Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
•A deep learning method is proposed to address the data imbalance problem.•Deep generative adversarial networks are designed to generate fake samples.•Fake samples are similar with real machinery vibration data.•Experiments validate the proposed method on data augmentation in diagnosis. Despite the...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 152; p. 107377 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.02.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A deep learning method is proposed to address the data imbalance problem.•Deep generative adversarial networks are designed to generate fake samples.•Fake samples are similar with real machinery vibration data.•Experiments validate the proposed method on data augmentation in diagnosis.
Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating machines, balanced training data for different machine health conditions are assumed in most studies. However, the signals in machine faulty states are usually difficult and expensive to collect, resulting in imbalanced training dataset in most cases. That significantly deteriorates the effectiveness of the existing data-driven approaches. This paper proposes a deep learning-based fault diagnosis method to address the imbalanced data problem by explicitly creating additional training data. Generative adversarial networks are firstly used to learn the mapping between the distributions of noise and real machinery temporal vibration data, and additional realistic fake samples can be generated to balance and further expand the available dataset afterwards. Through experiments on two rotating machinery datasets, it is validated that the data-driven methods can significantly benefit from the data augmentation, and the proposed method offers a promising tool on fault diagnosis with imbalanced training data. |
---|---|
AbstractList | •A deep learning method is proposed to address the data imbalance problem.•Deep generative adversarial networks are designed to generate fake samples.•Fake samples are similar with real machinery vibration data.•Experiments validate the proposed method on data augmentation in diagnosis.
Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating machines, balanced training data for different machine health conditions are assumed in most studies. However, the signals in machine faulty states are usually difficult and expensive to collect, resulting in imbalanced training dataset in most cases. That significantly deteriorates the effectiveness of the existing data-driven approaches. This paper proposes a deep learning-based fault diagnosis method to address the imbalanced data problem by explicitly creating additional training data. Generative adversarial networks are firstly used to learn the mapping between the distributions of noise and real machinery temporal vibration data, and additional realistic fake samples can be generated to balance and further expand the available dataset afterwards. Through experiments on two rotating machinery datasets, it is validated that the data-driven methods can significantly benefit from the data augmentation, and the proposed method offers a promising tool on fault diagnosis with imbalanced training data. Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating machines, balanced training data for different machine health conditions are assumed in most studies. However, the signals in machine faulty states are usually difficult and expensive to collect, resulting in imbalanced training dataset in most cases. That significantly deteriorates the effectiveness of the existing data-driven approaches. This paper proposes a deep learning-based fault diagnosis method to address the imbalanced data problem by explicitly creating additional training data. Generative adversarial networks are firstly used to learn the mapping between the distributions of noise and real machinery temporal vibration data, and additional realistic fake samples can be generated to balance and further expand the available dataset afterwards. Through experiments on two rotating machinery datasets, it is validated that the data-driven methods can significantly benefit from the data augmentation, and the proposed method offers a promising tool on fault diagnosis with imbalanced training data. |
ArticleNumber | 107377 |
Author | Luo, Zhong Li, Xu Li, Xiang Jia, Xiao-Dong Ma, Hui Zhang, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China – sequence: 2 givenname: Xiang surname: Li fullname: Li, Xiang email: xiangli@mail.neu.edu.cn organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China – sequence: 3 givenname: Xiao-Dong surname: Jia fullname: Jia, Xiao-Dong organization: NSF I/UCR Center for Intelligent Maintenance Systems, Department of Mechanical Engineering, University of Cincinnati, Cincinnati 45221, USA – sequence: 4 givenname: Hui surname: Ma fullname: Ma, Hui organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China – sequence: 5 givenname: Zhong surname: Luo fullname: Luo, Zhong organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China – sequence: 6 givenname: Xu surname: Li fullname: Li, Xu organization: State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
BookMark | eNqNkM1rGzEQxUVJobbb_0Gl53X1sV86lWCSNOCQSwvtScxKY1vuWutIWhv_95VxDiEnnwaG997M-03JjR88EvKVszlnvP6-ne8Q4hhwhz7NBeMq7xvZNB_IhLeNLEou_tyQCRO1LIQo-ScyjXHLGKulqifk7xOYjfMYTnQFY5-odbD2Q3SRHl3aULfroAdv0FILCegYnV9Ti7ina8w2SO6AFOwBQ4TgoKce03EI_-Jn8nEFfcQvr3NGft_f_Vr8LJbPD4-L22VhZKlSYRS0suZtVYKoqnqFBspOAGtaITohbMWs5QJMZS3rUJmWl53sWtG0nKkuV52Rb5fcfRheRoxJb4cx-HxSC5lLMiWUzKofF5UJQ4wBV9q4lJ8ffArges2ZPvPUW_2Gpz7z1BeeOUG9S9gHt4Nwusq7uHgxgzg4DDoah2eqLqBJ2g7uipT_YLebfA |
CitedBy_id | crossref_primary_10_1016_j_neunet_2020_06_014 crossref_primary_10_1155_2021_9927151 crossref_primary_10_3390_batteries9030177 crossref_primary_10_1016_j_knosys_2022_108217 crossref_primary_10_3390_en18051158 crossref_primary_10_1088_1361_6501_abe5e3 crossref_primary_10_1021_acsami_3c00566 crossref_primary_10_1016_j_measurement_2022_111993 crossref_primary_10_1016_j_measurement_2024_115433 crossref_primary_10_1007_s12206_024_0806_5 crossref_primary_10_32604_cmes_2023_025307 crossref_primary_10_1016_j_ymssp_2021_108487 crossref_primary_10_3233_JIFS_212679 crossref_primary_10_1016_j_asoc_2023_111089 crossref_primary_10_1109_JSEN_2024_3372438 crossref_primary_10_1109_JSEN_2023_3279290 crossref_primary_10_1109_TIM_2024_3400344 crossref_primary_10_1016_j_eswa_2023_121039 crossref_primary_10_1088_1742_6596_1732_1_012033 crossref_primary_10_3390_app142411910 crossref_primary_10_1016_j_marpolbul_2024_116475 crossref_primary_10_1016_j_apacoust_2022_108727 crossref_primary_10_1109_TIM_2022_3160533 crossref_primary_10_1109_TIM_2022_3214494 crossref_primary_10_1109_JSEN_2024_3418413 crossref_primary_10_1016_j_knosys_2024_111999 crossref_primary_10_1088_1742_6596_2762_1_012056 crossref_primary_10_1016_j_compind_2021_103399 crossref_primary_10_1016_j_ymssp_2021_108139 crossref_primary_10_1109_TIM_2023_3307759 crossref_primary_10_1016_j_knosys_2021_107892 crossref_primary_10_1109_TIM_2023_3307757 crossref_primary_10_1016_j_eswa_2022_117288 crossref_primary_10_1016_j_aei_2022_101795 crossref_primary_10_1016_j_measurement_2020_107811 crossref_primary_10_1109_JSEN_2022_3222535 crossref_primary_10_3390_math12030481 crossref_primary_10_1007_s44443_025_00021_6 crossref_primary_10_3390_s22239410 crossref_primary_10_1155_2021_4428964 crossref_primary_10_1109_TIM_2022_3166786 crossref_primary_10_1088_1361_6501_ad3fd4 crossref_primary_10_1016_j_ijepes_2020_106595 crossref_primary_10_3390_app11177983 crossref_primary_10_1016_j_aei_2024_103032 crossref_primary_10_1007_s11709_022_0829_x crossref_primary_10_1109_TMECH_2020_2992331 crossref_primary_10_1109_TII_2021_3064377 crossref_primary_10_1109_TETCI_2023_3300740 crossref_primary_10_1016_j_knosys_2020_106178 crossref_primary_10_1016_j_asoc_2024_112677 crossref_primary_10_1109_TII_2022_3230684 crossref_primary_10_1007_s10489_024_05960_7 crossref_primary_10_1016_j_eswa_2021_116027 crossref_primary_10_1016_j_jmatprotec_2021_117484 crossref_primary_10_1109_JSEN_2023_3235370 crossref_primary_10_1088_1361_6501_acad20 crossref_primary_10_3390_make3010011 crossref_primary_10_1007_s11465_021_0652_4 crossref_primary_10_1016_j_engappai_2023_106911 crossref_primary_10_1109_ACCESS_2023_3267960 crossref_primary_10_1109_TIM_2022_3196948 crossref_primary_10_1109_TIM_2020_3041905 crossref_primary_10_1142_S1469026824500135 crossref_primary_10_1016_j_eswa_2021_115234 crossref_primary_10_1155_2022_5420478 crossref_primary_10_1088_1757_899X_1136_1_012059 crossref_primary_10_1007_s00170_021_08427_y crossref_primary_10_1007_s13735_020_00196_w crossref_primary_10_1016_j_neucom_2023_126257 crossref_primary_10_1063_5_0085354 crossref_primary_10_1088_1361_6501_ace928 crossref_primary_10_1007_s00500_021_06533_3 crossref_primary_10_1007_s10462_022_10230_4 crossref_primary_10_1088_1742_6596_2216_1_012063 crossref_primary_10_1007_s10845_020_01549_2 crossref_primary_10_1109_TII_2021_3107781 crossref_primary_10_1016_j_ins_2024_120835 crossref_primary_10_1115_1_4054392 crossref_primary_10_1016_j_measurement_2021_109197 crossref_primary_10_1016_j_aei_2024_102436 crossref_primary_10_1088_1361_6501_abd650 crossref_primary_10_1016_j_apenergy_2024_125059 crossref_primary_10_1016_j_measurement_2023_112806 crossref_primary_10_1016_j_measurement_2020_107965 crossref_primary_10_3390_lubricants11020074 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_1177_14759217241271000 crossref_primary_10_1007_s11063_021_10719_z crossref_primary_10_3390_s21155173 crossref_primary_10_1007_s10489_023_04870_4 crossref_primary_10_1109_TNNLS_2021_3137172 crossref_primary_10_1177_14759217231165223 crossref_primary_10_3390_s21020501 crossref_primary_10_1016_j_compind_2020_103331 crossref_primary_10_1177_01423312231157118 crossref_primary_10_3390_app12010527 crossref_primary_10_1109_JSEN_2023_3255203 crossref_primary_10_3390_app122211552 crossref_primary_10_1016_j_aei_2023_102027 crossref_primary_10_1016_j_asoc_2023_110243 crossref_primary_10_1088_1361_6501_ad02b2 crossref_primary_10_21595_jve_2023_23412 crossref_primary_10_1007_s00170_022_09978_4 crossref_primary_10_1109_ACCESS_2024_3438099 crossref_primary_10_1088_1361_6501_ac15dc crossref_primary_10_1016_j_ress_2021_107556 crossref_primary_10_1109_TIM_2023_3234095 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_3390_s21134361 crossref_primary_10_1109_TIM_2020_3043512 crossref_primary_10_1016_j_measurement_2021_109094 crossref_primary_10_1177_1687814021996915 crossref_primary_10_1109_ACCESS_2021_3052680 crossref_primary_10_1016_j_engappai_2023_106542 crossref_primary_10_32604_cmes_2023_030037 crossref_primary_10_1016_j_knosys_2020_105843 crossref_primary_10_1016_j_measurement_2022_111697 crossref_primary_10_1016_j_jmsy_2020_04_017 crossref_primary_10_1016_j_measurement_2023_112709 crossref_primary_10_1109_JIOT_2024_3389103 crossref_primary_10_3390_app13158699 crossref_primary_10_1016_j_jocs_2023_101957 crossref_primary_10_3390_app12084080 crossref_primary_10_1016_j_knosys_2022_109437 crossref_primary_10_1016_j_eswa_2024_124511 crossref_primary_10_1177_10775463211022878 crossref_primary_10_1016_j_measurement_2024_116499 crossref_primary_10_1016_j_measurement_2021_109631 crossref_primary_10_1088_1361_6501_ad86d5 crossref_primary_10_1016_j_engstruct_2023_116891 crossref_primary_10_1109_TIM_2024_3485429 crossref_primary_10_1016_j_measurement_2021_109639 crossref_primary_10_1088_1361_6501_acdc45 crossref_primary_10_1088_1361_6501_ac73da crossref_primary_10_1088_1742_6596_2803_1_012034 crossref_primary_10_1016_j_asoc_2021_107787 crossref_primary_10_32604_cmes_2024_055633 crossref_primary_10_1177_09544054241272917 crossref_primary_10_1007_s10845_023_02235_9 crossref_primary_10_1109_TIM_2023_3271746 crossref_primary_10_1109_JSEN_2023_3322040 crossref_primary_10_3390_app13053136 crossref_primary_10_1016_j_knosys_2020_106679 crossref_primary_10_1016_j_measurement_2022_111114 crossref_primary_10_1007_s40435_020_00700_4 crossref_primary_10_1016_j_knosys_2022_108296 crossref_primary_10_1016_j_measurement_2023_113018 crossref_primary_10_1109_ACCESS_2021_3068127 crossref_primary_10_1016_j_aei_2024_102477 crossref_primary_10_1016_j_neucom_2020_04_075 crossref_primary_10_3390_electronics11040622 crossref_primary_10_1109_TIE_2022_3231300 crossref_primary_10_1007_s11042_023_17864_8 crossref_primary_10_1016_j_engappai_2023_107063 crossref_primary_10_3934_mbe_2022534 crossref_primary_10_3389_fmech_2024_1430542 crossref_primary_10_1007_s00419_021_01906_4 crossref_primary_10_3390_s23041889 crossref_primary_10_1016_j_measurement_2024_116116 crossref_primary_10_1007_s40430_021_03152_9 crossref_primary_10_1016_j_compeleceng_2022_108538 crossref_primary_10_1109_JSEN_2024_3476381 crossref_primary_10_1016_j_measurement_2021_109532 crossref_primary_10_1016_j_eswa_2023_122778 crossref_primary_10_1109_TIM_2024_3502789 crossref_primary_10_1155_2021_6675078 crossref_primary_10_1088_2631_8695_ada3b2 crossref_primary_10_1109_TMECH_2021_3065522 crossref_primary_10_1109_TIM_2023_3298425 crossref_primary_10_1093_jcde_qwae075 crossref_primary_10_1177_0020294020932347 crossref_primary_10_1155_2020_8823050 crossref_primary_10_1109_TII_2021_3054651 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_1016_j_measurement_2022_110720 crossref_primary_10_3233_JIFS_232414 crossref_primary_10_1016_j_eswa_2022_119057 crossref_primary_10_1088_1361_665X_acc0ed crossref_primary_10_1088_1361_6501_adb6c6 crossref_primary_10_1016_j_rcim_2023_102624 crossref_primary_10_1016_j_engappai_2024_108332 crossref_primary_10_2139_ssrn_4141247 crossref_primary_10_1007_s42452_020_03910_9 crossref_primary_10_1109_TIE_2020_2984968 crossref_primary_10_1016_j_engappai_2023_106872 crossref_primary_10_1109_TIM_2023_3284131 crossref_primary_10_3390_machines10050336 crossref_primary_10_1016_j_measurement_2020_108052 crossref_primary_10_1016_j_measurement_2023_112879 crossref_primary_10_1016_j_heliyon_2024_e32656 crossref_primary_10_1016_j_rineng_2025_103991 crossref_primary_10_1109_TII_2024_3416945 crossref_primary_10_1007_s42979_025_03775_y crossref_primary_10_1088_1361_665X_ad1ded crossref_primary_10_1093_jcde_qwad081 crossref_primary_10_1016_j_ymssp_2020_106825 crossref_primary_10_1155_2021_4319074 crossref_primary_10_1038_s41598_024_75088_8 crossref_primary_10_1109_JSYST_2024_3402978 crossref_primary_10_1016_j_ymssp_2022_109146 crossref_primary_10_1016_j_measurement_2021_109345 crossref_primary_10_1177_14759217211015243 crossref_primary_10_1109_LSENS_2024_3374790 crossref_primary_10_2139_ssrn_4098751 crossref_primary_10_1016_j_measurement_2021_110690 crossref_primary_10_1016_j_measurement_2023_113062 crossref_primary_10_1007_s42417_022_00691_w crossref_primary_10_1016_j_measurement_2022_112350 crossref_primary_10_1016_j_measurement_2023_112892 crossref_primary_10_1016_j_measurement_2024_115589 crossref_primary_10_1016_j_mechmachtheory_2020_103932 crossref_primary_10_3390_lubricants9100105 crossref_primary_10_1007_s12008_024_01859_2 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_1016_j_ymssp_2021_107645 crossref_primary_10_1109_TIM_2023_3246470 crossref_primary_10_3390_app14125110 crossref_primary_10_1109_ACCESS_2020_3038605 crossref_primary_10_1016_j_measurement_2023_114049 crossref_primary_10_1016_j_ymssp_2022_108826 crossref_primary_10_1016_j_neucom_2020_05_014 crossref_primary_10_1109_TIM_2021_3055821 crossref_primary_10_1109_ACCESS_2020_3022840 crossref_primary_10_1016_j_isatra_2020_08_010 crossref_primary_10_1155_2022_1577778 crossref_primary_10_1016_j_measurement_2022_111978 crossref_primary_10_1007_s10489_022_03196_x crossref_primary_10_1109_TIM_2024_3428618 crossref_primary_10_1109_TNNLS_2021_3070840 crossref_primary_10_1016_j_engappai_2024_108098 crossref_primary_10_1109_TIE_2021_3108719 crossref_primary_10_1109_TSM_2020_2995548 crossref_primary_10_1109_TIM_2021_3089240 crossref_primary_10_1016_j_asoc_2022_109271 crossref_primary_10_3390_app132111837 crossref_primary_10_3390_app13042622 crossref_primary_10_1021_acs_iecr_1c00141 crossref_primary_10_1016_j_knosys_2022_110008 crossref_primary_10_3390_s20247109 crossref_primary_10_1088_1361_6501_ac6ab3 crossref_primary_10_1109_ACCESS_2020_3023949 crossref_primary_10_1007_s40435_020_00675_2 crossref_primary_10_1109_TR_2022_3215243 crossref_primary_10_1016_j_engappai_2024_108995 crossref_primary_10_1016_j_icte_2022_02_011 crossref_primary_10_1016_j_jmsy_2025_01_006 crossref_primary_10_1177_10775463231224519 crossref_primary_10_1016_j_asoc_2023_110784 crossref_primary_10_1016_j_knosys_2022_109393 crossref_primary_10_1016_j_measurement_2021_109359 crossref_primary_10_3390_sym16050512 crossref_primary_10_1088_1361_6501_aca0b4 |
Cites_doi | 10.1109/TII.2018.2851961 10.1109/TIE.2018.2868023 10.1007/11538059_91 10.1016/j.measurement.2015.03.017 10.1016/j.measurement.2019.106906 10.1016/j.jsv.2018.07.039 10.1016/j.sigpro.2018.12.005 10.1016/j.ymssp.2016.06.024 10.1016/j.neucom.2018.05.024 10.1016/j.measurement.2016.04.007 10.1016/j.ymssp.2018.12.051 10.1016/j.ymssp.2018.03.025 10.1007/s10845-018-1456-1 10.1109/ACCESS.2019.2917604 10.1016/j.neucom.2017.02.045 10.1016/j.jmsy.2018.04.005 10.1016/j.engfailanal.2015.06.004 10.1016/j.engappai.2018.09.010 10.1016/j.sigpro.2016.07.028 10.1109/TII.2017.2672988 10.1016/j.neucom.2015.06.008 10.1016/j.ymssp.2015.04.021 10.1007/978-3-642-01307-2_43 10.1109/ACCESS.2018.2890693 10.1007/s11071-019-05176-2 10.1109/TIA.2016.2618756 10.1016/j.neucom.2018.05.021 10.1109/WCSE.2009.756 10.1109/TIE.2016.2519325 10.1016/j.ymssp.2018.07.014 10.1016/j.measurement.2016.07.054 10.1613/jair.953 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2019.107377 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
ExternalDocumentID | 10_1016_j_measurement_2019_107377 S0263224119312412 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c349t-c9a8361854a2556feca4b2a07822b22d50dd12ac5dd0be9c814b3b8278109b073 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Wed Aug 13 02:37:51 EDT 2025 Tue Jul 01 04:37:39 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Feb 23 02:49:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Deep learning Imbalanced data Generative adversarial networks Rotating machines |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-c9a8361854a2556feca4b2a07822b22d50dd12ac5dd0be9c814b3b8278109b073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2363909293 |
PQPubID | 2047460 |
ParticipantIDs | proquest_journals_2363909293 crossref_citationtrail_10_1016_j_measurement_2019_107377 crossref_primary_10_1016_j_measurement_2019_107377 elsevier_sciencedirect_doi_10_1016_j_measurement_2019_107377 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | T. Han, C. Liu, W. Yang, D. Jiang, Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions, ISA Transactions. Li, Zhang, Ding, Li (b0140) 2019 S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of 32nd International Conference on Machine Learning, vol. 1, Lile, France, 2015, pp. 448–456. G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, C. Malossi, BAGAN: data augmentation with balancing GAN, arXiv preprint arXiv:1803.09655. Yu, Lin, Ma, Li, Zeng (b0105) 2019 M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint arXiv:1411.1784. X. Li, W. Zhang, Q. Ding, J.-Q. Sun, Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation, J. Intell. Manuf. Cabrera, Sancho, Long, Sánchez, Zhang, Cerrada, Li (b0215) 2019; 7 Ren, Liu, Shan, Wang (b0010) 2019; 148 Guo, Li, Jia, Lei, Lin (b0160) 2017; 240 Jiang, Wang, Shi, Shen, Huang, Zhu (b0110) 2019; 116 Smith, Randall (b0235) 2015; 64–65 Ma, Zeng, Feng, Pang, Wang, Wen (b0095) 2015; 55 Li, Zhang, Ding (b0155) 2019; 66 Shen, Qi, Wang, Cai, Zhu (b0120) 2018; 76 Guo, Lei, Xing, Yan, Li (b0060) 2018 Li, Zhang, Ding (b0070) 2018; 310 Yang, Lei, Jia, Xing (b0065) 2019; 122 Khan, Prosvirin, Kim (b0200) 2018 S. Hu, Y. Liang, L. Ma, Y. He, MSMOTE: Improving classification performance when training data is imbalanced, in: Proceedings of Second International Workshop on Computer Science and Engineering, vol. 2, 2009, pp. 13–17. Sun, Shao, Zhao, Yan, Zhang, Chen (b0170) 2016; 89 Zhang, Liang, Zhou, Zang (b0020) 2015; 69 Haibo, Yang, Garcia, Shutao (b0085) 2008 . Li, Zhang, Ding, Sun (b0125) 2019; 157 Guo, Chen, Shen (b0005) 2016; 93 D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980. Lei, Jia, Lin, Xing, Ding (b0165) 2016; 63 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Nets, Curran Associates Inc, 2014. Martin-Diaz, Morinigo-Sotelo, Duque-Perez, Romero-Troncoso (b0185) 2017; 53 Mao, He, Yan, Wang (b0180) 2017; 83 H. Han, W.-Y. Wang, B.-H. Mao, Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning, in: Proceedings of Advances in Intelligent Computing, Berlin, Heidelberg, 2005, pp. 878–887. Sun, Zhao, Yan, Shao, Chen (b0150) 2017; 13 Razavi-Far, Hallaji, Farajzadeh-Zanjani, Saif (b0025) 2019; 15 Jia, Lei, Lu, Xing (b0175) 2018; 110 Li, Sanchez, Zurita, Cerrada, Cabrera, Vásquez (b0030) 2015; 168 Lu, Wang, Qin, Ma (b0145) 2017; 130 Lema, Nogueira, Aridas (b0240) 2017; 18 Ding (b0015) 2014 L. Wen, L. Gao, X. Li, A new deep transfer learning based on sparse auto-encoder for fault diagnosis, IEEE Trans. Syst., Man, Cybern.: Syst. (99) (2017) 1–9. Chawla, Bowyer, Hall, Kegelmeyer (b0050) 2002; 16 Jiang, Shen, Shi, Zhu (b0115) 2018; 435 A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of 30th International Conference on Machine Learning, vol. 28, 2013. C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proceedings of Advances in Knowledge Discovery and Data Mining, Berlin, Heidelberg, 2009, pp. 475–482. Wang, Wang, Wang (b0205) 2018; 310 Luo, Wang, Tang, Wang (b0100) 2019; 98 Mao, Liu, Ding, Li (b0210) 2019; 7 F. Zhou, S. Yang, H. Fujita, D. Chen, C. Wen, Deep learning fault diagnosis method based on global optimization GAN for unbalanced data, Knowledge-Based Syst. Zhang, Li, Gao, Wang, Wen (b0190) 2018; 48 Li, Zhang, Xu, Ding (b0135) 2019 Zhang (10.1016/j.measurement.2019.107377_b0190) 2018; 48 Razavi-Far (10.1016/j.measurement.2019.107377_b0025) 2019; 15 Yang (10.1016/j.measurement.2019.107377_b0065) 2019; 122 Ding (10.1016/j.measurement.2019.107377_b0015) 2014 10.1016/j.measurement.2019.107377_b0035 10.1016/j.measurement.2019.107377_b0195 10.1016/j.measurement.2019.107377_b0075 10.1016/j.measurement.2019.107377_b0230 Cabrera (10.1016/j.measurement.2019.107377_b0215) 2019; 7 Smith (10.1016/j.measurement.2019.107377_b0235) 2015; 64–65 10.1016/j.measurement.2019.107377_b0080 Jia (10.1016/j.measurement.2019.107377_b0175) 2018; 110 Ma (10.1016/j.measurement.2019.107377_b0095) 2015; 55 10.1016/j.measurement.2019.107377_b0045 10.1016/j.measurement.2019.107377_b0245 10.1016/j.measurement.2019.107377_b0040 Yu (10.1016/j.measurement.2019.107377_b0105) 2019 Mao (10.1016/j.measurement.2019.107377_b0210) 2019; 7 Khan (10.1016/j.measurement.2019.107377_b0200) 2018 Martin-Diaz (10.1016/j.measurement.2019.107377_b0185) 2017; 53 Mao (10.1016/j.measurement.2019.107377_b0180) 2017; 83 Lema (10.1016/j.measurement.2019.107377_b0240) 2017; 18 Guo (10.1016/j.measurement.2019.107377_b0060) 2018 Ren (10.1016/j.measurement.2019.107377_b0010) 2019; 148 Li (10.1016/j.measurement.2019.107377_b0155) 2019; 66 Wang (10.1016/j.measurement.2019.107377_b0205) 2018; 310 Li (10.1016/j.measurement.2019.107377_b0030) 2015; 168 10.1016/j.measurement.2019.107377_b0090 10.1016/j.measurement.2019.107377_b0055 Jiang (10.1016/j.measurement.2019.107377_b0115) 2018; 435 10.1016/j.measurement.2019.107377_b0130 Shen (10.1016/j.measurement.2019.107377_b0120) 2018; 76 Guo (10.1016/j.measurement.2019.107377_b0005) 2016; 93 Li (10.1016/j.measurement.2019.107377_b0135) 2019 Lu (10.1016/j.measurement.2019.107377_b0145) 2017; 130 Luo (10.1016/j.measurement.2019.107377_b0100) 2019; 98 Guo (10.1016/j.measurement.2019.107377_b0160) 2017; 240 Zhang (10.1016/j.measurement.2019.107377_b0020) 2015; 69 Jiang (10.1016/j.measurement.2019.107377_b0110) 2019; 116 Sun (10.1016/j.measurement.2019.107377_b0150) 2017; 13 10.1016/j.measurement.2019.107377_b0220 Sun (10.1016/j.measurement.2019.107377_b0170) 2016; 89 Haibo (10.1016/j.measurement.2019.107377_b0085) 2008 Li (10.1016/j.measurement.2019.107377_b0125) 2019; 157 Li (10.1016/j.measurement.2019.107377_b0140) 2019 Li (10.1016/j.measurement.2019.107377_b0070) 2018; 310 10.1016/j.measurement.2019.107377_b0225 Chawla (10.1016/j.measurement.2019.107377_b0050) 2002; 16 Lei (10.1016/j.measurement.2019.107377_b0165) 2016; 63 |
References_xml | – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b0050 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – volume: 53 start-page: 3066 year: 2017 end-page: 3075 ident: b0185 article-title: Early fault detection in induction motors using AdaBoost with imbalanced small data and optimized sampling publication-title: IEEE Trans. Ind. Appl. – volume: 310 start-page: 213 year: 2018 end-page: 222 ident: b0205 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing – volume: 93 start-page: 490 year: 2016 end-page: 502 ident: b0005 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement – volume: 18 start-page: 559 year: 2017 end-page: 563 ident: b0240 article-title: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn. Res. – start-page: 175 year: 2014 end-page: 200 ident: b0015 article-title: Data-driven design of observer-based fault diagnosis systems publication-title: Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems – volume: 148 year: 2019 ident: b0010 article-title: A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning publication-title: Measurement – volume: 13 start-page: 1350 year: 2017 end-page: 1359 ident: b0150 article-title: Convolutional discriminative feature learning for induction motor fault diagnosis publication-title: IEEE Trans. Industr. Inf. – volume: 69 start-page: 164 year: 2015 end-page: 179 ident: b0020 article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM publication-title: Measurement – reference: C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proceedings of Advances in Knowledge Discovery and Data Mining, Berlin, Heidelberg, 2009, pp. 475–482. – volume: 48 start-page: 34 year: 2018 end-page: 50 ident: b0190 article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning publication-title: J. Manuf. Syst. – volume: 64–65 start-page: 100 year: 2015 end-page: 131 ident: b0235 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study publication-title: Mech. Syst. Signal Process. – year: 2019 ident: b0135 article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places publication-title: IEEE Trans. Industr. Electron. – start-page: 1322 year: 2008 end-page: 1328 ident: b0085 article-title: ADASYN Adaptive synthetic sampling approach for imbalanced learning publication-title: Proceedings of IEEE International Joint Conference on Neural Networks – reference: M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint arXiv:1411.1784. – reference: A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of 30th International Conference on Machine Learning, vol. 28, 2013. – reference: I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Nets, Curran Associates Inc, 2014. – year: 2018 ident: b0060 article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Trans. Industr. Electron. – volume: 240 start-page: 98 year: 2017 end-page: 109 ident: b0160 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing – volume: 168 start-page: 119 year: 2015 end-page: 127 ident: b0030 article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis publication-title: Neurocomputing – volume: 66 start-page: 5525 year: 2019 end-page: 5534 ident: b0155 article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks publication-title: IEEE Trans. Industr. Electron. – volume: 76 start-page: 170 year: 2018 end-page: 184 ident: b0120 article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder publication-title: Eng. Appl. Artif. Intell. – reference: D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980. – start-page: 1 year: 2018 end-page: 6 ident: b0200 article-title: Towards bearing health prognosis using generative adversarial networks: Modeling bearing degradation publication-title: Proceedings of International Conference on Advancements in Computational Sciences – reference: S. Hu, Y. Liang, L. Ma, Y. He, MSMOTE: Improving classification performance when training data is imbalanced, in: Proceedings of Second International Workshop on Computer Science and Engineering, vol. 2, 2009, pp. 13–17. – reference: F. Zhou, S. Yang, H. Fujita, D. Chen, C. Wen, Deep learning fault diagnosis method based on global optimization GAN for unbalanced data, Knowledge-Based Syst. – year: 2019 ident: b0140 article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning publication-title: IEEE Trans. Industr. Inf. – volume: 63 start-page: 3137 year: 2016 end-page: 3147 ident: b0165 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Trans. Industr. Electron. – reference: L. Wen, L. Gao, X. Li, A new deep transfer learning based on sparse auto-encoder for fault diagnosis, IEEE Trans. Syst., Man, Cybern.: Syst. (99) (2017) 1–9. – volume: 116 start-page: 668 year: 2019 end-page: 692 ident: b0110 article-title: A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines publication-title: Mech. Syst. Signal Process. – volume: 15 start-page: 1277 year: 2019 end-page: 1286 ident: b0025 article-title: A semi-supervised diagnostic framework based on the surface estimation of faulty distributions publication-title: IEEE Trans. Industr. Inf. – volume: 122 start-page: 692 year: 2019 end-page: 706 ident: b0065 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mech. Syst. Signal Process. – volume: 7 start-page: 9515 year: 2019 end-page: 9530 ident: b0210 article-title: Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: a comparative study publication-title: IEEE Access – reference: T. Han, C. Liu, W. Yang, D. Jiang, Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions, ISA Transactions. – volume: 7 start-page: 70643 year: 2019 end-page: 70653 ident: b0215 article-title: Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery publication-title: IEEE Access – volume: 83 start-page: 450 year: 2017 end-page: 473 ident: b0180 article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine publication-title: Mech. Syst. Signal Process. – volume: 435 start-page: 36 year: 2018 end-page: 55 ident: b0115 article-title: Initial center frequency-guided VMD for fault diagnosis of rotating machines publication-title: J. Sound Vib. – volume: 157 start-page: 180 year: 2019 end-page: 197 ident: b0125 article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis publication-title: Signal Processing – reference: X. Li, W. Zhang, Q. Ding, J.-Q. Sun, Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation, J. Intell. Manuf. – volume: 130 start-page: 377 year: 2017 end-page: 388 ident: b0145 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing – reference: . – volume: 310 start-page: 77 year: 2018 end-page: 95 ident: b0070 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing – volume: 110 start-page: 349 year: 2018 end-page: 367 ident: b0175 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mech. Syst. Signal Process. – reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of 32nd International Conference on Machine Learning, vol. 1, Lile, France, 2015, pp. 448–456. – reference: G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, C. Malossi, BAGAN: data augmentation with balancing GAN, arXiv preprint arXiv:1803.09655. – reference: H. Han, W.-Y. Wang, B.-H. Mao, Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning, in: Proceedings of Advances in Intelligent Computing, Berlin, Heidelberg, 2005, pp. 878–887. – volume: 98 start-page: 113 year: 2019 end-page: 128 ident: b0100 article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system publication-title: Nonlinear Dyn. – volume: 89 start-page: 171 year: 2016 end-page: 178 ident: b0170 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement – volume: 55 start-page: 224 year: 2015 end-page: 245 ident: b0095 article-title: Review on dynamics of cracked gear systems publication-title: Eng. Fail. Anal. – year: 2019 ident: b0105 article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery publication-title: IEEE Trans. Instrum. Meas. – volume: 15 start-page: 1277 issue: 3 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0025 article-title: A semi-supervised diagnostic framework based on the surface estimation of faulty distributions publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2018.2851961 – ident: 10.1016/j.measurement.2019.107377_b0130 – volume: 66 start-page: 5525 issue: 7 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0155 article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2018.2868023 – start-page: 175 year: 2014 ident: 10.1016/j.measurement.2019.107377_b0015 article-title: Data-driven design of observer-based fault diagnosis systems – ident: 10.1016/j.measurement.2019.107377_b0220 – ident: 10.1016/j.measurement.2019.107377_b0080 doi: 10.1007/11538059_91 – volume: 69 start-page: 164 year: 2015 ident: 10.1016/j.measurement.2019.107377_b0020 article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM publication-title: Measurement doi: 10.1016/j.measurement.2015.03.017 – volume: 148 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0010 article-title: A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning publication-title: Measurement doi: 10.1016/j.measurement.2019.106906 – volume: 435 start-page: 36 year: 2018 ident: 10.1016/j.measurement.2019.107377_b0115 article-title: Initial center frequency-guided VMD for fault diagnosis of rotating machines publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.07.039 – volume: 157 start-page: 180 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0125 article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis publication-title: Signal Processing doi: 10.1016/j.sigpro.2018.12.005 – volume: 83 start-page: 450 year: 2017 ident: 10.1016/j.measurement.2019.107377_b0180 article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.06.024 – volume: 310 start-page: 213 year: 2018 ident: 10.1016/j.measurement.2019.107377_b0205 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.024 – volume: 89 start-page: 171 year: 2016 ident: 10.1016/j.measurement.2019.107377_b0170 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – ident: 10.1016/j.measurement.2019.107377_b0230 – year: 2019 ident: 10.1016/j.measurement.2019.107377_b0105 article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery publication-title: IEEE Trans. Instrum. Meas. – volume: 122 start-page: 692 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0065 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.12.051 – volume: 110 start-page: 349 year: 2018 ident: 10.1016/j.measurement.2019.107377_b0175 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.03.025 – ident: 10.1016/j.measurement.2019.107377_b0195 doi: 10.1007/s10845-018-1456-1 – volume: 7 start-page: 70643 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0215 article-title: Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917604 – volume: 240 start-page: 98 year: 2017 ident: 10.1016/j.measurement.2019.107377_b0160 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.045 – volume: 48 start-page: 34 year: 2018 ident: 10.1016/j.measurement.2019.107377_b0190 article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.04.005 – volume: 55 start-page: 224 year: 2015 ident: 10.1016/j.measurement.2019.107377_b0095 article-title: Review on dynamics of cracked gear systems publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2015.06.004 – volume: 76 start-page: 170 year: 2018 ident: 10.1016/j.measurement.2019.107377_b0120 article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.010 – volume: 18 start-page: 559 issue: 1 year: 2017 ident: 10.1016/j.measurement.2019.107377_b0240 article-title: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn. Res. – year: 2018 ident: 10.1016/j.measurement.2019.107377_b0060 article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Trans. Industr. Electron. – year: 2019 ident: 10.1016/j.measurement.2019.107377_b0140 article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning publication-title: IEEE Trans. Industr. Inf. – volume: 130 start-page: 377 year: 2017 ident: 10.1016/j.measurement.2019.107377_b0145 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing doi: 10.1016/j.sigpro.2016.07.028 – volume: 13 start-page: 1350 issue: 3 year: 2017 ident: 10.1016/j.measurement.2019.107377_b0150 article-title: Convolutional discriminative feature learning for induction motor fault diagnosis publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2017.2672988 – volume: 168 start-page: 119 year: 2015 ident: 10.1016/j.measurement.2019.107377_b0030 article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.008 – ident: 10.1016/j.measurement.2019.107377_b0075 – volume: 64–65 start-page: 100 year: 2015 ident: 10.1016/j.measurement.2019.107377_b0235 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.021 – ident: 10.1016/j.measurement.2019.107377_b0225 – ident: 10.1016/j.measurement.2019.107377_b0090 doi: 10.1007/978-3-642-01307-2_43 – volume: 7 start-page: 9515 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0210 article-title: Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: a comparative study publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890693 – volume: 98 start-page: 113 issue: 1 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0100 article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05176-2 – volume: 53 start-page: 3066 issue: 3 year: 2017 ident: 10.1016/j.measurement.2019.107377_b0185 article-title: Early fault detection in induction motors using AdaBoost with imbalanced small data and optimized sampling publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2618756 – ident: 10.1016/j.measurement.2019.107377_b0045 – start-page: 1 year: 2018 ident: 10.1016/j.measurement.2019.107377_b0200 article-title: Towards bearing health prognosis using generative adversarial networks: Modeling bearing degradation – volume: 310 start-page: 77 year: 2018 ident: 10.1016/j.measurement.2019.107377_b0070 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.021 – ident: 10.1016/j.measurement.2019.107377_b0035 doi: 10.1109/WCSE.2009.756 – start-page: 1322 year: 2008 ident: 10.1016/j.measurement.2019.107377_b0085 article-title: ADASYN Adaptive synthetic sampling approach for imbalanced learning – year: 2019 ident: 10.1016/j.measurement.2019.107377_b0135 article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places publication-title: IEEE Trans. Industr. Electron. – ident: 10.1016/j.measurement.2019.107377_b0055 – volume: 63 start-page: 3137 issue: 5 year: 2016 ident: 10.1016/j.measurement.2019.107377_b0165 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2016.2519325 – ident: 10.1016/j.measurement.2019.107377_b0245 – volume: 116 start-page: 668 year: 2019 ident: 10.1016/j.measurement.2019.107377_b0110 article-title: A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.07.014 – ident: 10.1016/j.measurement.2019.107377_b0040 – volume: 93 start-page: 490 year: 2016 ident: 10.1016/j.measurement.2019.107377_b0005 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2016.07.054 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.measurement.2019.107377_b0050 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 |
SSID | ssj0006396 |
Score | 2.6374452 |
Snippet | •A deep learning method is proposed to address the data imbalance problem.•Deep generative adversarial networks are designed to generate fake samples.•Fake... Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating machines, balanced training data for different machine health... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107377 |
SubjectTerms | Bearings Datasets Deep learning Fault diagnosis Generative adversarial networks Imbalanced data Machine learning Machinery Mapping Noise Rotating machinery Rotating machines Rotation Signal processing Training Vibration |
Title | Machinery fault diagnosis with imbalanced data using deep generative adversarial networks |
URI | https://dx.doi.org/10.1016/j.measurement.2019.107377 https://www.proquest.com/docview/2363909293 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB1EUfQgfuI3EbzW7TbpNgUviyirohcV9BTyVVnRdbG7By_-dmfS1lVBELyGppSX6bxJeHkDcIB5kafciagQaRYJzYvIiI6OkI1kbjiyhqOLwpdXnd6tOL9L76bguLkLQ7LKOvdXOT1k63qkVaPZGvb7reuYrMaRgLAEQZIKnYaFyCjKD98nMg9k4E51zsIjenoO9icar-fJORypvHIcz3iW_cZRP7J1oKDTJVisa0fWrT5vGab8YAUWvjgKrsBsUHTachXuL4NM0r--sUKPn0bMVaK6fsno7JX1nw2pGhEARipRRgL4B-a8H7KHYEVNeZBp6tdcaopSNqgU4-Ua3J6e3Bz3orqPQmS5yEeRzbXkHSRmoclwrPBWC5PoUBwYXIw0dq6daJs6FxufW9kWhhuZZLId5wYRWYfpwcvAbwDTuF3zwqZZ4Zzw0socSxrpyZVeFIlrb4JskFO2NhmnXhdPqlGTPaovoCsCXVWgb0LyOXVYOW38ZdJRszzqW9goZIS_TN9pllTV_26pEo4xE2PZyLf-9_ZtmE9odx403jswPXod-10sYUZmL8ToHsx0zy56Vx80uvKF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC6MwcQcgjEJ0ajpgB4nO9Pds9MDyUE0sj7Wiwrm1OnXyAbdLM6KePFP-QetmkdWhYAgXhu6ab7uqq-6-LoKYBX9okiFl1Eh0yySRhSRlV0TIRup3ApkDU8fhfv73d6R3DlOj6fgpv0LQ7LKxvfXPr3y1s1Ip0GzMxoMOgcxlRpHAsIQBEkq4Y2ycjdcXeK7rfyxvYmHvMb51s_DjV7UtBaInJD5OHK5UaKLXCUN1eAqgjPSclPxpcX9pbH3CTcu9T62IXcqkVZYxTOVxLlFs8B1X8BLie6C2iZ8u57oSpDyu3ViR0S0vVfwdSIqO5sk_khWluN4JrLsf6T4gB4qztuag7dNsMrWazzewVQYzsObOyUM52GmkpC68j386le6zHB-xQpzcTpmvlbxDUpGyV42OLMko0TEGclSGSnuT5gPYcROqtrX5HiZoQbRpSGzYMNaol5-gKNnQfcjTA__DsMnYAbfh0G6NCu8l0E5lWMMpQKVwZcF98kCqBY57Zqq5tRc41S38rU_-g7omkDXNegLwP9NHdWlPR4z6Xt7PPrePdVIQY-ZvtQeqW6cRam5wDsTY5wqFp-2-hd43Tvs7-m97f3dzzDLKTVQCcyXYHp8fhGWMX4a25XqvjL4_dwGcgs5bC1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machinery+fault+diagnosis+with+imbalanced+data+using+deep+generative+adversarial+networks&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhang%2C+Wei&rft.au=Li%2C+Xiang&rft.au=Jia%2C+Xiao-Dong&rft.au=Ma%2C+Hui&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=152&rft_id=info:doi/10.1016%2Fj.measurement.2019.107377&rft.externalDocID=S0263224119312412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |