Adaptive Dynamic Programming for Model-Free Global Stabilization of Control Constrained Continuous-Time Systems

This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of pa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 2; pp. 1048 - 1060
Main Authors Rizvi, Syed Ali Asad, Lin, Zongli
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme.
AbstractList This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme.
This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme.This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme.
Author Rizvi, Syed Ali Asad
Lin, Zongli
Author_xml – sequence: 1
  givenname: Syed Ali Asad
  orcidid: 0000-0003-1412-8841
  surname: Rizvi
  fullname: Rizvi, Syed Ali Asad
  email: sr9gs@virginia.edu
  organization: Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
– sequence: 2
  givenname: Zongli
  orcidid: 0000-0003-1589-1443
  surname: Lin
  fullname: Lin, Zongli
  email: zl5y@virginia.edu
  organization: Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32471805$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha2KqlDKD6gqVZZ66SVb23ES-0iXQitRtRLLgZPltSfIyLG3toO0_HoSduHAob6MNfreaOa99-ggxAAIfaRkQSmR31bLm-8LRhhZMCkkp_INOmK0FRVjXXPw8m-7Q3SS8x2ZnphaUrxDhzXjHRWkOULx1OpNcfeAz7ZBD87gvyneJj0MLtziPib8O1rw1XkCwBc-rrXHV0WvnXcPurgYcOzxMoaSop9rLkm7APap58IYx1yt3AD4apsLDPkDettrn-FkX4_R9fmP1fJndfnn4tfy9LIyNZelMkKD7FtLOe801aBJVzcCeNNOR0hWU6NN2zLLatNZJi3tKZg1J2AFYYKQ-hh93c3dpPhvhFzU4LIB73WAaSfFOBGMtJzP6JdX6F0cU5i2U6xlkrKm4XSiPu-pcT2AVZvkBp226tnKCeh2gEkx5wS9Mq48WTRb4hUlas5NzbmpOTe1z21S0lfK5-H_03zaaRwAvPCSkprRpn4EDGeiTQ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_ifacol_2024_10_135
crossref_primary_10_1080_00207721_2023_2209846
crossref_primary_10_1007_s11071_024_10477_2
crossref_primary_10_3390_math12243916
crossref_primary_10_1109_TCSII_2023_3266431
crossref_primary_10_1109_TII_2024_3390444
crossref_primary_10_1049_cth2_12334
crossref_primary_10_1109_TNNLS_2022_3191673
crossref_primary_10_3390_jpm15010010
crossref_primary_10_4108_ew_7500
crossref_primary_10_1109_TCSII_2022_3218323
crossref_primary_10_1109_ACCESS_2022_3168032
crossref_primary_10_1109_TNNLS_2023_3326397
crossref_primary_10_1002_acs_3832
crossref_primary_10_1002_acs_3898
crossref_primary_10_1109_TCYB_2021_3109021
crossref_primary_10_1109_TCYB_2024_3403680
crossref_primary_10_1002_oca_3005
crossref_primary_10_1109_TCYB_2021_3055151
crossref_primary_10_1080_00207721_2024_2321370
crossref_primary_10_1109_TCYB_2024_3472020
crossref_primary_10_1080_00207721_2021_1909776
crossref_primary_10_1109_TSMC_2024_3450274
crossref_primary_10_1109_LCSYS_2024_3523244
crossref_primary_10_1002_rnc_7236
crossref_primary_10_1109_TCYB_2024_3411310
Cites_doi 10.1109/TITS.2016.2597279
10.1109/TASE.2014.2303139
10.1016/j.automatica.2012.06.096
10.1109/TCYB.2017.2712188
10.1109/TNNLS.2015.2499757
10.1109/MCS.2012.2214134
10.1109/CDC.1996.573631
10.1109/MCI.2009.932261
10.1016/j.automatica.2016.05.003
10.1109/TNNLS.2016.2586303
10.1109/TCYB.2018.2821369
10.1016/S0005-1098(98)00023-5
10.1109/TCYB.2018.2886735
10.1016/j.automatica.2004.11.034
10.1109/CDC.1990.203432
10.1109/TCYB.2015.2492242
10.1109/TAC.2016.2548662
10.1109/TCYB.2016.2548941
10.1109/TCYB.2015.2417170
10.1109/ACC.1998.694659
10.1109/CONTROL.2012.6334606
10.1016/0167-6911(94)00020-V
10.1016/0167-6911(93)90033-3
10.1109/TCYB.2018.2857400
10.1080/00207176908905846
10.1007/978-3-319-50815-3
10.1109/CDC.2018.8618941
10.1109/TCYB.2018.2823199
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.2989419
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1060
ExternalDocumentID 32471805
10_1109_TCYB_2020_2989419
9103215
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-c8ae9f6d1447a1aea07358e4560819231cac662d23c7d29d1f1ecb40ed8028003
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 06:03:27 EDT 2025
Mon Jun 30 06:08:40 EDT 2025
Thu Jan 02 22:55:30 EST 2025
Tue Jul 01 00:53:56 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Wed Aug 27 02:14:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-c8ae9f6d1447a1aea07358e4560819231cac662d23c7d29d1f1ecb40ed8028003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1412-8841
0000-0003-1589-1443
PMID 32471805
PQID 2629125541
PQPubID 85422
PageCount 13
ParticipantIDs proquest_journals_2629125541
pubmed_primary_32471805
proquest_miscellaneous_2408206440
ieee_primary_9103215
crossref_citationtrail_10_1109_TCYB_2020_2989419
crossref_primary_10_1109_TCYB_2020_2989419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref31
ref30
ref11
ref10
Lin (ref12) 1998
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
Bertsekas (ref2) 1995
ref3
ref6
ref5
Yang (ref29) 1993
References_xml – ident: ref7
  doi: 10.1109/TITS.2016.2597279
– ident: ref31
  doi: 10.1109/TASE.2014.2303139
– ident: ref8
  doi: 10.1016/j.automatica.2012.06.096
– ident: ref24
  doi: 10.1109/TCYB.2017.2712188
– ident: ref30
  doi: 10.1109/TNNLS.2015.2499757
– ident: ref9
  doi: 10.1109/MCS.2012.2214134
– ident: ref18
  doi: 10.1109/CDC.1996.573631
– ident: ref25
  doi: 10.1109/MCI.2009.932261
– ident: ref3
  doi: 10.1016/j.automatica.2016.05.003
– volume-title: Low Gain Feedback
  year: 1998
  ident: ref12
– ident: ref4
  doi: 10.1109/TNNLS.2016.2586303
– ident: ref17
  doi: 10.1109/TCYB.2018.2821369
– ident: ref11
  doi: 10.1016/S0005-1098(98)00023-5
– ident: ref22
  doi: 10.1109/TCYB.2018.2886735
– ident: ref1
  doi: 10.1016/j.automatica.2004.11.034
– ident: ref23
  doi: 10.1109/CDC.1990.203432
– ident: ref27
  doi: 10.1109/TCYB.2015.2492242
– year: 1993
  ident: ref29
  article-title: Global stabilization of linear systems with bounded feedback
– ident: ref6
  doi: 10.1109/TAC.2016.2548662
– ident: ref20
  doi: 10.1109/TCYB.2016.2548941
– ident: ref16
  doi: 10.1109/TCYB.2015.2417170
– ident: ref19
  doi: 10.1109/ACC.1998.694659
– ident: ref10
  doi: 10.1109/CONTROL.2012.6334606
– ident: ref14
  doi: 10.1016/0167-6911(94)00020-V
– ident: ref13
  doi: 10.1016/0167-6911(93)90033-3
– ident: ref26
  doi: 10.1109/TCYB.2018.2857400
– ident: ref5
  doi: 10.1080/00207176908905846
– ident: ref15
  doi: 10.1007/978-3-319-50815-3
– ident: ref21
  doi: 10.1109/CDC.2018.8618941
– ident: ref28
  doi: 10.1109/TCYB.2018.2823199
– volume-title: Dynamic Programming and Optimal Control
  year: 1995
  ident: ref2
SSID ssj0000816898
Score 2.4385252
Snippet This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1048
SubjectTerms Actuator saturation
Actuators
Adaptive control
adaptive dynamic programming (ADP)
Algorithms
Asymptotic stability
constrained control
Constraint modelling
Continuous time systems
Control theory
Dynamic programming
Feedback control
iterative learning
Iterative methods
Linear systems
Mathematical model
Output feedback
Parameterization
Riccati equation
Riccati equations
Stability analysis
Stabilization
State feedback
System dynamics
Title Adaptive Dynamic Programming for Model-Free Global Stabilization of Control Constrained Continuous-Time Systems
URI https://ieeexplore.ieee.org/document/9103215
https://www.ncbi.nlm.nih.gov/pubmed/32471805
https://www.proquest.com/docview/2629125541
https://www.proquest.com/docview/2408206440
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrgAbXkECjISB0B4m3izSXws264qpCIOrVROkR8TCVGSqru58OuZsb0RQoB6SpR3MmP7m3jm-wDeWHIC77SRtW3mFKDURtImlN5qrCqfWx9UIs4_V2eX5aerxdUOfJhqYRAxJJ_hjFfDXL4f3Mi_yo40s79xRfk9Ctxirdb0PyUISATpW0UrklBFnSYxi1wfXSy_fqRgUOWzwDheMFkoQQnqmFm37rcRKUis_BtthlFn9RDOt88bk02-z8aNnbmff1A53vWFHsGDBD_FcfSXPdjBfh_2UgNfi7eJhfrdAQzH3txwXyhOomi9-BJTuX7QYCcI6gqWUbuWq1tEEZUDBCFXzrWNlZ1i6MQyJsLzch3EKNCHbd_6cRjXkutPROJMfwyXq9OL5ZlM6gzSzUu9ka4xqLvKU0RWm8Kgoc5i0SABMkYZBBudcVWlvJq72ivti65AZ8scfcPTufn8Cez2Q4_PQHSu6zzXvGomr6xQN856gpJIsWbRWZNBvrVQ6xJ1OT_0dRtCmFy3bN-W7dsm-2bwfjrlJvJ2_O_gA7bNdGAySwaHWzdoU8tet6pSmkDhoiwyeD3tpjbJEy2mR_p6LdPGKcJ6ZZ7B0-g-07W3Xvf87_d8AfcVF1iEvPBD2N3cjviSYM_Gvgr-_gsbe_uj
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V7QEu0FKgaUsxEgdAZJt4s0l8bBdWC3QrDlupnCLHnkiIklTdzYVfz4ztjRACxClRvpMZ22_imfcAXtbkBNYoHRd1OaYApdAxbcLY1grz3Ca1dSoRi8t8fpV9vJ5cb8HboRYGEV3yGY541c3l2870_KvsVDH7G1eU79C4P0l9tdbwR8VJSDjxW0krMeGKIkxjpok6XU6_nFM4KJOR4xxPmS6UwAR1zaxc98uY5ERW_o433bgzewiLzRP7dJNvo35dj8yP38gc__eVduFBAKDizHvMHmxh-wj2QhNfiVeBh_r1PnRnVt9ybyjeedl68dknc32n4U4Q2BUspHYTz-4QhdcOEIRdOdvW13aKrhFTnwrPy5WTo0Drtn1t-65fxVyBIgJr-mO4mr1fTudx0GeIzThT69iUGlWTW4rJCp1q1NRdTEokSMY4g4Cj0SbPpZVjU1ipbNqkaOosQVvyhG4yfgLbbdfiAYjGNI3lqlfF9JU5qtLUlsAkUrSZNrWOINlYqDKBvJwf-qZyQUyiKrZvxfatgn0jeDOccuuZO_518D7bZjgwmCWC440bVKFtryqZS0WwcJKlEbwYdlOr5KkW3SJ9vYqJ4yShvSyJ4Kl3n-HaG687_PM9n8O9-XJxUV18uPx0BPcll1u4LPFj2F7f9fiMQNC6PnG-_xNhUP7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Dynamic+Programming+for+Model-Free+Global+Stabilization+of+Control+Constrained+Continuous-Time+Systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Rizvi%2C+Syed+Ali+Asad&rft.au=Lin%2C+Zongli&rft.date=2022-02-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=52&rft.issue=2&rft.spage=1048&rft.epage=1060&rft_id=info:doi/10.1109%2FTCYB.2020.2989419&rft_id=info%3Apmid%2F32471805&rft.externalDocID=9103215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon