EEG Based Emotion Recognition by Combining Functional Connectivity Network and Local Activations

Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related inform...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 66; no. 10; pp. 2869 - 2881
Main Authors Li, Peiyang, Zhang, Yangsong, Xu, Peng, Liu, Huan, Si, Yajing, Li, Cunbo, Li, Fali, Zhu, Xuyang, Huang, Xiaoye, Zeng, Ying, Yao, Dezhong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. Methods: We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Results: Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. Significance: The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.
AbstractList Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. Methods: We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Results: Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. Significance: The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.
Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.
Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition.OBJECTIVESpectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition.We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition.METHODSWe constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition.Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing.RESULTSRecognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing.The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.SIGNIFICANCEThe proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.
Author Xu, Peng
Zhang, Yangsong
Liu, Huan
Zeng, Ying
Li, Cunbo
Li, Fali
Huang, Xiaoye
Yao, Dezhong
Zhu, Xuyang
Li, Peiyang
Si, Yajing
Author_xml – sequence: 1
  givenname: Peiyang
  orcidid: 0000-0002-3937-2560
  surname: Li
  fullname: Li, Peiyang
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
– sequence: 2
  givenname: Yangsong
  orcidid: 0000-0002-6764-3567
  surname: Zhang
  fullname: Zhang, Yangsong
  email: zhangysacademy@gmail.com
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0002-7932-0386
  surname: Xu
  fullname: Xu, Peng
  email: xupeng@uestc.edu.cn
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Huan
  surname: Liu
  fullname: Liu, Huan
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
– sequence: 5
  givenname: Yajing
  surname: Si
  fullname: Si, Yajing
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
– sequence: 6
  givenname: Cunbo
  surname: Li
  fullname: Li, Cunbo
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
– sequence: 7
  givenname: Fali
  orcidid: 0000-0002-2450-4591
  surname: Li
  fullname: Li, Fali
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
– sequence: 8
  givenname: Xuyang
  surname: Zhu
  fullname: Zhu, Xuyang
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
– sequence: 9
  givenname: Xiaoye
  surname: Huang
  fullname: Huang, Xiaoye
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
– sequence: 10
  givenname: Ying
  surname: Zeng
  fullname: Zeng, Ying
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
– sequence: 11
  givenname: Dezhong
  orcidid: 0000-0002-8042-879X
  surname: Yao
  fullname: Yao, Dezhong
  organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30735981$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLeFH4CQUCQuXLJ47Di2j-0qLUgLSKicjdeZVC6JXeIEtP8ep7vl0AMne2a-96SZd0ZOQgxIyGugawCqP9xcfm7WjIJeM6VlLeAZWYEQqmSCwwlZUQqq1ExXp-QspbtcVqqqX5BTTiUXWsGK_Gia6-LSJmyLZoiTj6H4hi7eBv_w3-2LTRx2PvhwW1zNwS1d2-dmCJiL337aF19w-hPHn4UNbbGNLo8vlpFd2PSSPO9sn_DV8T0n36-am83Hcvv1-tPmYls6XumpdCCxAsotpXVnsW2tqrRlQoK1O3BQYVu5WjJA0dZcSiqZY9p1rrNOdFzyc_L-4Hs_xl8zpskMPjnsexswzskwxjRVWjGa0XdP0Ls4j3mthdJcS8HVYvj2SM27AVtzP_rBjnvzeLsMyAPgxpjSiJ1xfnpYehqt7w1Qs6RklpTMkpI5ppSV8ET5aP4_zZuDxiPiP17V-Xpc8b-ZaZxz
CODEN IEBEAX
CitedBy_id crossref_primary_10_1142_S0129065722500356
crossref_primary_10_3233_JIFS_201779
crossref_primary_10_1002_int_22551
crossref_primary_10_1007_s11571_021_09756_0
crossref_primary_10_1109_TNSRE_2022_3203073
crossref_primary_10_1007_s11042_023_16744_5
crossref_primary_10_1038_s41598_023_49891_8
crossref_primary_10_1109_TAFFC_2023_3318321
crossref_primary_10_1016_j_aei_2022_101548
crossref_primary_10_26599_IJCS_2024_9100022
crossref_primary_10_1016_j_bspc_2022_104157
crossref_primary_10_3390_s21227466
crossref_primary_10_3389_fnins_2022_884475
crossref_primary_10_1109_JSEN_2019_2962874
crossref_primary_10_3390_s20174749
crossref_primary_10_1109_TNSRE_2023_3266024
crossref_primary_10_1109_JSEN_2024_3380749
crossref_primary_10_3390_s21155092
crossref_primary_10_1093_cercor_bhae477
crossref_primary_10_1016_j_rineng_2023_101027
crossref_primary_10_1109_ACCESS_2023_3270317
crossref_primary_10_1109_TAFFC_2020_3006847
crossref_primary_10_1109_ACCESS_2020_3000788
crossref_primary_10_1016_j_bspc_2021_103332
crossref_primary_10_1080_10447318_2023_2254626
crossref_primary_10_1109_TAFFC_2020_2994159
crossref_primary_10_1109_TCDS_2021_3098842
crossref_primary_10_1088_1741_2552_aca69f
crossref_primary_10_1109_JBHI_2021_3095415
crossref_primary_10_3390_s20185083
crossref_primary_10_1109_TIM_2022_3168927
crossref_primary_10_1109_TNSRE_2021_3123696
crossref_primary_10_1016_j_cmpb_2023_107927
crossref_primary_10_1109_JBHI_2024_3392564
crossref_primary_10_1186_s40708_022_00163_7
crossref_primary_10_1016_j_bspc_2023_105744
crossref_primary_10_1109_JBHI_2024_3422384
crossref_primary_10_1109_ACCESS_2024_3387357
crossref_primary_10_1007_s10489_020_02125_0
crossref_primary_10_1016_j_bspc_2022_103877
crossref_primary_10_1016_j_brainresbull_2024_110901
crossref_primary_10_1088_1741_2552_ab39ce
crossref_primary_10_3389_fnins_2021_693468
crossref_primary_10_3390_s24061979
crossref_primary_10_1088_1741_2552_ac8502
crossref_primary_10_3389_fpsyg_2021_808414
crossref_primary_10_1016_j_dsp_2024_104856
crossref_primary_10_1109_TIM_2023_3265114
crossref_primary_10_1016_j_bspc_2024_106323
crossref_primary_10_1007_s11760_023_02702_z
crossref_primary_10_1109_TIM_2025_3533618
crossref_primary_10_3389_fnins_2022_1010951
crossref_primary_10_1016_j_bspc_2021_103349
crossref_primary_10_1016_j_compbiomed_2022_106002
crossref_primary_10_3389_fnhum_2020_00089
crossref_primary_10_3390_s22239194
crossref_primary_10_1109_TCDS_2023_3270170
crossref_primary_10_1007_s10489_021_03070_2
crossref_primary_10_1109_TNSRE_2023_3299156
crossref_primary_10_1109_ACCESS_2019_2945059
crossref_primary_10_1002_hbm_25994
crossref_primary_10_3233_MGS_220333
crossref_primary_10_3389_fnbot_2022_823435
crossref_primary_10_1016_j_jneumeth_2024_110358
crossref_primary_10_1109_TNSRE_2023_3242771
crossref_primary_10_1109_ACCESS_2020_3025370
crossref_primary_10_1109_TCDS_2020_2965135
crossref_primary_10_1049_ell2_12388
crossref_primary_10_1109_JBHI_2022_3172994
crossref_primary_10_1109_TIM_2021_3115195
crossref_primary_10_1109_TBCAS_2021_3089132
crossref_primary_10_1109_JBHI_2022_3212475
crossref_primary_10_1007_s11571_025_10239_9
crossref_primary_10_1109_TCDS_2022_3213194
crossref_primary_10_1016_j_bspc_2023_105312
crossref_primary_10_1007_s11571_022_09805_2
crossref_primary_10_1109_TAFFC_2020_2982143
crossref_primary_10_1109_TCDS_2020_2991414
crossref_primary_10_1088_1361_6579_acd675
crossref_primary_10_3390_app12010527
crossref_primary_10_1109_TAFFC_2022_3164516
crossref_primary_10_1080_27706710_2023_2222159
crossref_primary_10_1007_s11042_024_18943_0
crossref_primary_10_1007_s00521_024_09573_6
crossref_primary_10_1109_ACCESS_2021_3091487
crossref_primary_10_1016_j_knosys_2021_107982
crossref_primary_10_1515_bmt_2019_0306
crossref_primary_10_1016_j_neuroimage_2019_116333
crossref_primary_10_1109_ACCESS_2024_3463746
crossref_primary_10_1016_j_cogr_2021_04_001
crossref_primary_10_1016_j_jestch_2021_03_012
crossref_primary_10_1038_s41598_022_10038_w
crossref_primary_10_1088_1741_2552_ac49a7
crossref_primary_10_1080_03772063_2021_1965044
crossref_primary_10_1109_TNNLS_2023_3292179
crossref_primary_10_1016_j_compbiomed_2022_105519
crossref_primary_10_1109_TNSRE_2022_3227595
crossref_primary_10_1016_j_physa_2022_127700
crossref_primary_10_1109_TNSRE_2024_3442788
crossref_primary_10_3390_electronics10222840
crossref_primary_10_3390_electronics9121988
crossref_primary_10_3390_s22114064
crossref_primary_10_1007_s11042_022_12310_7
crossref_primary_10_1007_s11571_021_09689_8
crossref_primary_10_1016_j_bspc_2022_103966
crossref_primary_10_1016_j_cmpb_2025_108735
crossref_primary_10_1080_03772063_2021_1911693
crossref_primary_10_3389_fnins_2023_1345770
crossref_primary_10_3389_fpsyt_2023_1154011
crossref_primary_10_1016_j_heliyon_2024_e36411
crossref_primary_10_1109_TCDS_2021_3082803
crossref_primary_10_1007_s12559_024_10358_1
crossref_primary_10_1109_JBHI_2023_3339382
crossref_primary_10_1016_j_asoc_2020_107028
crossref_primary_10_1109_TAFFC_2023_3261867
crossref_primary_10_3389_fnins_2024_1400444
crossref_primary_10_1109_ACCESS_2023_3264260
crossref_primary_10_3389_fnins_2022_844851
crossref_primary_10_1016_j_sigpro_2021_108101
crossref_primary_10_1109_TAFFC_2020_3025777
crossref_primary_10_1109_TCDS_2021_3051465
crossref_primary_10_3390_brainsci11010035
crossref_primary_10_1109_ACCESS_2021_3051808
crossref_primary_10_1109_JBHI_2023_3335854
crossref_primary_10_3390_app15010392
crossref_primary_10_1016_j_bspc_2020_102251
crossref_primary_10_1016_j_jneumeth_2023_109841
crossref_primary_10_1016_j_bspc_2024_106606
crossref_primary_10_1016_j_heliyon_2025_e41767
crossref_primary_10_1007_s11036_023_02112_y
crossref_primary_10_1088_2057_1976_acb942
crossref_primary_10_1007_s11571_023_09931_5
crossref_primary_10_1016_j_neucom_2021_08_018
crossref_primary_10_1016_j_pnpbp_2024_110965
crossref_primary_10_1109_JBHI_2022_3198688
crossref_primary_10_1016_j_neucom_2023_126866
crossref_primary_10_1155_2024_7499554
crossref_primary_10_1016_j_bspc_2024_106189
crossref_primary_10_1016_j_bspc_2022_104321
crossref_primary_10_1109_TII_2023_3337971
crossref_primary_10_1016_j_isci_2023_106609
crossref_primary_10_1016_j_bbr_2025_115425
crossref_primary_10_1109_TITS_2021_3124372
crossref_primary_10_1007_s13755_023_00226_x
crossref_primary_10_3390_brainsci14030271
crossref_primary_10_1016_j_artmed_2021_102210
crossref_primary_10_1016_j_jneumeth_2023_109959
crossref_primary_10_1016_j_neunet_2024_106148
crossref_primary_10_1109_TIM_2024_3351248
crossref_primary_10_1016_j_bspc_2024_107001
crossref_primary_10_3389_fnhum_2020_589001
crossref_primary_10_1097_MS9_0000000000002315
crossref_primary_10_1016_j_neulet_2021_136106
crossref_primary_10_1016_j_knosys_2023_110756
crossref_primary_10_1016_j_pnpbp_2020_110056
crossref_primary_10_1515_jisys_2023_0290
crossref_primary_10_1016_j_bspc_2023_105223
crossref_primary_10_1109_TCDS_2020_2999337
crossref_primary_10_1016_j_neucom_2021_02_048
crossref_primary_10_1109_JBHI_2023_3295892
crossref_primary_10_1016_j_jneumeth_2023_110015
crossref_primary_10_26599_BSA_2023_9050016
crossref_primary_10_1109_TIM_2020_3047502
crossref_primary_10_1109_TIM_2022_3147876
crossref_primary_10_1088_1741_2552_acf61e
crossref_primary_10_1109_ACCESS_2023_3308811
crossref_primary_10_1109_TCDS_2023_3293321
crossref_primary_10_3389_fnhum_2021_711279
crossref_primary_10_1109_TNNLS_2023_3265730
crossref_primary_10_1109_TAFFC_2023_3347391
crossref_primary_10_1109_TNNLS_2023_3236635
crossref_primary_10_1016_j_bspc_2024_106957
crossref_primary_10_1016_j_trf_2024_08_031
crossref_primary_10_1016_j_knosys_2022_108819
crossref_primary_10_3390_bioengineering10091040
crossref_primary_10_1109_TIM_2024_3369130
crossref_primary_10_1109_TNSRE_2023_3323509
crossref_primary_10_3390_s24237856
crossref_primary_10_1109_TNSRE_2023_3329174
crossref_primary_10_1109_TNNLS_2023_3319315
crossref_primary_10_1145_3712259
crossref_primary_10_1109_ACCESS_2019_2944008
crossref_primary_10_1016_j_jneumeth_2023_109922
crossref_primary_10_1109_TAFFC_2022_3169001
crossref_primary_10_3390_s24134297
crossref_primary_10_3390_s23020915
crossref_primary_10_1016_j_smhl_2024_100461
crossref_primary_10_1109_TAFFC_2022_3179717
crossref_primary_10_1109_TIM_2022_3165741
crossref_primary_10_1016_j_engappai_2023_106971
crossref_primary_10_1109_TSMC_2024_3458949
crossref_primary_10_1109_TIM_2021_3124056
crossref_primary_10_1007_s00371_021_02069_7
crossref_primary_10_1016_j_neunet_2024_106624
crossref_primary_10_1109_TNNLS_2023_3238519
crossref_primary_10_2139_ssrn_4999642
crossref_primary_10_3389_fnins_2024_1356858
crossref_primary_10_1016_j_bspc_2021_103369
crossref_primary_10_1016_j_bspc_2022_103544
crossref_primary_10_1088_1741_2552_ac9e1d
crossref_primary_10_1007_s00521_024_09479_3
crossref_primary_10_3390_brainsci11060696
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_1063_5_0098454
crossref_primary_10_1088_1741_2552_ad5fbd
crossref_primary_10_1109_TCDS_2023_3263845
crossref_primary_10_1016_j_psychres_2023_115464
crossref_primary_10_1016_j_neunet_2020_08_009
crossref_primary_10_1109_TITS_2023_3348517
crossref_primary_10_1016_j_measurement_2021_110116
crossref_primary_10_1109_JBHI_2024_3384816
crossref_primary_10_1016_j_ins_2024_121198
crossref_primary_10_1109_TMI_2022_3143133
crossref_primary_10_1109_JSEN_2023_3330090
crossref_primary_10_1109_JBHI_2023_3307606
crossref_primary_10_1007_s00521_022_07292_4
crossref_primary_10_1007_s43154_020_00020_7
crossref_primary_10_1109_TCDS_2020_3001642
crossref_primary_10_3389_fpsyt_2020_00661
crossref_primary_10_1109_TNSRE_2023_3346955
crossref_primary_10_1109_TNSRE_2022_3175483
crossref_primary_10_1109_TAFFC_2024_3385651
crossref_primary_10_1109_JTEHM_2023_3320132
crossref_primary_10_3390_brainsci14121166
crossref_primary_10_1109_ACCESS_2021_3100638
crossref_primary_10_1109_JSEN_2021_3108471
crossref_primary_10_1109_TAFFC_2023_3305982
crossref_primary_10_2139_ssrn_4153708
crossref_primary_10_1016_j_jneumeth_2025_110360
crossref_primary_10_17482_uumfd_793775
crossref_primary_10_3389_fpsyt_2020_00676
crossref_primary_10_1109_TBME_2023_3294509
Cites_doi 10.1007/s11571-017-9447-z
10.1109/TBME.2010.2048568
10.1109/72.298224
10.1016/j.patcog.2009.06.009
10.1016/S0731-7085(99)00125-9
10.1109/T-AFFC.2011.25
10.1371/journal.pone.0064704
10.1007/s521-001-8051-z
10.1016/j.patcog.2017.01.026
10.1037/1089-2680.5.4.323
10.1038/nrn2575
10.1109/ICME.2014.6890161
10.1109/72.536309
10.1109/JSTSP.2016.2602007
10.1016/S0304-3940(01)02246-7
10.2307/1170654
10.1016/j.neuroimage.2005.06.023
10.1093/brain/awn262
10.1080/02664763.2012.690857
10.1186/1471-2105-9-470
10.1103/PhysRevLett.100.234101
10.1109/TBME.2014.2305159
10.1016/j.patrec.2015.07.007
10.1109/CVPR.2014.121
10.1109/TAMD.2015.2431497
10.1016/S0278-2626(03)00009-5
10.1016/j.tics.2010.04.004
10.1093/cercor/bhv001
10.1007/11848035_70
10.1109/ICME.2014.6890301
10.1109/TPAMI.2005.159
10.1109/TAFFC.2017.2712143
10.1109/T-AFFC.2011.15
10.1109/IndianCMIT.2013.6529408
10.1109/TBME.2013.2270283
10.2307/1927962
10.1109/ACCESS.2017.2724555
10.1016/j.bspc.2013.10.006
10.1080/02699930802204677
10.2307/2685263
10.1371/journal.pone.0066032
10.1016/j.compbiomed.2011.06.020
10.1109/JPROC.2015.2469106
10.1007/PL00007990
10.1016/j.ins.2016.01.082
10.1145/2671188.2749364
10.1037/0894-4105.7.4.476
10.1201/b15477-5
10.1109/GlobalSIP.2015.7418411
10.1111/j.1469-8986.2007.00497.x
10.1016/j.neuroimage.2013.11.007
10.1109/EMBC.2013.6610118
10.1109/TBME.2010.2055564
10.1016/j.biopsych.2003.11.017
10.1089/brain.2014.0307
10.1080/02699930126048
10.1038/srep15129
10.1007/s11571-015-9327-3
10.1111/mec.13029
10.1109/TAFFC.2015.2436926
10.1109/NEBEC.2015.7117118
10.1109/TAMD.2015.2463113
10.1016/j.neuroimage.2016.04.030
10.1093/brain/121.6.1013
10.1109/T-AFFC.2011.37
10.1016/j.bspc.2017.01.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2019.2897651
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2881
ExternalDocumentID 30735981
10_1109_TBME_2019_2897651
8634938
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: #61522105; #61603344; #81401484; #81330032; #61701089
  funderid: 10.13039/501100001809
– fundername: Open Foundation of Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology
  grantid: HNBBL17001
– fundername: National Key Research and Development Plan of China
  grantid: # 2017YFB1002501
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-c17e4103a006faedda849a2571aab1c14ed4c6721e5d6377072c29cfcfac5f373
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 00:52:02 EDT 2025
Mon Jun 30 08:21:36 EDT 2025
Thu Apr 03 07:01:59 EDT 2025
Tue Jul 01 03:28:31 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Wed Aug 27 02:52:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-c17e4103a006faedda849a2571aab1c14ed4c6721e5d6377072c29cfcfac5f373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2450-4591
0000-0002-3937-2560
0000-0002-7932-0386
0000-0002-8042-879X
0000-0002-6764-3567
PMID 30735981
PQID 2293975387
PQPubID 85474
PageCount 13
ParticipantIDs ieee_primary_8634938
crossref_citationtrail_10_1109_TBME_2019_2897651
crossref_primary_10_1109_TBME_2019_2897651
proquest_miscellaneous_2229089820
pubmed_primary_30735981
proquest_journals_2293975387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref17
gómez-herrero (ref41) 2007
ref16
ref19
ref51
ref50
ref46
ref45
ref48
ref47
fan (ref42) 0
ref43
ref49
ref8
ref7
ref9
rajpurkar (ref74) 2017
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref76
ref32
ref2
ref1
ref39
ref38
koelstra (ref26) 2012
ref71
ref70
ref73
chung (ref44) 0
ref72
mathews (ref75) 2017
ref68
ref24
nnamoko (ref34) 2014; 21
ref67
dongwei (ref18) 0
ref69
ref25
ref64
ref20
ref63
(ref61) 2015
ref66
ref22
ref65
ref21
lin (ref10) 2010; 57
ref28
ref27
ref29
brandstein (ref23) 2013
ref60
ref62
References_xml – ident: ref29
  doi: 10.1007/s11571-017-9447-z
– volume: 57
  start-page: 1798
  year: 2010
  ident: ref10
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2048568
– ident: ref37
  doi: 10.1109/72.298224
– ident: ref65
  doi: 10.1016/j.patcog.2009.06.009
– ident: ref66
  doi: 10.1016/S0731-7085(99)00125-9
– ident: ref3
  doi: 10.1109/T-AFFC.2011.25
– ident: ref36
  doi: 10.1371/journal.pone.0064704
– ident: ref72
  doi: 10.1007/s521-001-8051-z
– ident: ref71
  doi: 10.1016/j.patcog.2017.01.026
– year: 2015
  ident: ref61
– ident: ref58
  doi: 10.1037/1089-2680.5.4.323
– ident: ref19
  doi: 10.1038/nrn2575
– ident: ref60
  doi: 10.1109/ICME.2014.6890161
– ident: ref22
  doi: 10.1109/72.536309
– ident: ref30
  doi: 10.1109/JSTSP.2016.2602007
– ident: ref8
  doi: 10.1016/S0304-3940(01)02246-7
– ident: ref31
  doi: 10.2307/1170654
– ident: ref53
  doi: 10.1016/j.neuroimage.2005.06.023
– ident: ref33
  doi: 10.1093/brain/awn262
– ident: ref68
  doi: 10.1080/02664763.2012.690857
– ident: ref64
  doi: 10.1186/1471-2105-9-470
– ident: ref25
  doi: 10.1103/PhysRevLett.100.234101
– ident: ref17
  doi: 10.1109/TBME.2014.2305159
– ident: ref39
  doi: 10.1016/j.patrec.2015.07.007
– ident: ref70
  doi: 10.1109/CVPR.2014.121
– ident: ref49
  doi: 10.1109/TAMD.2015.2431497
– ident: ref5
  doi: 10.1016/S0278-2626(03)00009-5
– start-page: 1768
  year: 0
  ident: ref44
  article-title: Affective classification using Bayesian classifier and supervised learning
  publication-title: Proc 12th Int Conf Control Autom Syst
– ident: ref14
  doi: 10.1016/j.tics.2010.04.004
– ident: ref55
  doi: 10.1093/cercor/bhv001
– ident: ref11
  doi: 10.1007/11848035_70
– ident: ref50
  doi: 10.1109/ICME.2014.6890301
– ident: ref38
  doi: 10.1109/TPAMI.2005.159
– ident: ref12
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref4
  doi: 10.1109/T-AFFC.2011.15
– year: 2017
  ident: ref75
  article-title: Dictionary and deep learning algorithms with applications to remote health monitoring systems
– volume: 21
  start-page: 33
  year: 2014
  ident: ref34
  article-title: Evaluation of filter and wrapper methods for feature selection in supervised machine learning
  publication-title: Age
– ident: ref1
  doi: 10.1109/IndianCMIT.2013.6529408
– start-page: 6081
  year: 0
  ident: ref42
  article-title: Diagnosis of breast cancer using HPLC metabonomics fingerprints coupled with computational methods
  publication-title: Proc Annu Conf IEEE Eng Med Biol Soc
– ident: ref47
  doi: 10.1109/TBME.2013.2270283
– ident: ref67
  doi: 10.2307/1927962
– ident: ref76
  doi: 10.1109/ACCESS.2017.2724555
– ident: ref40
  doi: 10.1016/j.bspc.2013.10.006
– ident: ref13
  doi: 10.1080/02699930802204677
– ident: ref35
  doi: 10.2307/2685263
– ident: ref51
  doi: 10.1371/journal.pone.0066032
– ident: ref20
  doi: 10.1016/j.compbiomed.2011.06.020
– ident: ref46
  doi: 10.1109/JPROC.2015.2469106
– ident: ref24
  doi: 10.1007/PL00007990
– ident: ref43
  doi: 10.1016/j.ins.2016.01.082
– ident: ref27
  doi: 10.1145/2671188.2749364
– ident: ref2
  doi: 10.1037/0894-4105.7.4.476
– year: 2013
  ident: ref23
  publication-title: Microphone Arrays Signal Processing Techniques and Applications
– ident: ref63
  doi: 10.1201/b15477-5
– year: 2012
  ident: ref26
  article-title: Affective and implicit tagging using facial expressions and electroencephalography
– ident: ref59
  doi: 10.1109/GlobalSIP.2015.7418411
– ident: ref7
  doi: 10.1111/j.1469-8986.2007.00497.x
– ident: ref45
  doi: 10.1016/j.neuroimage.2013.11.007
– ident: ref16
  doi: 10.1109/EMBC.2013.6610118
– ident: ref48
  doi: 10.1109/TBME.2010.2055564
– ident: ref56
  doi: 10.1016/j.biopsych.2003.11.017
– ident: ref54
  doi: 10.1089/brain.2014.0307
– ident: ref6
  doi: 10.1080/02699930126048
– ident: ref15
  doi: 10.1038/srep15129
– ident: ref32
  doi: 10.1007/s11571-015-9327-3
– ident: ref69
  doi: 10.1111/mec.13029
– ident: ref9
  doi: 10.1109/TAFFC.2015.2436926
– year: 2007
  ident: ref41
  article-title: Automatic artifact removal (AAR) toolbox v1. 3 (Release 09.12. 2007) for MATLAB
– ident: ref73
  doi: 10.1109/NEBEC.2015.7117118
– year: 2017
  ident: ref74
  article-title: Cardiologist-level arrhythmia detection with convolutional neural networks
– ident: ref28
  doi: 10.1109/TAMD.2015.2463113
– ident: ref62
  doi: 10.1016/j.neuroimage.2016.04.030
– ident: ref57
  doi: 10.1093/brain/121.6.1013
– ident: ref52
  doi: 10.1109/T-AFFC.2011.37
– start-page: 1
  year: 0
  ident: ref18
  article-title: EEG-based emotion recognition with brain network using independent components analysis and granger causality
  publication-title: Proc Int Conf Comput Med Appl
– ident: ref21
  doi: 10.1016/j.bspc.2017.01.008
SSID ssj0014846
Score 2.678304
Snippet Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among...
Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2869
SubjectTerms activation patterns
Brain
Data processing
EEG
Electric power distribution
Electroencephalogram (EEG)
Electroencephalography
Emotion recognition
Emotions
Feature extraction
Frequency dependence
Information dissemination
Information processing
Locking
multiple-feature fusion
network patterns
Neural networks
Performance enhancement
Synchronization
System effectiveness
Title EEG Based Emotion Recognition by Combining Functional Connectivity Network and Local Activations
URI https://ieeexplore.ieee.org/document/8634938
https://www.ncbi.nlm.nih.gov/pubmed/30735981
https://www.proquest.com/docview/2293975387
https://www.proquest.com/docview/2229089820
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9UwDLa2HRAcBmzAHmwoSJwQfWuatE2O29S3CfF2QJu0W0mc9DLUh9h7B_j1OElbAQK0W6SmqSvHsR1_tgHecjRYFeSpapfLTHZWZpb0VEaWgukqZQVGEM3ysrq4lh9uypsteD_lwnjvI_jMz8MwxvLdCjfhquxYVUJqobZhmxy3lKs1RQykSkk5OScBLrQcIpg818dXp8smgLj0nLyLuir5bzooNlX5t30Z9cziMSxHChO85Ha-Wds5_vijeON9f-EJ7A4GJztJO-QpbPl-Dx79UoZwDx4shwD7PnxumnN2SprNsSY1-GGfRogRje13RgeIjU0l2IJUYrpJZBEug6kRBbtMyHJmesc-BlXJTnBsonb3DK4XzdXZRTY0YciQKF1nyGsveS4MiWdnvHNGSW1I0LkxliOX3kmsyI_0patEXed1gYXGDjuDZSdq8Rx2-lXvD4CpEmslhFECO-lEZcn15LSi03mnLK9nkI9saXGoUB4aZXxpo6eS6zZwsg2cbAdOzuDd9MrXVJ7jf5P3A0OmiQMvZnA48r4dBPiuLcgMCjnHiqh6Mz0m0QvxFNP71SbMKULUlGyoGbxIe2ZaOxydpVb85d-_-QoeBsoSKvAQdtbfNv6IrJu1fR239U8GufS3
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GiBbilgJE6IbOPYSexji7IssNkD2kq9Bb9yAWUrunsov75jO4kAAeJmKY4z0Xg8M55vZgBeU6NMkaGnKm3KE95qnmjUUwlaCqothGYmgGjqZTE_5x8v8osdeDvmwjjnAvjMTf0wxPLt2mz9VdmJKBiXTNyC26j38yxma40xAy5iWk5KUYQzyfsYJk3lyeqsrjyMS07RvyiLnP6ihUJblb9bmEHTzB5APdAYASZfp9uNnpofv5Vv_N-feAj3e5OTnMY98gh2XLcP934qRLgPd-o-xH4AX6rqPTlD3WZJFVv8kM8DyAjH-prgEaJDWwkyQ6UY7xJJAMyY2IqCLCO2nKjOkoVXluTUDG3Urh7D-axavZsnfRuGxCClm8TQ0nGaMoUC2ipnrRJcKhR1qpSmhnJnuSnQk3S5LVhZpmVmMmla0yqTt6xkT2C3W3fuEIjITSkYU4KZlltWaHQ-Ka5oZdoKTcsJpANbGtPXKPetMr41wVdJZeM52XhONj0nJ_BmfOUyFuj41-QDz5BxYs-LCRwPvG96Eb5qMjSEfNaxQKpejY9R-HxERXVuvfVzMh83RStqAk_jnhnX9odnLgU9-vM3X8Ld-apeNIsPy0_PYM9TGTGCx7C7-b51z9HW2egXYYvfAPGm-AE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Based+Emotion+Recognition+by+Combining+Functional+Connectivity+Network+and+Local+Activations&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Li%2C+Peiyang&rft.au=Zhang%2C+Yangsong&rft.au=Xu%2C+Peng&rft.au=Liu%2C+Huan&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=66&rft.issue=10&rft.spage=2869&rft.epage=2881&rft_id=info:doi/10.1109%2FTBME.2019.2897651&rft.externalDocID=8634938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon