A time-stepping method for multibody systems with frictional impacts based on a return map and boundary layer theory

This work presents a new numerical integration method for determining dynamics of a class of multibody systems involving impact and friction. Specifically, these systems are subject to a set of equality constraints and can exhibit single frictional impact events. Such events are associated to signif...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of non-linear mechanics Vol. 131; p. 103683
Main Authors Natsiavas, S., Passas, P., Paraskevopoulos, E.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work presents a new numerical integration method for determining dynamics of a class of multibody systems involving impact and friction. Specifically, these systems are subject to a set of equality constraints and can exhibit single frictional impact events. Such events are associated to significant numerical stiffness, appearing in the equations of motion. The new method is a time-stepping scheme, involving proper incorporation of a novel return mapping into an augmented Lagrangian formulation, developed recently for systems with bilateral constraints only. Namely, when an impact is detected during a time step, this map is applied at the end of the step in order to bring the system position back to the configuration manifold with the allowable motions. The construction of this map is based on the concept of Jacobi fields on non-flat manifolds. Moreover, once an impact event is detected, the post-impact state is determined by employing a combination of analytical and numerical tools. First, a proper coordinate transformation is performed, bringing the system into a new set of coordinates, which are suitable for describing the impact dynamics. In these coordinates, the dominant dynamics is described by a system of three equations of motion only, which are valid during the short contact interval. In addition, these equations are geometrically discretized by using appropriate cubic splines on the configuration manifold. In this way, the inherent numerical stiffness of the class of systems examined is properly addressed, since it is restricted to a space with a much smaller dimension and a much shorter time scale. Finally, the accuracy and efficiency of the new method is demonstrated by applying it to a selected set of mechanical examples. •Time stepping numerical solution to the general single contact frictionless problem in mechanical systems with bilateral constraints.•Set up of an appropriate weak form in conjunction with application of an augmented Lagrangian formulation.•Application of a novel return map based on the concept of Jacobi fields on non-flat manifolds.•Dominant dynamics is expressed by a system of three ODEs inside a boundary layer.•Geometric discretization within the boundary layer using appropriate cubic splines.
AbstractList This work presents a new numerical integration method for determining dynamics of a class of multibody systems involving impact and friction. Specifically, these systems are subject to a set of equality constraints and can exhibit single frictional impact events. Such events are associated to significant numerical stiffness, appearing in the equations of motion. The new method is a time-stepping scheme, involving proper incorporation of a novel return mapping into an augmented Lagrangian formulation, developed recently for systems with bilateral constraints only. Namely, when an impact is detected during a time step, this map is applied at the end of the step in order to bring the system position back to the configuration manifold with the allowable motions. The construction of this map is based on the concept of Jacobi fields on non-flat manifolds. Moreover, once an impact event is detected, the post-impact state is determined by employing a combination of analytical and numerical tools. First, a proper coordinate transformation is performed, bringing the system into a new set of coordinates, which are suitable for describing the impact dynamics. In these coordinates, the dominant dynamics is described by a system of three equations of motion only, which are valid during the short contact interval. In addition, these equations are geometrically discretized by using appropriate cubic splines on the configuration manifold. In this way, the inherent numerical stiffness of the class of systems examined is properly addressed, since it is restricted to a space with a much smaller dimension and a much shorter time scale. Finally, the accuracy and efficiency of the new method is demonstrated by applying it to a selected set of mechanical examples.
This work presents a new numerical integration method for determining dynamics of a class of multibody systems involving impact and friction. Specifically, these systems are subject to a set of equality constraints and can exhibit single frictional impact events. Such events are associated to significant numerical stiffness, appearing in the equations of motion. The new method is a time-stepping scheme, involving proper incorporation of a novel return mapping into an augmented Lagrangian formulation, developed recently for systems with bilateral constraints only. Namely, when an impact is detected during a time step, this map is applied at the end of the step in order to bring the system position back to the configuration manifold with the allowable motions. The construction of this map is based on the concept of Jacobi fields on non-flat manifolds. Moreover, once an impact event is detected, the post-impact state is determined by employing a combination of analytical and numerical tools. First, a proper coordinate transformation is performed, bringing the system into a new set of coordinates, which are suitable for describing the impact dynamics. In these coordinates, the dominant dynamics is described by a system of three equations of motion only, which are valid during the short contact interval. In addition, these equations are geometrically discretized by using appropriate cubic splines on the configuration manifold. In this way, the inherent numerical stiffness of the class of systems examined is properly addressed, since it is restricted to a space with a much smaller dimension and a much shorter time scale. Finally, the accuracy and efficiency of the new method is demonstrated by applying it to a selected set of mechanical examples. •Time stepping numerical solution to the general single contact frictionless problem in mechanical systems with bilateral constraints.•Set up of an appropriate weak form in conjunction with application of an augmented Lagrangian formulation.•Application of a novel return map based on the concept of Jacobi fields on non-flat manifolds.•Dominant dynamics is expressed by a system of three ODEs inside a boundary layer.•Geometric discretization within the boundary layer using appropriate cubic splines.
ArticleNumber 103683
Author Natsiavas, S.
Passas, P.
Paraskevopoulos, E.
Author_xml – sequence: 1
  givenname: S.
  surname: Natsiavas
  fullname: Natsiavas, S.
  email: natsiava@auth.gr
– sequence: 2
  givenname: P.
  orcidid: 0000-0002-6259-5615
  surname: Passas
  fullname: Passas, P.
– sequence: 3
  givenname: E.
  surname: Paraskevopoulos
  fullname: Paraskevopoulos, E.
BookMark eNqNkE1r5DAMhk1podOP_6DSc6Z2nDjJaSnDblso9LJ7No4jdxwSO7U9XfLv18PsYdlTLxJIel9JzxU5d94hIXeMbhll4mHc2jGXJutm1NuSlizXuWj5GdmwtmmLWvD2nGwoLWnRVKK8JFcxjjRrK9psSHqEZGcsYsJlse4dZkx7P4DxAebDlGzvhxXimvtzhN827cEEq5P1Tk1g50XpFKFXEQfwDhQETIfgYFYLKDdA7w9uUGGFSa0YIO3Rh_WGXBg1Rbz9m6_Jrx_ff-6ei9e3p5fd42uhedWlHLseu77WuusYbSvGW1M3DdUVN0Jgi0bVqu9MI3hZMt0aw4caa9M3SinkFb8m9yffJfiPA8YkR5-PyytlWTMqKO-EyFPfTlM6-BgDGqltUscPU1B2kozKI2o5yn9QyyNqeUKdHbr_HJZg5_z1l7S7kxYziE-LQUZt0WkcbECd5ODtF1z-AI8jpZA
CitedBy_id crossref_primary_10_1016_j_mechmachtheory_2021_104591
crossref_primary_10_1016_j_mechmachtheory_2022_105034
crossref_primary_10_1007_s11071_023_08326_9
crossref_primary_10_1177_15589250231215456
crossref_primary_10_3390_act12080307
Cites_doi 10.1002/nme.958
10.1002/nme.361
10.1142/S0218202599000154
10.1016/S0045-7825(98)00383-1
10.1137/S1111111102406038
10.1016/0045-7825(85)90030-1
10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V
10.1016/j.ijnonlinmec.2016.08.007
10.1016/j.ijsolstr.2020.06.045
10.1088/0305-4470/31/22/016
10.1016/0045-7949(89)90081-3
10.1115/1.4044549
10.1007/BF00913408
10.1016/j.cma.2012.12.012
10.1007/s11071-012-0727-1
10.1016/j.ijnonlinmec.2015.07.007
10.1007/s00466-017-1397-0
10.1016/S0045-7825(00)00189-4
10.1023/B:MUBO.0000042930.24911.bf
10.1002/nme.1620361211
10.1007/s11071-019-05059-6
10.1002/nme.1620121008
10.1137/S0036142900378728
10.1016/j.ijsolstr.2018.05.008
10.1016/0045-7825(76)90018-9
10.1007/s10518-016-0068-4
10.1016/j.mechmachtheory.2017.04.008
10.1007/s11071-012-0413-3
10.1137/S003614290037873X
10.1016/S0926-2245(01)00054-7
10.1016/j.euromechsol.2008.01.001
10.1002/nme.2383
10.1016/j.cma.2015.03.001
10.1016/S0045-7825(98)00387-9
10.1007/s11071-014-1783-5
10.1002/nme.3266
10.1016/0045-7825(91)90022-X
10.1016/0045-7949(92)90540-G
10.1063/1.4746038
10.1016/j.ijnonlinmec.2017.05.007
10.1016/0045-7825(79)90086-0
10.1002/nme.1620310309
10.1016/j.ijsolstr.2012.09.001
10.1016/j.aim.2016.06.004
10.1017/S096249290100006X
10.1016/S0045-7825(99)00036-5
10.1016/j.cma.2014.07.025
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV May 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV May 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.ijnonlinmec.2021.103683
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1878-5638
ExternalDocumentID 10_1016_j_ijnonlinmec_2021_103683
S0020746221000172
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMJ
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M25
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SME
SPC
SPCBC
SPD
SPG
SSQ
SST
SSZ
T5K
T9H
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-c39be9b5cc991084138f5770c43f66e8efa5ab9f763221c8ff3d5e5fb7aaae343
IEDL.DBID .~1
ISSN 0020-7462
IngestDate Mon Jul 14 10:42:12 EDT 2025
Tue Jul 01 04:03:44 EDT 2025
Thu Apr 24 23:04:23 EDT 2025
Fri Feb 23 02:47:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multibody dynamics
Return map
Geometric cubic splines
Impact and friction
Augmented Lagrangian
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-c39be9b5cc991084138f5770c43f66e8efa5ab9f763221c8ff3d5e5fb7aaae343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6259-5615
PQID 2510603966
PQPubID 2045461
ParticipantIDs proquest_journals_2510603966
crossref_citationtrail_10_1016_j_ijnonlinmec_2021_103683
crossref_primary_10_1016_j_ijnonlinmec_2021_103683
elsevier_sciencedirect_doi_10_1016_j_ijnonlinmec_2021_103683
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of non-linear mechanics
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Paraskevopoulos, Natsiavas (b45) 2015; 77
Alart, Curnier (b32) 1991; 92
Kikuchi, Oden (b2) 1988
Belytschko, Neal (b10) 1991; 31
Pournaras, Karaoulanis, Natsiavas (b62) 2017; 94
Di Stasio, Dureisseix, Gravouil, Georges, Homolle (b39) 2019; 6
Natsiavas, Paraskevopoulos (b53) 2019; 14
Jean (b28) 1999; 177
Studer, Leine, Glocker (b34) 2008; 76
Bauchau (b41) 2011
Natsiavas (b1) 2019; 71
Shabanov (b65) 1998; 31
Papastavridis (b54) 1999
Gonçalves, Bernardino, Jorge, Lopes (b61) 2017; 115
Belytschko, Mullen (b22) 1978; 12
Lew, Marsden, Ortiz, West (b21) 2004; 60
Schindler, Rezaeib, Kursawe, Acary (b37) 2015; 290
Taylor, Papadopoulos (b12) 1993; 36
Fekak, Brun, Gravouil, Depale (b38) 2017; 60
Hallquist, Goudreau, Benson (b9) 1985; 51
Bloch (b55) 2003
Brogliato (b7) 2016
Flores, Leine, Glocker (b33) 2012; 69
Joyce (b66) 2016; 299
Moreau (b29) 1999; 177
Kapitaniak, Strzalko, Grabski, Kapitaniak (b70) 2012; 22
Wriggers (b4) 2006
Natsiavas, Paraskevopoulos (b48) 2018; 148–149
Hughes, Taylor, Sackman, Curnier, Kanoknukulchai (b8) 1976; 8
Simo, Tarnow (b15) 1992; 43
Giouvanidis, Dimitrakopoulos (b27) 2017; 15
Acary, Brogliato (b26) 2008; vol. 35
Geradin, Cardona (b40) 2001
Brenan, Campbell, Petzhold (b42) 1989
Hughes, Pister, Taylor (b23) 1979; 17/18
Brüls, Acary, Cardona (b36) 2014; 281
Natsiavas, Paraskevopoulos (b44) 2015; 79
Nocedal, Wright (b60) 1999
Gonzalez (b16) 2000; 190
Paraskevopoulos, Natsiavas (b63) 2013; 72
Paraskevopoulos, Passas, Natsiavas (b52) 2020; 202
Potosakis, Paraskevopoulos, Natsiavas (b46) 2020; 99
Acary (b35) 2013; 256
Pandolfi, Kane, Marsden, Ortiz (b17) 2002; 53
Melrose (b57) 1993; vol. 4
Neimark, Fufaev (b58) 1972; vol. 33
Udriste (b51) 1994; vol. 297
Paoli, Schatzman (b30) 2002; 40
Kobayashi, Nomizu (b67) 1969
Khenous, Laborde, Renard (b24) 2008; 27
Paraskevopoulos, Natsiavas (b47) 2017; 95
Bertsekas (b59) 1982
Marsden, West (b20) 2001; 10
Camarinha, Silva Leite, Crouch (b68) 2001; 15
Simo, Hughes (b50) 1998
Paraskevopoulos, Natsiavas (b64) 2013; 50
Laursen (b3) 2002
Fetecau, Marsden, Ortiz, West (b18) 2003; 2
Ben Belgacem, Hild, Laborde (b25) 1999; 9
Udwadia, Kalaba (b43) 1996
Frankel (b56) 1997
Schiehlen R. Seifried (b69) 2004; 12
Simo, Laursen (b11) 1992; 42
Laursen, Chawla (b13) 1997; 40
Giannakopoulos (b49) 1989; 32
Armero, Petocz (b14) 1999; 179
Paoli, Schatzman (b31) 2002; 40
Pfeiffer, Glocker (b5) 1996
Stronge (b6) 2000
Ryckman, Lew (b19) 2012; 89
Natsiavas (10.1016/j.ijnonlinmec.2021.103683_b44) 2015; 79
Giannakopoulos (10.1016/j.ijnonlinmec.2021.103683_b49) 1989; 32
Simo (10.1016/j.ijnonlinmec.2021.103683_b11) 1992; 42
Schiehlen R. Seifried (10.1016/j.ijnonlinmec.2021.103683_b69) 2004; 12
Pfeiffer (10.1016/j.ijnonlinmec.2021.103683_b5) 1996
Natsiavas (10.1016/j.ijnonlinmec.2021.103683_b48) 2018; 148–149
Nocedal (10.1016/j.ijnonlinmec.2021.103683_b60) 1999
Hallquist (10.1016/j.ijnonlinmec.2021.103683_b9) 1985; 51
Paoli (10.1016/j.ijnonlinmec.2021.103683_b31) 2002; 40
Brüls (10.1016/j.ijnonlinmec.2021.103683_b36) 2014; 281
Fekak (10.1016/j.ijnonlinmec.2021.103683_b38) 2017; 60
Wriggers (10.1016/j.ijnonlinmec.2021.103683_b4) 2006
Paraskevopoulos (10.1016/j.ijnonlinmec.2021.103683_b47) 2017; 95
Ben Belgacem (10.1016/j.ijnonlinmec.2021.103683_b25) 1999; 9
Kobayashi (10.1016/j.ijnonlinmec.2021.103683_b67) 1969
Simo (10.1016/j.ijnonlinmec.2021.103683_b15) 1992; 43
Kikuchi (10.1016/j.ijnonlinmec.2021.103683_b2) 1988
Simo (10.1016/j.ijnonlinmec.2021.103683_b50) 1998
Shabanov (10.1016/j.ijnonlinmec.2021.103683_b65) 1998; 31
Paraskevopoulos (10.1016/j.ijnonlinmec.2021.103683_b64) 2013; 50
Lew (10.1016/j.ijnonlinmec.2021.103683_b21) 2004; 60
Belytschko (10.1016/j.ijnonlinmec.2021.103683_b10) 1991; 31
Kapitaniak (10.1016/j.ijnonlinmec.2021.103683_b70) 2012; 22
Bloch (10.1016/j.ijnonlinmec.2021.103683_b55) 2003
Natsiavas (10.1016/j.ijnonlinmec.2021.103683_b53) 2019; 14
Paraskevopoulos (10.1016/j.ijnonlinmec.2021.103683_b45) 2015; 77
Pandolfi (10.1016/j.ijnonlinmec.2021.103683_b17) 2002; 53
Studer (10.1016/j.ijnonlinmec.2021.103683_b34) 2008; 76
Brenan (10.1016/j.ijnonlinmec.2021.103683_b42) 1989
Laursen (10.1016/j.ijnonlinmec.2021.103683_b13) 1997; 40
Acary (10.1016/j.ijnonlinmec.2021.103683_b26) 2008; vol. 35
Melrose (10.1016/j.ijnonlinmec.2021.103683_b57) 1993; vol. 4
Moreau (10.1016/j.ijnonlinmec.2021.103683_b29) 1999; 177
Camarinha (10.1016/j.ijnonlinmec.2021.103683_b68) 2001; 15
Neimark (10.1016/j.ijnonlinmec.2021.103683_b58) 1972; vol. 33
Geradin (10.1016/j.ijnonlinmec.2021.103683_b40) 2001
Paraskevopoulos (10.1016/j.ijnonlinmec.2021.103683_b52) 2020; 202
Hughes (10.1016/j.ijnonlinmec.2021.103683_b8) 1976; 8
Di Stasio (10.1016/j.ijnonlinmec.2021.103683_b39) 2019; 6
Bauchau (10.1016/j.ijnonlinmec.2021.103683_b41) 2011
Papastavridis (10.1016/j.ijnonlinmec.2021.103683_b54) 1999
Stronge (10.1016/j.ijnonlinmec.2021.103683_b6) 2000
Alart (10.1016/j.ijnonlinmec.2021.103683_b32) 1991; 92
Gonzalez (10.1016/j.ijnonlinmec.2021.103683_b16) 2000; 190
Udwadia (10.1016/j.ijnonlinmec.2021.103683_b43) 1996
Jean (10.1016/j.ijnonlinmec.2021.103683_b28) 1999; 177
Fetecau (10.1016/j.ijnonlinmec.2021.103683_b18) 2003; 2
Paraskevopoulos (10.1016/j.ijnonlinmec.2021.103683_b63) 2013; 72
Joyce (10.1016/j.ijnonlinmec.2021.103683_b66) 2016; 299
Ryckman (10.1016/j.ijnonlinmec.2021.103683_b19) 2012; 89
Acary (10.1016/j.ijnonlinmec.2021.103683_b35) 2013; 256
Laursen (10.1016/j.ijnonlinmec.2021.103683_b3) 2002
Hughes (10.1016/j.ijnonlinmec.2021.103683_b23) 1979; 17/18
Flores (10.1016/j.ijnonlinmec.2021.103683_b33) 2012; 69
Udriste (10.1016/j.ijnonlinmec.2021.103683_b51) 1994; vol. 297
Natsiavas (10.1016/j.ijnonlinmec.2021.103683_b1) 2019; 71
Bertsekas (10.1016/j.ijnonlinmec.2021.103683_b59) 1982
Marsden (10.1016/j.ijnonlinmec.2021.103683_b20) 2001; 10
Giouvanidis (10.1016/j.ijnonlinmec.2021.103683_b27) 2017; 15
Khenous (10.1016/j.ijnonlinmec.2021.103683_b24) 2008; 27
Armero (10.1016/j.ijnonlinmec.2021.103683_b14) 1999; 179
Paoli (10.1016/j.ijnonlinmec.2021.103683_b30) 2002; 40
Brogliato (10.1016/j.ijnonlinmec.2021.103683_b7) 2016
Gonçalves (10.1016/j.ijnonlinmec.2021.103683_b61) 2017; 115
Belytschko (10.1016/j.ijnonlinmec.2021.103683_b22) 1978; 12
Potosakis (10.1016/j.ijnonlinmec.2021.103683_b46) 2020; 99
Pournaras (10.1016/j.ijnonlinmec.2021.103683_b62) 2017; 94
Frankel (10.1016/j.ijnonlinmec.2021.103683_b56) 1997
Schindler (10.1016/j.ijnonlinmec.2021.103683_b37) 2015; 290
Taylor (10.1016/j.ijnonlinmec.2021.103683_b12) 1993; 36
References_xml – year: 1997
  ident: b56
  article-title: The Geometry of Physics: An Introduction
– volume: 31
  start-page: 5177
  year: 1998
  end-page: 5190
  ident: b65
  article-title: Constrained systems and analytical mechanics in spaces with torsion
  publication-title: J. Phys. A: Math. Gen.
– volume: 8
  start-page: 249
  year: 1976
  end-page: 276
  ident: b8
  article-title: A finite element method for a class of contact-impact problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 31
  start-page: 547
  year: 1991
  end-page: 572
  ident: b10
  article-title: Contact-impact by the pinball algorithm with penalty and Lagrangian methods
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2011
  ident: b41
  article-title: Flexible Multibody Dynamics
– volume: 72
  start-page: 455
  year: 2013
  end-page: 475
  ident: b63
  article-title: On application of Newton’s law to mechanical systems with motion constraints
  publication-title: Nonlinear Dynam.
– volume: 40
  start-page: 734
  year: 2002
  end-page: 768
  ident: b31
  article-title: A numerical scheme for impact problems II: the multi-dimensional case
  publication-title: SIAM J. Numer. Anal.
– volume: 36
  start-page: 2123
  year: 1993
  end-page: 2140
  ident: b12
  article-title: On a finite element method for dynamic contact/impact problems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 115
  start-page: 77
  year: 2017
  end-page: 96
  ident: b61
  article-title: A benchmark study on accuracy-controlled distance calculation between superellipsoid and superovoid contact geometries
  publication-title: Mech. Mach. Theory
– volume: 12
  start-page: 1575
  year: 1978
  end-page: 1586
  ident: b22
  article-title: Stability of explicit–implicit mesh partitions in time integration
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 6
  year: 2019
  ident: b39
  article-title: Benchmark cases for robust explicit time integrators in non-smooth transient dynamics
  publication-title: Adv. Model. Simul. Eng. Sci.
– volume: 95
  start-page: 117
  year: 2017
  end-page: 131
  ident: b47
  article-title: A geometric solution to the general single contact frictionless problem by combining concepts of analytical dynamics and b-calculus
  publication-title: Int. J. Non-Linear Mech.
– volume: 190
  start-page: 1763
  year: 2000
  end-page: 1783
  ident: b16
  article-title: Exact energy and momentum conserving algorithms for general models in nonlinear elasticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 179
  start-page: 151
  year: 1999
  end-page: 178
  ident: b14
  article-title: A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 40
  start-page: 702
  year: 2002
  end-page: 733
  ident: b30
  article-title: A numerical scheme for impact problems I: the one-dimensional case
  publication-title: SIAM J. Numer. Anal.
– volume: 14
  year: 2019
  ident: b53
  article-title: A boundary layer approach to multibody systems involving single frictional impacts
  publication-title: ASME J. Comput. Nonlinear Dyn.
– year: 2003
  ident: b55
  article-title: Nonholonomic Mechanics and Control
– volume: vol. 33
  year: 1972
  ident: b58
  publication-title: Dynamics of Nonholonomic Systems
– volume: 17/18
  start-page: 159
  year: 1979
  end-page: 182
  ident: b23
  article-title: Implicit-explicit finite elements in nonlinear transient analysis
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 15
  start-page: 2273
  year: 2017
  end-page: 2304
  ident: b27
  article-title: Nonsmooth dynamics analysis of sticking impacts in rocking structures
  publication-title: Bull. Earthq. Eng.
– volume: 202
  start-page: 822
  year: 2020
  end-page: 834
  ident: b52
  article-title: A novel return map in non-flat configuration spaces of multibody systems with impact
  publication-title: Int. J. Solids Struct.
– year: 1999
  ident: b60
  publication-title: Numerical Optimization
– volume: 15
  start-page: 107
  year: 2001
  end-page: 135
  ident: b68
  article-title: On the geometry of Riemannian cubic polynomials
  publication-title: Differential Geom. Appl.
– year: 2006
  ident: b4
  article-title: Computational Contact Mechanics
– volume: 79
  start-page: 1911
  year: 2015
  end-page: 1938
  ident: b44
  article-title: A set of ordinary differential equations of motion for constrained mechanical systems
  publication-title: Nonlinear Dynam.
– year: 2000
  ident: b6
  article-title: Impact Mechanics
– year: 1969
  ident: b67
  article-title: Foundations of Differential Geometry, Vol. II
– volume: 92
  start-page: 353
  year: 1991
  end-page: 375
  ident: b32
  article-title: A mixed formulation for frictional contact problems prone to Newton like solution methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 32
  start-page: 157
  year: 1989
  end-page: 167
  ident: b49
  article-title: The return mapping method for the integration of friction constitutive relations
  publication-title: Comput. Struct.
– volume: 12
  start-page: 1
  year: 2004
  end-page: 16
  ident: b69
  article-title: Three approaches for elastodynamic contact in multibody systems
  publication-title: Multibody Syst. Dyn.
– volume: 99
  start-page: 753
  year: 2020
  end-page: 776
  ident: b46
  article-title: Application of an augmented Lagrangian approach to multibody systems with equality motion constraints
  publication-title: Nonlinear Dynam.
– volume: 148–149
  start-page: 140
  year: 2018
  end-page: 156
  ident: b48
  article-title: An analytical dynamics approach for mechanical systems involving a single frictional contact using b-geometry
  publication-title: Int. J. Solids Struct.
– year: 1989
  ident: b42
  article-title: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
– volume: 69
  start-page: 2117
  year: 2012
  end-page: 2133
  ident: b33
  article-title: Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems
  publication-title: Nonlinear Dynam.
– volume: 281
  start-page: 131
  year: 2014
  end-page: 161
  ident: b36
  article-title: Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2002
  ident: b3
  article-title: Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
– volume: 53
  start-page: 1801
  year: 2002
  end-page: 1829
  ident: b17
  article-title: Time-discretized variational formulation of non-smooth frictional contact
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 71
  year: 2019
  ident: b1
  article-title: Analytical modeling of discrete mechanical systems involving contact, impact and friction
  publication-title: ASME J. Appl. Mech. Rev.
– volume: 299
  start-page: 760
  year: 2016
  end-page: 862
  ident: b66
  article-title: A generalization of manifolds with corners
  publication-title: Adv. Math.
– volume: 51
  start-page: 107
  year: 1985
  end-page: 137
  ident: b9
  article-title: Sliding interfaces with contact-impact in large-scale Lagrange computations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 290
  start-page: 250
  year: 2015
  end-page: 276
  ident: b37
  article-title: Half-explicit time stepping schemes on velocity level based on time-discontinuous Galerkin methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: vol. 297
  year: 1994
  ident: b51
  publication-title: Convex Functions and Optimization Methods on Riemannian Manifolds
– year: 1996
  ident: b43
  article-title: Analytical Dynamics a New Approach
– volume: 94
  start-page: 309
  year: 2017
  end-page: 322
  ident: b62
  article-title: Dynamics of mechanical systems involving impact and friction using a new contact detection algorithm
  publication-title: Int. J. Non-Linear Mech.
– year: 1996
  ident: b5
  article-title: Multibody Dynamics with Unilateral Contacts
– year: 1988
  ident: b2
  article-title: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods
– volume: 10
  start-page: 357
  year: 2001
  end-page: 514
  ident: b20
  article-title: Discrete mechanics and variational integrators
  publication-title: Acta Numer.
– volume: vol. 35
  year: 2008
  ident: b26
  publication-title: Numerical Methods for Nonsmooth Dynamical Systems
– volume: 177
  start-page: 329
  year: 1999
  end-page: 349
  ident: b29
  article-title: Numerical aspects of the sweeping process
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 76
  start-page: 1747
  year: 2008
  end-page: 1781
  ident: b34
  article-title: Step size adjustment and extrapolation for time stepping schemes in non-smooth dynamics
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: vol. 4
  year: 1993
  ident: b57
  publication-title: The Atiyah-Patodi-Singer Index Theorem
– year: 1998
  ident: b50
  article-title: Computational Inelasticity
– volume: 89
  start-page: 869
  year: 2012
  end-page: 896
  ident: b19
  article-title: An explicit asynchronous contact algorithm for elastic body-rigid wall interaction
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 42
  start-page: 97
  year: 1992
  end-page: 116
  ident: b11
  article-title: An Augmented Lagrangian treatment of contact problems involving friction
  publication-title: Comput. Struct.
– year: 2016
  ident: b7
  article-title: Nonsmooth Mechanics: Models, Dynamics and Control
– volume: 50
  start-page: 57
  year: 2013
  end-page: 72
  ident: b64
  article-title: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory
  publication-title: Int. J. Solids Struct.
– volume: 43
  start-page: 757
  year: 1992
  end-page: 793
  ident: b15
  article-title: The discrete energy–momentum method. Conserving algorithms for nonlinear elastodynamics
  publication-title: Z. Angew. Math. Phys.
– year: 1982
  ident: b59
  article-title: Constraint Optimization and Lagrange Multiplier Methods
– year: 1999
  ident: b54
  article-title: Tensor Calculus and Analytical Dynamics
– volume: 60
  start-page: 1
  year: 2017
  end-page: 21
  ident: b38
  article-title: A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics
  publication-title: Comput. Mech.
– year: 2001
  ident: b40
  article-title: Flexible Multibody Dynamics
– volume: 2
  start-page: 381
  year: 2003
  end-page: 416
  ident: b18
  article-title: Nonsmooth Lagrangian mechanics and variational collision integrators
  publication-title: SIAM J. Appl. Dyn. Syst.
– volume: 256
  start-page: 224
  year: 2013
  end-page: 250
  ident: b35
  article-title: Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 77
  start-page: 208
  year: 2015
  end-page: 222
  ident: b45
  article-title: Weak formulation and first order form of the equations of motion for a class of constrained mechanical systems
  publication-title: Int. J. Non-Linear Mech.
– volume: 60
  start-page: 153
  year: 2004
  end-page: 212
  ident: b21
  article-title: Variational time integrators
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 9
  start-page: 287
  year: 1999
  end-page: 303
  ident: b25
  article-title: Extension of the mortar finite element to a variational inequality modeling unilateral contact
  publication-title: Math. Models Appl. Sci.
– volume: 22
  year: 2012
  ident: b70
  article-title: The three-dimensional dynamics of the die throw
  publication-title: Chaos
– volume: 177
  start-page: 235
  year: 1999
  end-page: 257
  ident: b28
  article-title: The non-smooth contact dynamics method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 27
  start-page: 918
  year: 2008
  end-page: 932
  ident: b24
  article-title: Mass redistribution method for finite element contact problems in elastodynamics
  publication-title: Eur. J. Mech. A Solids
– volume: 40
  start-page: 863
  year: 1997
  end-page: 886
  ident: b13
  article-title: Design of energy conserving algorithms for frictionless dynamic contact problems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 60
  start-page: 153
  year: 2004
  ident: 10.1016/j.ijnonlinmec.2021.103683_b21
  article-title: Variational time integrators
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.958
– volume: 53
  start-page: 1801
  year: 2002
  ident: 10.1016/j.ijnonlinmec.2021.103683_b17
  article-title: Time-discretized variational formulation of non-smooth frictional contact
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.361
– year: 2006
  ident: 10.1016/j.ijnonlinmec.2021.103683_b4
– volume: 9
  start-page: 287
  year: 1999
  ident: 10.1016/j.ijnonlinmec.2021.103683_b25
  article-title: Extension of the mortar finite element to a variational inequality modeling unilateral contact
  publication-title: Math. Models Appl. Sci.
  doi: 10.1142/S0218202599000154
– volume: 177
  start-page: 235
  year: 1999
  ident: 10.1016/j.ijnonlinmec.2021.103683_b28
  article-title: The non-smooth contact dynamics method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(98)00383-1
– year: 2003
  ident: 10.1016/j.ijnonlinmec.2021.103683_b55
– volume: 2
  start-page: 381
  year: 2003
  ident: 10.1016/j.ijnonlinmec.2021.103683_b18
  article-title: Nonsmooth Lagrangian mechanics and variational collision integrators
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/S1111111102406038
– year: 2000
  ident: 10.1016/j.ijnonlinmec.2021.103683_b6
– volume: 51
  start-page: 107
  year: 1985
  ident: 10.1016/j.ijnonlinmec.2021.103683_b9
  article-title: Sliding interfaces with contact-impact in large-scale Lagrange computations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(85)90030-1
– volume: 40
  start-page: 863
  year: 1997
  ident: 10.1016/j.ijnonlinmec.2021.103683_b13
  article-title: Design of energy conserving algorithms for frictionless dynamic contact problems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V
– volume: vol. 35
  year: 2008
  ident: 10.1016/j.ijnonlinmec.2021.103683_b26
– volume: 94
  start-page: 309
  year: 2017
  ident: 10.1016/j.ijnonlinmec.2021.103683_b62
  article-title: Dynamics of mechanical systems involving impact and friction using a new contact detection algorithm
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2016.08.007
– volume: 14
  year: 2019
  ident: 10.1016/j.ijnonlinmec.2021.103683_b53
  article-title: A boundary layer approach to multibody systems involving single frictional impacts
  publication-title: ASME J. Comput. Nonlinear Dyn.
– volume: 202
  start-page: 822
  year: 2020
  ident: 10.1016/j.ijnonlinmec.2021.103683_b52
  article-title: A novel return map in non-flat configuration spaces of multibody systems with impact
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2020.06.045
– volume: 6
  issue: 2
  year: 2019
  ident: 10.1016/j.ijnonlinmec.2021.103683_b39
  article-title: Benchmark cases for robust explicit time integrators in non-smooth transient dynamics
  publication-title: Adv. Model. Simul. Eng. Sci.
– volume: 31
  start-page: 5177
  year: 1998
  ident: 10.1016/j.ijnonlinmec.2021.103683_b65
  article-title: Constrained systems and analytical mechanics in spaces with torsion
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/31/22/016
– volume: 32
  start-page: 157
  year: 1989
  ident: 10.1016/j.ijnonlinmec.2021.103683_b49
  article-title: The return mapping method for the integration of friction constitutive relations
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(89)90081-3
– year: 1982
  ident: 10.1016/j.ijnonlinmec.2021.103683_b59
– year: 2001
  ident: 10.1016/j.ijnonlinmec.2021.103683_b40
– volume: 71
  year: 2019
  ident: 10.1016/j.ijnonlinmec.2021.103683_b1
  article-title: Analytical modeling of discrete mechanical systems involving contact, impact and friction
  publication-title: ASME J. Appl. Mech. Rev.
  doi: 10.1115/1.4044549
– volume: 43
  start-page: 757
  year: 1992
  ident: 10.1016/j.ijnonlinmec.2021.103683_b15
  article-title: The discrete energy–momentum method. Conserving algorithms for nonlinear elastodynamics
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF00913408
– year: 1996
  ident: 10.1016/j.ijnonlinmec.2021.103683_b43
– volume: 256
  start-page: 224
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2021.103683_b35
  article-title: Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.12.012
– volume: 72
  start-page: 455
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2021.103683_b63
  article-title: On application of Newton’s law to mechanical systems with motion constraints
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-012-0727-1
– volume: 77
  start-page: 208
  year: 2015
  ident: 10.1016/j.ijnonlinmec.2021.103683_b45
  article-title: Weak formulation and first order form of the equations of motion for a class of constrained mechanical systems
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2015.07.007
– year: 1997
  ident: 10.1016/j.ijnonlinmec.2021.103683_b56
– year: 1996
  ident: 10.1016/j.ijnonlinmec.2021.103683_b5
– volume: 60
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijnonlinmec.2021.103683_b38
  article-title: A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-017-1397-0
– volume: 190
  start-page: 1763
  year: 2000
  ident: 10.1016/j.ijnonlinmec.2021.103683_b16
  article-title: Exact energy and momentum conserving algorithms for general models in nonlinear elasticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(00)00189-4
– volume: vol. 33
  year: 1972
  ident: 10.1016/j.ijnonlinmec.2021.103683_b58
– volume: 12
  start-page: 1
  year: 2004
  ident: 10.1016/j.ijnonlinmec.2021.103683_b69
  article-title: Three approaches for elastodynamic contact in multibody systems
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/B:MUBO.0000042930.24911.bf
– volume: 36
  start-page: 2123
  year: 1993
  ident: 10.1016/j.ijnonlinmec.2021.103683_b12
  article-title: On a finite element method for dynamic contact/impact problems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620361211
– volume: 99
  start-page: 753
  year: 2020
  ident: 10.1016/j.ijnonlinmec.2021.103683_b46
  article-title: Application of an augmented Lagrangian approach to multibody systems with equality motion constraints
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-019-05059-6
– year: 2011
  ident: 10.1016/j.ijnonlinmec.2021.103683_b41
– volume: 12
  start-page: 1575
  year: 1978
  ident: 10.1016/j.ijnonlinmec.2021.103683_b22
  article-title: Stability of explicit–implicit mesh partitions in time integration
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620121008
– year: 1969
  ident: 10.1016/j.ijnonlinmec.2021.103683_b67
– volume: 40
  start-page: 702
  year: 2002
  ident: 10.1016/j.ijnonlinmec.2021.103683_b30
  article-title: A numerical scheme for impact problems I: the one-dimensional case
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900378728
– volume: 148–149
  start-page: 140
  year: 2018
  ident: 10.1016/j.ijnonlinmec.2021.103683_b48
  article-title: An analytical dynamics approach for mechanical systems involving a single frictional contact using b-geometry
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2018.05.008
– volume: 8
  start-page: 249
  year: 1976
  ident: 10.1016/j.ijnonlinmec.2021.103683_b8
  article-title: A finite element method for a class of contact-impact problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(76)90018-9
– volume: 15
  start-page: 2273
  year: 2017
  ident: 10.1016/j.ijnonlinmec.2021.103683_b27
  article-title: Nonsmooth dynamics analysis of sticking impacts in rocking structures
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-016-0068-4
– volume: 115
  start-page: 77
  year: 2017
  ident: 10.1016/j.ijnonlinmec.2021.103683_b61
  article-title: A benchmark study on accuracy-controlled distance calculation between superellipsoid and superovoid contact geometries
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.04.008
– year: 1999
  ident: 10.1016/j.ijnonlinmec.2021.103683_b60
– volume: 69
  start-page: 2117
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2021.103683_b33
  article-title: Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-012-0413-3
– year: 1989
  ident: 10.1016/j.ijnonlinmec.2021.103683_b42
– volume: 40
  start-page: 734
  year: 2002
  ident: 10.1016/j.ijnonlinmec.2021.103683_b31
  article-title: A numerical scheme for impact problems II: the multi-dimensional case
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614290037873X
– volume: 15
  start-page: 107
  year: 2001
  ident: 10.1016/j.ijnonlinmec.2021.103683_b68
  article-title: On the geometry of Riemannian cubic polynomials
  publication-title: Differential Geom. Appl.
  doi: 10.1016/S0926-2245(01)00054-7
– volume: 27
  start-page: 918
  year: 2008
  ident: 10.1016/j.ijnonlinmec.2021.103683_b24
  article-title: Mass redistribution method for finite element contact problems in elastodynamics
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2008.01.001
– volume: 76
  start-page: 1747
  year: 2008
  ident: 10.1016/j.ijnonlinmec.2021.103683_b34
  article-title: Step size adjustment and extrapolation for time stepping schemes in non-smooth dynamics
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2383
– volume: 290
  start-page: 250
  year: 2015
  ident: 10.1016/j.ijnonlinmec.2021.103683_b37
  article-title: Half-explicit time stepping schemes on velocity level based on time-discontinuous Galerkin methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2015.03.001
– volume: 177
  start-page: 329
  year: 1999
  ident: 10.1016/j.ijnonlinmec.2021.103683_b29
  article-title: Numerical aspects of the sweeping process
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(98)00387-9
– year: 1998
  ident: 10.1016/j.ijnonlinmec.2021.103683_b50
– volume: 79
  start-page: 1911
  year: 2015
  ident: 10.1016/j.ijnonlinmec.2021.103683_b44
  article-title: A set of ordinary differential equations of motion for constrained mechanical systems
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-014-1783-5
– volume: 89
  start-page: 869
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2021.103683_b19
  article-title: An explicit asynchronous contact algorithm for elastic body-rigid wall interaction
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.3266
– volume: 92
  start-page: 353
  year: 1991
  ident: 10.1016/j.ijnonlinmec.2021.103683_b32
  article-title: A mixed formulation for frictional contact problems prone to Newton like solution methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(91)90022-X
– year: 1988
  ident: 10.1016/j.ijnonlinmec.2021.103683_b2
– volume: 42
  start-page: 97
  year: 1992
  ident: 10.1016/j.ijnonlinmec.2021.103683_b11
  article-title: An Augmented Lagrangian treatment of contact problems involving friction
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(92)90540-G
– volume: 22
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2021.103683_b70
  article-title: The three-dimensional dynamics of the die throw
  publication-title: Chaos
  doi: 10.1063/1.4746038
– volume: 95
  start-page: 117
  year: 2017
  ident: 10.1016/j.ijnonlinmec.2021.103683_b47
  article-title: A geometric solution to the general single contact frictionless problem by combining concepts of analytical dynamics and b-calculus
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2017.05.007
– volume: 17/18
  start-page: 159
  year: 1979
  ident: 10.1016/j.ijnonlinmec.2021.103683_b23
  article-title: Implicit-explicit finite elements in nonlinear transient analysis
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(79)90086-0
– year: 2002
  ident: 10.1016/j.ijnonlinmec.2021.103683_b3
– volume: 31
  start-page: 547
  year: 1991
  ident: 10.1016/j.ijnonlinmec.2021.103683_b10
  article-title: Contact-impact by the pinball algorithm with penalty and Lagrangian methods
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620310309
– volume: 50
  start-page: 57
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2021.103683_b64
  article-title: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.09.001
– year: 2016
  ident: 10.1016/j.ijnonlinmec.2021.103683_b7
– volume: 299
  start-page: 760
  year: 2016
  ident: 10.1016/j.ijnonlinmec.2021.103683_b66
  article-title: A generalization of manifolds with corners
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.06.004
– volume: 10
  start-page: 357
  year: 2001
  ident: 10.1016/j.ijnonlinmec.2021.103683_b20
  article-title: Discrete mechanics and variational integrators
  publication-title: Acta Numer.
  doi: 10.1017/S096249290100006X
– volume: 179
  start-page: 151
  year: 1999
  ident: 10.1016/j.ijnonlinmec.2021.103683_b14
  article-title: A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00036-5
– volume: vol. 297
  year: 1994
  ident: 10.1016/j.ijnonlinmec.2021.103683_b51
– volume: vol. 4
  year: 1993
  ident: 10.1016/j.ijnonlinmec.2021.103683_b57
– volume: 281
  start-page: 131
  year: 2014
  ident: 10.1016/j.ijnonlinmec.2021.103683_b36
  article-title: Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2014.07.025
– year: 1999
  ident: 10.1016/j.ijnonlinmec.2021.103683_b54
SSID ssj0016407
Score 2.3147712
Snippet This work presents a new numerical integration method for determining dynamics of a class of multibody systems involving impact and friction. Specifically,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103683
SubjectTerms Augmented Lagrangian
Boundary layers
Configurations
Coordinate transformations
Equations of motion
Geometric cubic splines
Impact and friction
Mathematical analysis
Multibody dynamics
Multibody systems
Numerical integration
Return map
Stiffness
Title A time-stepping method for multibody systems with frictional impacts based on a return map and boundary layer theory
URI https://dx.doi.org/10.1016/j.ijnonlinmec.2021.103683
https://www.proquest.com/docview/2510603966
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEF5EodSHorWirZUR-pqay26SXejLIZVT0acKvi37K3KiuePufLgX_3ZndpOrFgqCL4EN2RBmNjOTzTffx9gP_CTxChNdZovSZcJKlynvi6zwwdSlkkFGio3Lq2p0Lc5vyps1dtL3whCssov9KabHaN2dOe6seTwdj6nHtyCxjKIYRNYXisNC1LTKfz6tYB4D-lGVYB55Rld_YEd_MV7juzYSUjwEYjMsBtSCXkn-vxz1T7SOKeh0i33qakcYpsfbZmuh_cw2XzAK4uhyRcM632GLIZB2fIaeJBqGW0h60YCFKkQkoZ34JSQy5znQliyQbFDaHoTUQDkHSnQeJi0YmAXMUC08mCmY1oONmkyzJdwbrNwhNkUuv7Dr099_TkZZJ7OQOS7UAo_KBmVL57BWzCVmNdmUdZ07wZuqCjI0pjRWNRiJ0NZONg33ZSgbWxtjAhd8l62jGcMeAxVq7g03ylVcVANJXbkkk2elCU64sM9kb1jtOg5yksK41z3Y7E6_8Ikmn-jkk31WrKZOExHHWyb96r2nX60qjQnjLdMPeo_r7tWeaywI8yrn-Jn49X13_8Y-0iihJw_Y-mL2GL5jhbOwh3EJH7KN4dnF6OoZkTz-hQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6CA30cSp80bdpOoVcRWauVdqEXExqcJvYpgdyWfak4JIqx3YP_fWe0kpsWCoFeBNIyQsysZmZ3Z74P4AstSYKmQJe5QvqsdMpnOoQiK0K0tdQqqg5iYzavppfl9yt5tQfHQy8Ml1X2vj_59M5b90-Oem0eLRcL7vEtmCyjKMYd6gv54X1Gp5Ij2J-cnk3nu8MEPqtKlR55xgKP4PPvMq_FddthUtxGBjQsxtyFXinxrzD1l8PuotDJc3jWp484SV_4AvZi-xKe3gMVpLvZDol1_Qo2E2T6-IyMyUgMPzBRRiPlqtgVE7q7sMWE57xG3pVFZg5KO4SYeijXyLEu4F2LFleRglSLt3aJtg3oOlqm1RZvLCXv2PVFbl_D5cm3i-Np1jMtZF6UekNX7aJ20ntKF3NFgU01sq5zX4qmqqKKjZXW6YacEanbq6YRQUbZuNpaG0Up3sCI1BjfAupYi2CF1b4SZTVW3JjLTHlO2ehLHw9ADYo1vochZzaMGzPUm12bezYxbBOTbHIAxU50mbA4HiL0dbCe-WNiGYoZDxE_HCxu-r97bSgnzKtc0Erx3f-9_RM8nl7Mzs356fzsPTzhkVRMeQijzepn_EAJz8Z97Cf0LzyIAUU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+time-stepping+method+for+multibody+systems+with+frictional+impacts+based+on+a+return+map+and+boundary+layer+theory&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Natsiavas%2C+S&rft.au=Passas%2C+P&rft.au=Paraskevopoulos%2C+E&rft.date=2021-05-01&rft.pub=Elsevier+BV&rft.issn=0020-7462&rft.eissn=1878-5638&rft.volume=131&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijnonlinmec.2021.103683&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon