_10_21595_jve_2023_23412
crossref_primary_10_1007_s00170_022_09978_4
crossref_primary_10_1109_ACCESS_2024_3438099
crossref_primary_10_1088_1361_6501_ac15dc
crossref_primary_10_1016_j_ress_2021_107556
crossref_primary_10_1109_TIM_2023_3234095
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_3390_s21134361
crossref_primary_10_1109_TIM_2020_3043512
crossref_primary_10_1016_j_measurement_2021_109094
crossref_primary_10_1177_1687814021996915
crossref_primary_10_1109_ACCESS_2021_3052680
crossref_primary_10_1016_j_engappai_2023_106542
crossref_primary_10_32604_cmes_2023_030037
crossref_primary_10_1016_j_knosys_2020_105843
crossref_primary_10_1016_j_measurement_2022_111697
crossref_primary_10_1016_j_jmsy_2020_04_017
crossref_primary_10_1016_j_measurement_2023_112709
crossref_primary_10_1109_JIOT_2024_3389103
crossref_primary_10_3390_app13158699
crossref_primary_10_1016_j_jocs_2023_101957
crossref_primary_10_3390_app12084080
crossref_primary_10_1016_j_knosys_2022_109437
crossref_primary_10_1016_j_eswa_2024_124511
crossref_primary_10_1177_10775463211022878
crossref_primary_10_1016_j_measurement_2024_116499
crossref_primary_10_1016_j_measurement_2021_109631
crossref_primary_10_1088_1361_6501_ad86d5
crossref_primary_10_1016_j_engstruct_2023_116891
crossref_primary_10_1109_TIM_2024_3485429
crossref_primary_10_1016_j_measurement_2021_109639
crossref_primary_10_1088_1361_6501_acdc45
crossref_primary_10_1088_1361_6501_ac73da
crossref_primary_10_1088_1742_6596_2803_1_012034
crossref_primary_10_1016_j_asoc_2021_107787
crossref_primary_10_32604_cmes_2024_055633
crossref_primary_10_1177_09544054241272917
crossref_primary_10_1007_s10845_023_02235_9
crossref_primary_10_1109_TIM_2023_3271746
crossref_primary_10_1109_JSEN_2023_3322040
crossref_primary_10_3390_app13053136
crossref_primary_10_1016_j_knosys_2020_106679
crossref_primary_10_1016_j_measurement_2022_111114
crossref_primary_10_1007_s40435_020_00700_4
crossref_primary_10_1016_j_knosys_2022_108296
crossref_primary_10_1016_j_measurement_2023_113018
crossref_primary_10_1109_ACCESS_2021_3068127
crossref_primary_10_1016_j_aei_2024_102477
crossref_primary_10_1016_j_neucom_2020_04_075
crossref_primary_10_3390_electronics11040622
crossref_primary_10_1109_TIE_2022_3231300
crossref_primary_10_1007_s11042_023_17864_8
crossref_primary_10_1016_j_engappai_2023_107063
crossref_primary_10_3934_mbe_2022534
crossref_primary_10_3389_fmech_2024_1430542
crossref_primary_10_1007_s00419_021_01906_4
crossref_primary_10_3390_s23041889
crossref_primary_10_1016_j_measurement_2024_116116
crossref_primary_10_1007_s40430_021_03152_9
crossref_primary_10_1016_j_compeleceng_2022_108538
crossref_primary_10_1109_JSEN_2024_3476381
crossref_primary_10_1016_j_measurement_2021_109532
crossref_primary_10_1016_j_eswa_2023_122778
crossref_primary_10_1109_TIM_2024_3502789
crossref_primary_10_1155_2021_6675078
crossref_primary_10_1088_2631_8695_ada3b2
crossref_primary_10_1109_TMECH_2021_3065522
crossref_primary_10_1109_TIM_2023_3298425
crossref_primary_10_1093_jcde_qwae075
crossref_primary_10_1177_0020294020932347
crossref_primary_10_1155_2020_8823050
crossref_primary_10_1109_TII_2021_3054651
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_1016_j_measurement_2022_110720
crossref_primary_10_3233_JIFS_232414
crossref_primary_10_1016_j_eswa_2022_119057
crossref_primary_10_1088_1361_665X_acc0ed
crossref_primary_10_1088_1361_6501_adb6c6
crossref_primary_10_1016_j_rcim_2023_102624
crossref_primary_10_1016_j_engappai_2024_108332
crossref_primary_10_2139_ssrn_4141247
crossref_primary_10_1007_s42452_020_03910_9
crossref_primary_10_1109_TIE_2020_2984968
crossref_primary_10_1016_j_engappai_2023_106872
crossref_primary_10_1109_TIM_2023_3284131
crossref_primary_10_3390_machines10050336
crossref_primary_10_1016_j_measurement_2020_108052
crossref_primary_10_1016_j_measurement_2023_112879
crossref_primary_10_1016_j_heliyon_2024_e32656
crossref_primary_10_1016_j_rineng_2025_103991
crossref_primary_10_1109_TII_2024_3416945
crossref_primary_10_1007_s42979_025_03775_y
crossref_primary_10_1088_1361_665X_ad1ded
crossref_primary_10_1093_jcde_qwad081
crossref_primary_10_1016_j_ymssp_2020_106825
crossref_primary_10_1155_2021_4319074
crossref_primary_10_1038_s41598_024_75088_8
crossref_primary_10_1109_JSYST_2024_3402978
crossref_primary_10_1016_j_ymssp_2022_109146
crossref_primary_10_1016_j_measurement_2021_109345
crossref_primary_10_1177_14759217211015243
crossref_primary_10_1109_LSENS_2024_3374790
crossref_primary_10_2139_ssrn_4098751
crossref_primary_10_1016_j_measurement_2021_110690
crossref_primary_10_1016_j_measurement_2023_113062
crossref_primary_10_1007_s42417_022_00691_w
crossref_primary_10_1016_j_measurement_2022_112350
crossref_primary_10_1016_j_measurement_2023_112892
crossref_primary_10_1016_j_measurement_2024_115589
crossref_primary_10_1016_j_mechmachtheory_2020_103932
crossref_primary_10_3390_lubricants9100105
crossref_primary_10_1007_s12008_024_01859_2
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1016_j_ymssp_2021_107645
crossref_primary_10_1109_TIM_2023_3246470
crossref_primary_10_3390_app14125110
crossref_primary_10_1109_ACCESS_2020_3038605
crossref_primary_10_1016_j_measurement_2023_114049
crossref_primary_10_1016_j_ymssp_2022_108826
crossref_primary_10_1016_j_neucom_2020_05_014
crossref_primary_10_1109_TIM_2021_3055821
crossref_primary_10_1109_ACCESS_2020_3022840
crossref_primary_10_1016_j_isatra_2020_08_010
crossref_primary_10_1155_2022_1577778
crossref_primary_10_1016_j_measurement_2022_111978
crossref_primary_10_1007_s10489_022_03196_x
crossref_primary_10_1109_TIM_2024_3428618
crossref_primary_10_1109_TNNLS_2021_3070840
crossref_primary_10_1016_j_engappai_2024_108098
crossref_primary_10_1109_TIE_2021_3108719
crossref_primary_10_1109_TSM_2020_2995548
crossref_primary_10_1109_TIM_2021_3089240
crossref_primary_10_1016_j_asoc_2022_109271
crossref_primary_10_3390_app132111837
crossref_primary_10_3390_app13042622
crossref_primary_10_1021_acs_iecr_1c00141
crossref_primary_10_1016_j_knosys_2022_110008
crossref_primary_10_3390_s20247109
crossref_primary_10_1088_1361_6501_ac6ab3
crossref_primary_10_1109_ACCESS_2020_3023949
crossref_primary_10_1007_s40435_020_00675_2
crossref_primary_10_1109_TR_2022_3215243
crossref_primary_10_1016_j_engappai_2024_108995
crossref_primary_10_1016_j_icte_2022_02_011
crossref_primary_10_1016_j_jmsy_2025_01_006
crossref_primary_10_1177_10775463231224519
crossref_primary_10_1016_j_asoc_2023_110784
crossref_primary_10_1016_j_knosys_2022_109393
crossref_primary_10_1016_j_measurement_2021_109359
crossref_primary_10_3390_sym16050512
crossref_primary_10_1088_1361_6501_aca0b4
Cites_doi 10.1109/TII.2018.2851961
10.1109/TIE.2018.2868023
10.1007/11538059_91
10.1016/j.measurement.2015.03.017
10.1016/j.measurement.2019.106906
10.1016/j.jsv.2018.07.039
10.1016/j.sigpro.2018.12.005
10.1016/j.ymssp.2016.06.024
10.1016/j.neucom.2018.05.024
10.1016/j.measurement.2016.04.007
10.1016/j.ymssp.2018.12.051
10.1016/j.ymssp.2018.03.025
10.1007/s10845-018-1456-1
10.1109/ACCESS.2019.2917604
10.1016/j.neucom.2017.02.045
10.1016/j.jmsy.2018.04.005
10.1016/j.engfailanal.2015.06.004
10.1016/j.engappai.2018.09.010
10.1016/j.sigpro.2016.07.028
10.1109/TII.2017.2672988
10.1016/j.neucom.2015.06.008
10.1016/j.ymssp.2015.04.021
10.1007/978-3-642-01307-2_43
10.1109/ACCESS.2018.2890693
10.1007/s11071-019-05176-2
10.1109/TIA.2016.2618756
10.1016/j.neucom.2018.05.021
10.1109/WCSE.2009.756
10.1109/TIE.2016.2519325
10.1016/j.ymssp.2018.07.014
10.1016/j.measurement.2016.07.054
10.1613/jair.953
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2019.107377
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2019_107377
S0263224119312412
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c349t-c9a8361854a2556feca4b2a07822b22d50dd12ac5dd0be9c814b3b8278109b073
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 02:37:51 EDT 2025
Tue Jul 01 04:37:39 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Feb 23 02:49:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Deep learning
Imbalanced data
Generative adversarial networks
Rotating machines
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-c9a8361854a2556feca4b2a07822b22d50dd12ac5dd0be9c814b3b8278109b073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2363909293
PQPubID 2047460
ParticipantIDs proquest_journals_2363909293
crossref_citationtrail_10_1016_j_measurement_2019_107377
crossref_primary_10_1016_j_measurement_2019_107377
elsevier_sciencedirect_doi_10_1016_j_measurement_2019_107377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References T. Han, C. Liu, W. Yang, D. Jiang, Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions, ISA Transactions.
Li, Zhang, Ding, Li (b0140) 2019
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of 32nd International Conference on Machine Learning, vol. 1, Lile, France, 2015, pp. 448–456.
G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, C. Malossi, BAGAN: data augmentation with balancing GAN, arXiv preprint arXiv:1803.09655.
Yu, Lin, Ma, Li, Zeng (b0105) 2019
M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint arXiv:1411.1784.
X. Li, W. Zhang, Q. Ding, J.-Q. Sun, Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation, J. Intell. Manuf.
Cabrera, Sancho, Long, Sánchez, Zhang, Cerrada, Li (b0215) 2019; 7
Ren, Liu, Shan, Wang (b0010) 2019; 148
Guo, Li, Jia, Lei, Lin (b0160) 2017; 240
Jiang, Wang, Shi, Shen, Huang, Zhu (b0110) 2019; 116
Smith, Randall (b0235) 2015; 64–65
Ma, Zeng, Feng, Pang, Wang, Wen (b0095) 2015; 55
Li, Zhang, Ding (b0155) 2019; 66
Shen, Qi, Wang, Cai, Zhu (b0120) 2018; 76
Guo, Lei, Xing, Yan, Li (b0060) 2018
Li, Zhang, Ding (b0070) 2018; 310
Yang, Lei, Jia, Xing (b0065) 2019; 122
Khan, Prosvirin, Kim (b0200) 2018
S. Hu, Y. Liang, L. Ma, Y. He, MSMOTE: Improving classification performance when training data is imbalanced, in: Proceedings of Second International Workshop on Computer Science and Engineering, vol. 2, 2009, pp. 13–17.
Sun, Shao, Zhao, Yan, Zhang, Chen (b0170) 2016; 89
Zhang, Liang, Zhou, Zang (b0020) 2015; 69
Haibo, Yang, Garcia, Shutao (b0085) 2008
.
Li, Zhang, Ding, Sun (b0125) 2019; 157
Guo, Chen, Shen (b0005) 2016; 93
D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980.
Lei, Jia, Lin, Xing, Ding (b0165) 2016; 63
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Nets, Curran Associates Inc, 2014.
Martin-Diaz, Morinigo-Sotelo, Duque-Perez, Romero-Troncoso (b0185) 2017; 53
Mao, He, Yan, Wang (b0180) 2017; 83
H. Han, W.-Y. Wang, B.-H. Mao, Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning, in: Proceedings of Advances in Intelligent Computing, Berlin, Heidelberg, 2005, pp. 878–887.
Sun, Zhao, Yan, Shao, Chen (b0150) 2017; 13
Razavi-Far, Hallaji, Farajzadeh-Zanjani, Saif (b0025) 2019; 15
Jia, Lei, Lu, Xing (b0175) 2018; 110
Li, Sanchez, Zurita, Cerrada, Cabrera, Vásquez (b0030) 2015; 168
Lu, Wang, Qin, Ma (b0145) 2017; 130
Lema, Nogueira, Aridas (b0240) 2017; 18
Ding (b0015) 2014
L. Wen, L. Gao, X. Li, A new deep transfer learning based on sparse auto-encoder for fault diagnosis, IEEE Trans. Syst., Man, Cybern.: Syst. (99) (2017) 1–9.
Chawla, Bowyer, Hall, Kegelmeyer (b0050) 2002; 16
Jiang, Shen, Shi, Zhu (b0115) 2018; 435
A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of 30th International Conference on Machine Learning, vol. 28, 2013.
C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proceedings of Advances in Knowledge Discovery and Data Mining, Berlin, Heidelberg, 2009, pp. 475–482.
Wang, Wang, Wang (b0205) 2018; 310
Luo, Wang, Tang, Wang (b0100) 2019; 98
Mao, Liu, Ding, Li (b0210) 2019; 7
F. Zhou, S. Yang, H. Fujita, D. Chen, C. Wen, Deep learning fault diagnosis method based on global optimization GAN for unbalanced data, Knowledge-Based Syst.
Zhang, Li, Gao, Wang, Wen (b0190) 2018; 48
Li, Zhang, Xu, Ding (b0135) 2019
Zhang (10.1016/j.measurement.2019.107377_b0190) 2018; 48
Razavi-Far (10.1016/j.measurement.2019.107377_b0025) 2019; 15
Yang (10.1016/j.measurement.2019.107377_b0065) 2019; 122
Ding (10.1016/j.measurement.2019.107377_b0015) 2014
10.1016/j.measurement.2019.107377_b0035
10.1016/j.measurement.2019.107377_b0195
10.1016/j.measurement.2019.107377_b0075
10.1016/j.measurement.2019.107377_b0230
Cabrera (10.1016/j.measurement.2019.107377_b0215) 2019; 7
Smith (10.1016/j.measurement.2019.107377_b0235) 2015; 64–65
10.1016/j.measurement.2019.107377_b0080
Jia (10.1016/j.measurement.2019.107377_b0175) 2018; 110
Ma (10.1016/j.measurement.2019.107377_b0095) 2015; 55
10.1016/j.measurement.2019.107377_b0045
10.1016/j.measurement.2019.107377_b0245
10.1016/j.measurement.2019.107377_b0040
Yu (10.1016/j.measurement.2019.107377_b0105) 2019
Mao (10.1016/j.measurement.2019.107377_b0210) 2019; 7
Khan (10.1016/j.measurement.2019.107377_b0200) 2018
Martin-Diaz (10.1016/j.measurement.2019.107377_b0185) 2017; 53
Mao (10.1016/j.measurement.2019.107377_b0180) 2017; 83
Lema (10.1016/j.measurement.2019.107377_b0240) 2017; 18
Guo (10.1016/j.measurement.2019.107377_b0060) 2018
Ren (10.1016/j.measurement.2019.107377_b0010) 2019; 148
Li (10.1016/j.measurement.2019.107377_b0155) 2019; 66
Wang (10.1016/j.measurement.2019.107377_b0205) 2018; 310
Li (10.1016/j.measurement.2019.107377_b0030) 2015; 168
10.1016/j.measurement.2019.107377_b0090
10.1016/j.measurement.2019.107377_b0055
Jiang (10.1016/j.measurement.2019.107377_b0115) 2018; 435
10.1016/j.measurement.2019.107377_b0130
Shen (10.1016/j.measurement.2019.107377_b0120) 2018; 76
Guo (10.1016/j.measurement.2019.107377_b0005) 2016; 93
Li (10.1016/j.measurement.2019.107377_b0135) 2019
Lu (10.1016/j.measurement.2019.107377_b0145) 2017; 130
Luo (10.1016/j.measurement.2019.107377_b0100) 2019; 98
Guo (10.1016/j.measurement.2019.107377_b0160) 2017; 240
Zhang (10.1016/j.measurement.2019.107377_b0020) 2015; 69
Jiang (10.1016/j.measurement.2019.107377_b0110) 2019; 116
Sun (10.1016/j.measurement.2019.107377_b0150) 2017; 13
10.1016/j.measurement.2019.107377_b0220
Sun (10.1016/j.measurement.2019.107377_b0170) 2016; 89
Haibo (10.1016/j.measurement.2019.107377_b0085) 2008
Li (10.1016/j.measurement.2019.107377_b0125) 2019; 157
Li (10.1016/j.measurement.2019.107377_b0140) 2019
Li (10.1016/j.measurement.2019.107377_b0070) 2018; 310
10.1016/j.measurement.2019.107377_b0225
Chawla (10.1016/j.measurement.2019.107377_b0050) 2002; 16
Lei (10.1016/j.measurement.2019.107377_b0165) 2016; 63
References_xml – volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b0050
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 53
  start-page: 3066
  year: 2017
  end-page: 3075
  ident: b0185
  article-title: Early fault detection in induction motors using AdaBoost with imbalanced small data and optimized sampling
  publication-title: IEEE Trans. Ind. Appl.
– volume: 310
  start-page: 213
  year: 2018
  end-page: 222
  ident: b0205
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
– volume: 93
  start-page: 490
  year: 2016
  end-page: 502
  ident: b0005
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
– volume: 18
  start-page: 559
  year: 2017
  end-page: 563
  ident: b0240
  article-title: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– start-page: 175
  year: 2014
  end-page: 200
  ident: b0015
  article-title: Data-driven design of observer-based fault diagnosis systems
  publication-title: Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems
– volume: 148
  year: 2019
  ident: b0010
  article-title: A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning
  publication-title: Measurement
– volume: 13
  start-page: 1350
  year: 2017
  end-page: 1359
  ident: b0150
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis
  publication-title: IEEE Trans. Industr. Inf.
– volume: 69
  start-page: 164
  year: 2015
  end-page: 179
  ident: b0020
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Measurement
– reference: C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proceedings of Advances in Knowledge Discovery and Data Mining, Berlin, Heidelberg, 2009, pp. 475–482.
– volume: 48
  start-page: 34
  year: 2018
  end-page: 50
  ident: b0190
  article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning
  publication-title: J. Manuf. Syst.
– volume: 64–65
  start-page: 100
  year: 2015
  end-page: 131
  ident: b0235
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
  publication-title: Mech. Syst. Signal Process.
– year: 2019
  ident: b0135
  article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places
  publication-title: IEEE Trans. Industr. Electron.
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: b0085
  article-title: ADASYN Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proceedings of IEEE International Joint Conference on Neural Networks
– reference: M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint arXiv:1411.1784.
– reference: A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of 30th International Conference on Machine Learning, vol. 28, 2013.
– reference: I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Nets, Curran Associates Inc, 2014.
– year: 2018
  ident: b0060
  article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans. Industr. Electron.
– volume: 240
  start-page: 98
  year: 2017
  end-page: 109
  ident: b0160
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
– volume: 168
  start-page: 119
  year: 2015
  end-page: 127
  ident: b0030
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
– volume: 66
  start-page: 5525
  year: 2019
  end-page: 5534
  ident: b0155
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Trans. Industr. Electron.
– volume: 76
  start-page: 170
  year: 2018
  end-page: 184
  ident: b0120
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– reference: D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980.
– start-page: 1
  year: 2018
  end-page: 6
  ident: b0200
  article-title: Towards bearing health prognosis using generative adversarial networks: Modeling bearing degradation
  publication-title: Proceedings of International Conference on Advancements in Computational Sciences
– reference: S. Hu, Y. Liang, L. Ma, Y. He, MSMOTE: Improving classification performance when training data is imbalanced, in: Proceedings of Second International Workshop on Computer Science and Engineering, vol. 2, 2009, pp. 13–17.
– reference: F. Zhou, S. Yang, H. Fujita, D. Chen, C. Wen, Deep learning fault diagnosis method based on global optimization GAN for unbalanced data, Knowledge-Based Syst.
– year: 2019
  ident: b0140
  article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning
  publication-title: IEEE Trans. Industr. Inf.
– volume: 63
  start-page: 3137
  year: 2016
  end-page: 3147
  ident: b0165
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans. Industr. Electron.
– reference: L. Wen, L. Gao, X. Li, A new deep transfer learning based on sparse auto-encoder for fault diagnosis, IEEE Trans. Syst., Man, Cybern.: Syst. (99) (2017) 1–9.
– volume: 116
  start-page: 668
  year: 2019
  end-page: 692
  ident: b0110
  article-title: A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines
  publication-title: Mech. Syst. Signal Process.
– volume: 15
  start-page: 1277
  year: 2019
  end-page: 1286
  ident: b0025
  article-title: A semi-supervised diagnostic framework based on the surface estimation of faulty distributions
  publication-title: IEEE Trans. Industr. Inf.
– volume: 122
  start-page: 692
  year: 2019
  end-page: 706
  ident: b0065
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Signal Process.
– volume: 7
  start-page: 9515
  year: 2019
  end-page: 9530
  ident: b0210
  article-title: Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: a comparative study
  publication-title: IEEE Access
– reference: T. Han, C. Liu, W. Yang, D. Jiang, Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions, ISA Transactions.
– volume: 7
  start-page: 70643
  year: 2019
  end-page: 70653
  ident: b0215
  article-title: Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery
  publication-title: IEEE Access
– volume: 83
  start-page: 450
  year: 2017
  end-page: 473
  ident: b0180
  article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
  publication-title: Mech. Syst. Signal Process.
– volume: 435
  start-page: 36
  year: 2018
  end-page: 55
  ident: b0115
  article-title: Initial center frequency-guided VMD for fault diagnosis of rotating machines
  publication-title: J. Sound Vib.
– volume: 157
  start-page: 180
  year: 2019
  end-page: 197
  ident: b0125
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Processing
– reference: X. Li, W. Zhang, Q. Ding, J.-Q. Sun, Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation, J. Intell. Manuf.
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: b0145
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Processing
– reference: .
– volume: 310
  start-page: 77
  year: 2018
  end-page: 95
  ident: b0070
  article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
  publication-title: Neurocomputing
– volume: 110
  start-page: 349
  year: 2018
  end-page: 367
  ident: b0175
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech. Syst. Signal Process.
– reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of 32nd International Conference on Machine Learning, vol. 1, Lile, France, 2015, pp. 448–456.
– reference: G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, C. Malossi, BAGAN: data augmentation with balancing GAN, arXiv preprint arXiv:1803.09655.
– reference: H. Han, W.-Y. Wang, B.-H. Mao, Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning, in: Proceedings of Advances in Intelligent Computing, Berlin, Heidelberg, 2005, pp. 878–887.
– volume: 98
  start-page: 113
  year: 2019
  end-page: 128
  ident: b0100
  article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system
  publication-title: Nonlinear Dyn.
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: b0170
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– volume: 55
  start-page: 224
  year: 2015
  end-page: 245
  ident: b0095
  article-title: Review on dynamics of cracked gear systems
  publication-title: Eng. Fail. Anal.
– year: 2019
  ident: b0105
  article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 15
  start-page: 1277
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0025
  article-title: A semi-supervised diagnostic framework based on the surface estimation of faulty distributions
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2018.2851961
– ident: 10.1016/j.measurement.2019.107377_b0130
– volume: 66
  start-page: 5525
  issue: 7
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0155
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2018.2868023
– start-page: 175
  year: 2014
  ident: 10.1016/j.measurement.2019.107377_b0015
  article-title: Data-driven design of observer-based fault diagnosis systems
– ident: 10.1016/j.measurement.2019.107377_b0220
– ident: 10.1016/j.measurement.2019.107377_b0080
  doi: 10.1007/11538059_91
– volume: 69
  start-page: 164
  year: 2015
  ident: 10.1016/j.measurement.2019.107377_b0020
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.017
– volume: 148
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0010
  article-title: A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106906
– volume: 435
  start-page: 36
  year: 2018
  ident: 10.1016/j.measurement.2019.107377_b0115
  article-title: Initial center frequency-guided VMD for fault diagnosis of rotating machines
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.07.039
– volume: 157
  start-page: 180
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0125
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2018.12.005
– volume: 83
  start-page: 450
  year: 2017
  ident: 10.1016/j.measurement.2019.107377_b0180
  article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.06.024
– volume: 310
  start-page: 213
  year: 2018
  ident: 10.1016/j.measurement.2019.107377_b0205
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.measurement.2019.107377_b0170
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– ident: 10.1016/j.measurement.2019.107377_b0230
– year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0105
  article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 122
  start-page: 692
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0065
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.12.051
– volume: 110
  start-page: 349
  year: 2018
  ident: 10.1016/j.measurement.2019.107377_b0175
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.03.025
– ident: 10.1016/j.measurement.2019.107377_b0195
  doi: 10.1007/s10845-018-1456-1
– volume: 7
  start-page: 70643
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0215
  article-title: Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917604
– volume: 240
  start-page: 98
  year: 2017
  ident: 10.1016/j.measurement.2019.107377_b0160
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
– volume: 48
  start-page: 34
  year: 2018
  ident: 10.1016/j.measurement.2019.107377_b0190
  article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.04.005
– volume: 55
  start-page: 224
  year: 2015
  ident: 10.1016/j.measurement.2019.107377_b0095
  article-title: Review on dynamics of cracked gear systems
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2015.06.004
– volume: 76
  start-page: 170
  year: 2018
  ident: 10.1016/j.measurement.2019.107377_b0120
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.010
– volume: 18
  start-page: 559
  issue: 1
  year: 2017
  ident: 10.1016/j.measurement.2019.107377_b0240
  article-title: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: 10.1016/j.measurement.2019.107377_b0060
  article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans. Industr. Electron.
– year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0140
  article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning
  publication-title: IEEE Trans. Industr. Inf.
– volume: 130
  start-page: 377
  year: 2017
  ident: 10.1016/j.measurement.2019.107377_b0145
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 13
  start-page: 1350
  issue: 3
  year: 2017
  ident: 10.1016/j.measurement.2019.107377_b0150
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2017.2672988
– volume: 168
  start-page: 119
  year: 2015
  ident: 10.1016/j.measurement.2019.107377_b0030
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.008
– ident: 10.1016/j.measurement.2019.107377_b0075
– volume: 64–65
  start-page: 100
  year: 2015
  ident: 10.1016/j.measurement.2019.107377_b0235
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.021
– ident: 10.1016/j.measurement.2019.107377_b0225
– ident: 10.1016/j.measurement.2019.107377_b0090
  doi: 10.1007/978-3-642-01307-2_43
– volume: 7
  start-page: 9515
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0210
  article-title: Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: a comparative study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890693
– volume: 98
  start-page: 113
  issue: 1
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0100
  article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05176-2
– volume: 53
  start-page: 3066
  issue: 3
  year: 2017
  ident: 10.1016/j.measurement.2019.107377_b0185
  article-title: Early fault detection in induction motors using AdaBoost with imbalanced small data and optimized sampling
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2618756
– ident: 10.1016/j.measurement.2019.107377_b0045
– start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2019.107377_b0200
  article-title: Towards bearing health prognosis using generative adversarial networks: Modeling bearing degradation
– volume: 310
  start-page: 77
  year: 2018
  ident: 10.1016/j.measurement.2019.107377_b0070
  article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.021
– ident: 10.1016/j.measurement.2019.107377_b0035
  doi: 10.1109/WCSE.2009.756
– start-page: 1322
  year: 2008
  ident: 10.1016/j.measurement.2019.107377_b0085
  article-title: ADASYN Adaptive synthetic sampling approach for imbalanced learning
– year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0135
  article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places
  publication-title: IEEE Trans. Industr. Electron.
– ident: 10.1016/j.measurement.2019.107377_b0055
– volume: 63
  start-page: 3137
  issue: 5
  year: 2016
  ident: 10.1016/j.measurement.2019.107377_b0165
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2016.2519325
– ident: 10.1016/j.measurement.2019.107377_b0245
– volume: 116
  start-page: 668
  year: 2019
  ident: 10.1016/j.measurement.2019.107377_b0110
  article-title: A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.07.014
– ident: 10.1016/j.measurement.2019.107377_b0040
– volume: 93
  start-page: 490
  year: 2016
  ident: 10.1016/j.measurement.2019.107377_b0005
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.measurement.2019.107377_b0050
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
SSID ssj0006396
Score 2.6374452
Snippet •A deep learning method is proposed to address the data imbalance problem.•Deep generative adversarial networks are designed to generate fake samples.•Fake...
Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating machines, balanced training data for different machine health...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107377
SubjectTerms Bearings
Datasets
Deep learning
Fault diagnosis
Generative adversarial networks
Imbalanced data
Machine learning
Machinery
Mapping
Noise
Rotating machinery
Rotating machines
Rotation
Signal processing
Training
Vibration
Title Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
URI https://dx.doi.org/10.1016/j.measurement.2019.107377
https://www.proquest.com/docview/2363909293
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB1EUfQgfuI3EbzW7TbpNgUviyirohcV9BTyVVnRdbG7By_-dmfS1lVBELyGppSX6bxJeHkDcIB5kafciagQaRYJzYvIiI6OkI1kbjiyhqOLwpdXnd6tOL9L76bguLkLQ7LKOvdXOT1k63qkVaPZGvb7reuYrMaRgLAEQZIKnYaFyCjKD98nMg9k4E51zsIjenoO9icar-fJORypvHIcz3iW_cZRP7J1oKDTJVisa0fWrT5vGab8YAUWvjgKrsBsUHTachXuL4NM0r--sUKPn0bMVaK6fsno7JX1nw2pGhEARipRRgL4B-a8H7KHYEVNeZBp6tdcaopSNqgU4-Ua3J6e3Bz3orqPQmS5yEeRzbXkHSRmoclwrPBWC5PoUBwYXIw0dq6daJs6FxufW9kWhhuZZLId5wYRWYfpwcvAbwDTuF3zwqZZ4Zzw0socSxrpyZVeFIlrb4JskFO2NhmnXhdPqlGTPaovoCsCXVWgb0LyOXVYOW38ZdJRszzqW9goZIS_TN9pllTV_26pEo4xE2PZyLf-9_ZtmE9odx403jswPXod-10sYUZmL8ToHsx0zy56Vx80uvKF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC6MwcQcgjEJ0ajpgB4nO9Pds9MDyUE0sj7Wiwrm1OnXyAbdLM6KePFP-QetmkdWhYAgXhu6ab7uqq-6-LoKYBX9okiFl1Eh0yySRhSRlV0TIRup3ApkDU8fhfv73d6R3DlOj6fgpv0LQ7LKxvfXPr3y1s1Ip0GzMxoMOgcxlRpHAsIQBEkq4Y2ycjdcXeK7rfyxvYmHvMb51s_DjV7UtBaInJD5OHK5UaKLXCUN1eAqgjPSclPxpcX9pbH3CTcu9T62IXcqkVZYxTOVxLlFs8B1X8BLie6C2iZ8u57oSpDyu3ViR0S0vVfwdSIqO5sk_khWluN4JrLsf6T4gB4qztuag7dNsMrWazzewVQYzsObOyUM52GmkpC68j386le6zHB-xQpzcTpmvlbxDUpGyV42OLMko0TEGclSGSnuT5gPYcROqtrX5HiZoQbRpSGzYMNaol5-gKNnQfcjTA__DsMnYAbfh0G6NCu8l0E5lWMMpQKVwZcF98kCqBY57Zqq5tRc41S38rU_-g7omkDXNegLwP9NHdWlPR4z6Xt7PPrePdVIQY-ZvtQeqW6cRam5wDsTY5wqFp-2-hd43Tvs7-m97f3dzzDLKTVQCcyXYHp8fhGWMX4a25XqvjL4_dwGcgs5bC1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machinery+fault+diagnosis+with+imbalanced+data+using+deep+generative+adversarial+networks&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhang%2C+Wei&rft.au=Li%2C+Xiang&rft.au=Jia%2C+Xiao-Dong&rft.au=Ma%2C+Hui&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=152&rft_id=info:doi/10.1016%2Fj.measurement.2019.107377&rft.externalDocID=S0263224119312412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon