Adaptive Dynamic Programming for Model-Free Global Stabilization of Control Constrained Continuous-Time Systems
This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of pa...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 2; pp. 1048 - 1060 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme. |
---|---|
AbstractList | This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme. This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme.This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme. |
Author | Rizvi, Syed Ali Asad Lin, Zongli |
Author_xml | – sequence: 1 givenname: Syed Ali Asad orcidid: 0000-0003-1412-8841 surname: Rizvi fullname: Rizvi, Syed Ali Asad email: sr9gs@virginia.edu organization: Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA – sequence: 2 givenname: Zongli orcidid: 0000-0003-1589-1443 surname: Lin fullname: Lin, Zongli email: zl5y@virginia.edu organization: Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32471805$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFP3DAQha2KqlDKD6gqVZZ66SVb23ES-0iXQitRtRLLgZPltSfIyLG3toO0_HoSduHAob6MNfreaOa99-ggxAAIfaRkQSmR31bLm-8LRhhZMCkkp_INOmK0FRVjXXPw8m-7Q3SS8x2ZnphaUrxDhzXjHRWkOULx1OpNcfeAz7ZBD87gvyneJj0MLtziPib8O1rw1XkCwBc-rrXHV0WvnXcPurgYcOzxMoaSop9rLkm7APap58IYx1yt3AD4apsLDPkDettrn-FkX4_R9fmP1fJndfnn4tfy9LIyNZelMkKD7FtLOe801aBJVzcCeNNOR0hWU6NN2zLLatNZJi3tKZg1J2AFYYKQ-hh93c3dpPhvhFzU4LIB73WAaSfFOBGMtJzP6JdX6F0cU5i2U6xlkrKm4XSiPu-pcT2AVZvkBp226tnKCeh2gEkx5wS9Mq48WTRb4hUlas5NzbmpOTe1z21S0lfK5-H_03zaaRwAvPCSkprRpn4EDGeiTQ |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2024_10_135 crossref_primary_10_1080_00207721_2023_2209846 crossref_primary_10_1007_s11071_024_10477_2 crossref_primary_10_3390_math12243916 crossref_primary_10_1109_TCSII_2023_3266431 crossref_primary_10_1109_TII_2024_3390444 crossref_primary_10_1049_cth2_12334 crossref_primary_10_1109_TNNLS_2022_3191673 crossref_primary_10_3390_jpm15010010 crossref_primary_10_4108_ew_7500 crossref_primary_10_1109_TCSII_2022_3218323 crossref_primary_10_1109_ACCESS_2022_3168032 crossref_primary_10_1109_TNNLS_2023_3326397 crossref_primary_10_1002_acs_3832 crossref_primary_10_1002_acs_3898 crossref_primary_10_1109_TCYB_2021_3109021 crossref_primary_10_1109_TCYB_2024_3403680 crossref_primary_10_1002_oca_3005 crossref_primary_10_1109_TCYB_2021_3055151 crossref_primary_10_1080_00207721_2024_2321370 crossref_primary_10_1109_TCYB_2024_3472020 crossref_primary_10_1080_00207721_2021_1909776 crossref_primary_10_1109_TSMC_2024_3450274 crossref_primary_10_1109_LCSYS_2024_3523244 crossref_primary_10_1002_rnc_7236 crossref_primary_10_1109_TCYB_2024_3411310 |
Cites_doi | 10.1109/TITS.2016.2597279 10.1109/TASE.2014.2303139 10.1016/j.automatica.2012.06.096 10.1109/TCYB.2017.2712188 10.1109/TNNLS.2015.2499757 10.1109/MCS.2012.2214134 10.1109/CDC.1996.573631 10.1109/MCI.2009.932261 10.1016/j.automatica.2016.05.003 10.1109/TNNLS.2016.2586303 10.1109/TCYB.2018.2821369 10.1016/S0005-1098(98)00023-5 10.1109/TCYB.2018.2886735 10.1016/j.automatica.2004.11.034 10.1109/CDC.1990.203432 10.1109/TCYB.2015.2492242 10.1109/TAC.2016.2548662 10.1109/TCYB.2016.2548941 10.1109/TCYB.2015.2417170 10.1109/ACC.1998.694659 10.1109/CONTROL.2012.6334606 10.1016/0167-6911(94)00020-V 10.1016/0167-6911(93)90033-3 10.1109/TCYB.2018.2857400 10.1080/00207176908905846 10.1007/978-3-319-50815-3 10.1109/CDC.2018.8618941 10.1109/TCYB.2018.2823199 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2020.2989419 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 1060 |
ExternalDocumentID | 32471805 10_1109_TCYB_2020_2989419 9103215 |
Genre | orig-research Journal Article |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-c8ae9f6d1447a1aea07358e4560819231cac662d23c7d29d1f1ecb40ed8028003 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 06:03:27 EDT 2025 Mon Jun 30 06:08:40 EDT 2025 Thu Jan 02 22:55:30 EST 2025 Tue Jul 01 00:53:56 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Wed Aug 27 02:14:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-c8ae9f6d1447a1aea07358e4560819231cac662d23c7d29d1f1ecb40ed8028003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1412-8841 0000-0003-1589-1443 |
PMID | 32471805 |
PQID | 2629125541 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2629125541 pubmed_primary_32471805 proquest_miscellaneous_2408206440 ieee_primary_9103215 crossref_citationtrail_10_1109_TCYB_2020_2989419 crossref_primary_10_1109_TCYB_2020_2989419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref31 ref30 ref11 ref10 Lin (ref12) 1998 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 Bertsekas (ref2) 1995 ref3 ref6 ref5 Yang (ref29) 1993 |
References_xml | – ident: ref7 doi: 10.1109/TITS.2016.2597279 – ident: ref31 doi: 10.1109/TASE.2014.2303139 – ident: ref8 doi: 10.1016/j.automatica.2012.06.096 – ident: ref24 doi: 10.1109/TCYB.2017.2712188 – ident: ref30 doi: 10.1109/TNNLS.2015.2499757 – ident: ref9 doi: 10.1109/MCS.2012.2214134 – ident: ref18 doi: 10.1109/CDC.1996.573631 – ident: ref25 doi: 10.1109/MCI.2009.932261 – ident: ref3 doi: 10.1016/j.automatica.2016.05.003 – volume-title: Low Gain Feedback year: 1998 ident: ref12 – ident: ref4 doi: 10.1109/TNNLS.2016.2586303 – ident: ref17 doi: 10.1109/TCYB.2018.2821369 – ident: ref11 doi: 10.1016/S0005-1098(98)00023-5 – ident: ref22 doi: 10.1109/TCYB.2018.2886735 – ident: ref1 doi: 10.1016/j.automatica.2004.11.034 – ident: ref23 doi: 10.1109/CDC.1990.203432 – ident: ref27 doi: 10.1109/TCYB.2015.2492242 – year: 1993 ident: ref29 article-title: Global stabilization of linear systems with bounded feedback – ident: ref6 doi: 10.1109/TAC.2016.2548662 – ident: ref20 doi: 10.1109/TCYB.2016.2548941 – ident: ref16 doi: 10.1109/TCYB.2015.2417170 – ident: ref19 doi: 10.1109/ACC.1998.694659 – ident: ref10 doi: 10.1109/CONTROL.2012.6334606 – ident: ref14 doi: 10.1016/0167-6911(94)00020-V – ident: ref13 doi: 10.1016/0167-6911(93)90033-3 – ident: ref26 doi: 10.1109/TCYB.2018.2857400 – ident: ref5 doi: 10.1080/00207176908905846 – ident: ref15 doi: 10.1007/978-3-319-50815-3 – ident: ref21 doi: 10.1109/CDC.2018.8618941 – ident: ref28 doi: 10.1109/TCYB.2018.2823199 – volume-title: Dynamic Programming and Optimal Control year: 1995 ident: ref2 |
SSID | ssj0000816898 |
Score | 2.4385252 |
Snippet | This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1048 |
SubjectTerms | Actuator saturation Actuators Adaptive control adaptive dynamic programming (ADP) Algorithms Asymptotic stability constrained control Constraint modelling Continuous time systems Control theory Dynamic programming Feedback control iterative learning Iterative methods Linear systems Mathematical model Output feedback Parameterization Riccati equation Riccati equations Stability analysis Stabilization State feedback System dynamics |
Title | Adaptive Dynamic Programming for Model-Free Global Stabilization of Control Constrained Continuous-Time Systems |
URI | https://ieeexplore.ieee.org/document/9103215 https://www.ncbi.nlm.nih.gov/pubmed/32471805 https://www.proquest.com/docview/2629125541 https://www.proquest.com/docview/2408206440 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrgAbXkECjISB0B4m3izSXws264qpCIOrVROkR8TCVGSqru58OuZsb0RQoB6SpR3MmP7m3jm-wDeWHIC77SRtW3mFKDURtImlN5qrCqfWx9UIs4_V2eX5aerxdUOfJhqYRAxJJ_hjFfDXL4f3Mi_yo40s79xRfk9Ctxirdb0PyUISATpW0UrklBFnSYxi1wfXSy_fqRgUOWzwDheMFkoQQnqmFm37rcRKUis_BtthlFn9RDOt88bk02-z8aNnbmff1A53vWFHsGDBD_FcfSXPdjBfh_2UgNfi7eJhfrdAQzH3txwXyhOomi9-BJTuX7QYCcI6gqWUbuWq1tEEZUDBCFXzrWNlZ1i6MQyJsLzch3EKNCHbd_6cRjXkutPROJMfwyXq9OL5ZlM6gzSzUu9ka4xqLvKU0RWm8Kgoc5i0SABMkYZBBudcVWlvJq72ivti65AZ8scfcPTufn8Cez2Q4_PQHSu6zzXvGomr6xQN856gpJIsWbRWZNBvrVQ6xJ1OT_0dRtCmFy3bN-W7dsm-2bwfjrlJvJ2_O_gA7bNdGAySwaHWzdoU8tet6pSmkDhoiwyeD3tpjbJEy2mR_p6LdPGKcJ6ZZ7B0-g-07W3Xvf87_d8AfcVF1iEvPBD2N3cjviSYM_Gvgr-_gsbe_uj |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V7QEu0FKgaUsxEgdAZJt4s0l8bBdWC3QrDlupnCLHnkiIklTdzYVfz4ztjRACxClRvpMZ22_imfcAXtbkBNYoHRd1OaYApdAxbcLY1grz3Ca1dSoRi8t8fpV9vJ5cb8HboRYGEV3yGY541c3l2870_KvsVDH7G1eU79C4P0l9tdbwR8VJSDjxW0krMeGKIkxjpok6XU6_nFM4KJOR4xxPmS6UwAR1zaxc98uY5ERW_o433bgzewiLzRP7dJNvo35dj8yP38gc__eVduFBAKDizHvMHmxh-wj2QhNfiVeBh_r1PnRnVt9ybyjeedl68dknc32n4U4Q2BUspHYTz-4QhdcOEIRdOdvW13aKrhFTnwrPy5WTo0Drtn1t-65fxVyBIgJr-mO4mr1fTudx0GeIzThT69iUGlWTW4rJCp1q1NRdTEokSMY4g4Cj0SbPpZVjU1ipbNqkaOosQVvyhG4yfgLbbdfiAYjGNI3lqlfF9JU5qtLUlsAkUrSZNrWOINlYqDKBvJwf-qZyQUyiKrZvxfatgn0jeDOccuuZO_518D7bZjgwmCWC440bVKFtryqZS0WwcJKlEbwYdlOr5KkW3SJ9vYqJ4yShvSyJ4Kl3n-HaG687_PM9n8O9-XJxUV18uPx0BPcll1u4LPFj2F7f9fiMQNC6PnG-_xNhUP7s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Dynamic+Programming+for+Model-Free+Global+Stabilization+of+Control+Constrained+Continuous-Time+Systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Rizvi%2C+Syed+Ali+Asad&rft.au=Lin%2C+Zongli&rft.date=2022-02-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=52&rft.issue=2&rft.spage=1048&rft.epage=1060&rft_id=info:doi/10.1109%2FTCYB.2020.2989419&rft_id=info%3Apmid%2F32471805&rft.externalDocID=9103215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |