EEG Based Emotion Recognition by Combining Functional Connectivity Network and Local Activations
Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related inform...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 66; no. 10; pp. 2869 - 2881 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. Methods: We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Results: Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. Significance: The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications. |
---|---|
AbstractList | Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. Methods: We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Results: Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. Significance: The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications. Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications. Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition.OBJECTIVESpectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition.We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition.METHODSWe constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition.Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing.RESULTSRecognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing.The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.SIGNIFICANCEThe proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications. |
Author | Xu, Peng Zhang, Yangsong Liu, Huan Zeng, Ying Li, Cunbo Li, Fali Huang, Xiaoye Yao, Dezhong Zhu, Xuyang Li, Peiyang Si, Yajing |
Author_xml | – sequence: 1 givenname: Peiyang orcidid: 0000-0002-3937-2560 surname: Li fullname: Li, Peiyang organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China – sequence: 2 givenname: Yangsong orcidid: 0000-0002-6764-3567 surname: Zhang fullname: Zhang, Yangsong email: zhangysacademy@gmail.com organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Peng orcidid: 0000-0002-7932-0386 surname: Xu fullname: Xu, Peng email: xupeng@uestc.edu.cn organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Huan surname: Liu fullname: Liu, Huan organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China – sequence: 5 givenname: Yajing surname: Si fullname: Si, Yajing organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China – sequence: 6 givenname: Cunbo surname: Li fullname: Li, Cunbo organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China – sequence: 7 givenname: Fali orcidid: 0000-0002-2450-4591 surname: Li fullname: Li, Fali organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China – sequence: 8 givenname: Xuyang surname: Zhu fullname: Zhu, Xuyang organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China – sequence: 9 givenname: Xiaoye surname: Huang fullname: Huang, Xiaoye organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China – sequence: 10 givenname: Ying surname: Zeng fullname: Zeng, Ying organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China – sequence: 11 givenname: Dezhong orcidid: 0000-0002-8042-879X surname: Yao fullname: Yao, Dezhong organization: Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation and School of Life Science and TechnologyUniversity of Electronic Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30735981$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1URLeFH4CQUCQuXLJ47Di2j-0qLUgLSKicjdeZVC6JXeIEtP8ep7vl0AMne2a-96SZd0ZOQgxIyGugawCqP9xcfm7WjIJeM6VlLeAZWYEQqmSCwwlZUQqq1ExXp-QspbtcVqqqX5BTTiUXWsGK_Gia6-LSJmyLZoiTj6H4hi7eBv_w3-2LTRx2PvhwW1zNwS1d2-dmCJiL337aF19w-hPHn4UNbbGNLo8vlpFd2PSSPO9sn_DV8T0n36-am83Hcvv1-tPmYls6XumpdCCxAsotpXVnsW2tqrRlQoK1O3BQYVu5WjJA0dZcSiqZY9p1rrNOdFzyc_L-4Hs_xl8zpskMPjnsexswzskwxjRVWjGa0XdP0Ls4j3mthdJcS8HVYvj2SM27AVtzP_rBjnvzeLsMyAPgxpjSiJ1xfnpYehqt7w1Qs6RklpTMkpI5ppSV8ET5aP4_zZuDxiPiP17V-Xpc8b-ZaZxz |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1142_S0129065722500356 crossref_primary_10_3233_JIFS_201779 crossref_primary_10_1002_int_22551 crossref_primary_10_1007_s11571_021_09756_0 crossref_primary_10_1109_TNSRE_2022_3203073 crossref_primary_10_1007_s11042_023_16744_5 crossref_primary_10_1038_s41598_023_49891_8 crossref_primary_10_1109_TAFFC_2023_3318321 crossref_primary_10_1016_j_aei_2022_101548 crossref_primary_10_26599_IJCS_2024_9100022 crossref_primary_10_1016_j_bspc_2022_104157 crossref_primary_10_3390_s21227466 crossref_primary_10_3389_fnins_2022_884475 crossref_primary_10_1109_JSEN_2019_2962874 crossref_primary_10_3390_s20174749 crossref_primary_10_1109_TNSRE_2023_3266024 crossref_primary_10_1109_JSEN_2024_3380749 crossref_primary_10_3390_s21155092 crossref_primary_10_1093_cercor_bhae477 crossref_primary_10_1016_j_rineng_2023_101027 crossref_primary_10_1109_ACCESS_2023_3270317 crossref_primary_10_1109_TAFFC_2020_3006847 crossref_primary_10_1109_ACCESS_2020_3000788 crossref_primary_10_1016_j_bspc_2021_103332 crossref_primary_10_1080_10447318_2023_2254626 crossref_primary_10_1109_TAFFC_2020_2994159 crossref_primary_10_1109_TCDS_2021_3098842 crossref_primary_10_1088_1741_2552_aca69f crossref_primary_10_1109_JBHI_2021_3095415 crossref_primary_10_3390_s20185083 crossref_primary_10_1109_TIM_2022_3168927 crossref_primary_10_1109_TNSRE_2021_3123696 crossref_primary_10_1016_j_cmpb_2023_107927 crossref_primary_10_1109_JBHI_2024_3392564 crossref_primary_10_1186_s40708_022_00163_7 crossref_primary_10_1016_j_bspc_2023_105744 crossref_primary_10_1109_JBHI_2024_3422384 crossref_primary_10_1109_ACCESS_2024_3387357 crossref_primary_10_1007_s10489_020_02125_0 crossref_primary_10_1016_j_bspc_2022_103877 crossref_primary_10_1016_j_brainresbull_2024_110901 crossref_primary_10_1088_1741_2552_ab39ce crossref_primary_10_3389_fnins_2021_693468 crossref_primary_10_3390_s24061979 crossref_primary_10_1088_1741_2552_ac8502 crossref_primary_10_3389_fpsyg_2021_808414 crossref_primary_10_1016_j_dsp_2024_104856 crossref_primary_10_1109_TIM_2023_3265114 crossref_primary_10_1016_j_bspc_2024_106323 crossref_primary_10_1007_s11760_023_02702_z crossref_primary_10_1109_TIM_2025_3533618 crossref_primary_10_3389_fnins_2022_1010951 crossref_primary_10_1016_j_bspc_2021_103349 crossref_primary_10_1016_j_compbiomed_2022_106002 crossref_primary_10_3389_fnhum_2020_00089 crossref_primary_10_3390_s22239194 crossref_primary_10_1109_TCDS_2023_3270170 crossref_primary_10_1007_s10489_021_03070_2 crossref_primary_10_1109_TNSRE_2023_3299156 crossref_primary_10_1109_ACCESS_2019_2945059 crossref_primary_10_1002_hbm_25994 crossref_primary_10_3233_MGS_220333 crossref_primary_10_3389_fnbot_2022_823435 crossref_primary_10_1016_j_jneumeth_2024_110358 crossref_primary_10_1109_TNSRE_2023_3242771 crossref_primary_10_1109_ACCESS_2020_3025370 crossref_primary_10_1109_TCDS_2020_2965135 crossref_primary_10_1049_ell2_12388 crossref_primary_10_1109_JBHI_2022_3172994 crossref_primary_10_1109_TIM_2021_3115195 crossref_primary_10_1109_TBCAS_2021_3089132 crossref_primary_10_1109_JBHI_2022_3212475 crossref_primary_10_1007_s11571_025_10239_9 crossref_primary_10_1109_TCDS_2022_3213194 crossref_primary_10_1016_j_bspc_2023_105312 crossref_primary_10_1007_s11571_022_09805_2 crossref_primary_10_1109_TAFFC_2020_2982143 crossref_primary_10_1109_TCDS_2020_2991414 crossref_primary_10_1088_1361_6579_acd675 crossref_primary_10_3390_app12010527 crossref_primary_10_1109_TAFFC_2022_3164516 crossref_primary_10_1080_27706710_2023_2222159 crossref_primary_10_1007_s11042_024_18943_0 crossref_primary_10_1007_s00521_024_09573_6 crossref_primary_10_1109_ACCESS_2021_3091487 crossref_primary_10_1016_j_knosys_2021_107982 crossref_primary_10_1515_bmt_2019_0306 crossref_primary_10_1016_j_neuroimage_2019_116333 crossref_primary_10_1109_ACCESS_2024_3463746 crossref_primary_10_1016_j_cogr_2021_04_001 crossref_primary_10_1016_j_jestch_2021_03_012 crossref_primary_10_1038_s41598_022_10038_w crossref_primary_10_1088_1741_2552_ac49a7 crossref_primary_10_1080_03772063_2021_1965044 crossref_primary_10_1109_TNNLS_2023_3292179 crossref_primary_10_1016_j_compbiomed_2022_105519 crossref_primary_10_1109_TNSRE_2022_3227595 crossref_primary_10_1016_j_physa_2022_127700 crossref_primary_10_1109_TNSRE_2024_3442788 crossref_primary_10_3390_electronics10222840 crossref_primary_10_3390_electronics9121988 crossref_primary_10_3390_s22114064 crossref_primary_10_1007_s11042_022_12310_7 crossref_primary_10_1007_s11571_021_09689_8 crossref_primary_10_1016_j_bspc_2022_103966 crossref_primary_10_1016_j_cmpb_2025_108735 crossref_primary_10_1080_03772063_2021_1911693 crossref_primary_10_3389_fnins_2023_1345770 crossref_primary_10_3389_fpsyt_2023_1154011 crossref_primary_10_1016_j_heliyon_2024_e36411 crossref_primary_10_1109_TCDS_2021_3082803 crossref_primary_10_1007_s12559_024_10358_1 crossref_primary_10_1109_JBHI_2023_3339382 crossref_primary_10_1016_j_asoc_2020_107028 crossref_primary_10_1109_TAFFC_2023_3261867 crossref_primary_10_3389_fnins_2024_1400444 crossref_primary_10_1109_ACCESS_2023_3264260 crossref_primary_10_3389_fnins_2022_844851 crossref_primary_10_1016_j_sigpro_2021_108101 crossref_primary_10_1109_TAFFC_2020_3025777 crossref_primary_10_1109_TCDS_2021_3051465 crossref_primary_10_3390_brainsci11010035 crossref_primary_10_1109_ACCESS_2021_3051808 crossref_primary_10_1109_JBHI_2023_3335854 crossref_primary_10_3390_app15010392 crossref_primary_10_1016_j_bspc_2020_102251 crossref_primary_10_1016_j_jneumeth_2023_109841 crossref_primary_10_1016_j_bspc_2024_106606 crossref_primary_10_1016_j_heliyon_2025_e41767 crossref_primary_10_1007_s11036_023_02112_y crossref_primary_10_1088_2057_1976_acb942 crossref_primary_10_1007_s11571_023_09931_5 crossref_primary_10_1016_j_neucom_2021_08_018 crossref_primary_10_1016_j_pnpbp_2024_110965 crossref_primary_10_1109_JBHI_2022_3198688 crossref_primary_10_1016_j_neucom_2023_126866 crossref_primary_10_1155_2024_7499554 crossref_primary_10_1016_j_bspc_2024_106189 crossref_primary_10_1016_j_bspc_2022_104321 crossref_primary_10_1109_TII_2023_3337971 crossref_primary_10_1016_j_isci_2023_106609 crossref_primary_10_1016_j_bbr_2025_115425 crossref_primary_10_1109_TITS_2021_3124372 crossref_primary_10_1007_s13755_023_00226_x crossref_primary_10_3390_brainsci14030271 crossref_primary_10_1016_j_artmed_2021_102210 crossref_primary_10_1016_j_jneumeth_2023_109959 crossref_primary_10_1016_j_neunet_2024_106148 crossref_primary_10_1109_TIM_2024_3351248 crossref_primary_10_1016_j_bspc_2024_107001 crossref_primary_10_3389_fnhum_2020_589001 crossref_primary_10_1097_MS9_0000000000002315 crossref_primary_10_1016_j_neulet_2021_136106 crossref_primary_10_1016_j_knosys_2023_110756 crossref_primary_10_1016_j_pnpbp_2020_110056 crossref_primary_10_1515_jisys_2023_0290 crossref_primary_10_1016_j_bspc_2023_105223 crossref_primary_10_1109_TCDS_2020_2999337 crossref_primary_10_1016_j_neucom_2021_02_048 crossref_primary_10_1109_JBHI_2023_3295892 crossref_primary_10_1016_j_jneumeth_2023_110015 crossref_primary_10_26599_BSA_2023_9050016 crossref_primary_10_1109_TIM_2020_3047502 crossref_primary_10_1109_TIM_2022_3147876 crossref_primary_10_1088_1741_2552_acf61e crossref_primary_10_1109_ACCESS_2023_3308811 crossref_primary_10_1109_TCDS_2023_3293321 crossref_primary_10_3389_fnhum_2021_711279 crossref_primary_10_1109_TNNLS_2023_3265730 crossref_primary_10_1109_TAFFC_2023_3347391 crossref_primary_10_1109_TNNLS_2023_3236635 crossref_primary_10_1016_j_bspc_2024_106957 crossref_primary_10_1016_j_trf_2024_08_031 crossref_primary_10_1016_j_knosys_2022_108819 crossref_primary_10_3390_bioengineering10091040 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_1109_TNSRE_2023_3323509 crossref_primary_10_3390_s24237856 crossref_primary_10_1109_TNSRE_2023_3329174 crossref_primary_10_1109_TNNLS_2023_3319315 crossref_primary_10_1145_3712259 crossref_primary_10_1109_ACCESS_2019_2944008 crossref_primary_10_1016_j_jneumeth_2023_109922 crossref_primary_10_1109_TAFFC_2022_3169001 crossref_primary_10_3390_s24134297 crossref_primary_10_3390_s23020915 crossref_primary_10_1016_j_smhl_2024_100461 crossref_primary_10_1109_TAFFC_2022_3179717 crossref_primary_10_1109_TIM_2022_3165741 crossref_primary_10_1016_j_engappai_2023_106971 crossref_primary_10_1109_TSMC_2024_3458949 crossref_primary_10_1109_TIM_2021_3124056 crossref_primary_10_1007_s00371_021_02069_7 crossref_primary_10_1016_j_neunet_2024_106624 crossref_primary_10_1109_TNNLS_2023_3238519 crossref_primary_10_2139_ssrn_4999642 crossref_primary_10_3389_fnins_2024_1356858 crossref_primary_10_1016_j_bspc_2021_103369 crossref_primary_10_1016_j_bspc_2022_103544 crossref_primary_10_1088_1741_2552_ac9e1d crossref_primary_10_1007_s00521_024_09479_3 crossref_primary_10_3390_brainsci11060696 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_1063_5_0098454 crossref_primary_10_1088_1741_2552_ad5fbd crossref_primary_10_1109_TCDS_2023_3263845 crossref_primary_10_1016_j_psychres_2023_115464 crossref_primary_10_1016_j_neunet_2020_08_009 crossref_primary_10_1109_TITS_2023_3348517 crossref_primary_10_1016_j_measurement_2021_110116 crossref_primary_10_1109_JBHI_2024_3384816 crossref_primary_10_1016_j_ins_2024_121198 crossref_primary_10_1109_TMI_2022_3143133 crossref_primary_10_1109_JSEN_2023_3330090 crossref_primary_10_1109_JBHI_2023_3307606 crossref_primary_10_1007_s00521_022_07292_4 crossref_primary_10_1007_s43154_020_00020_7 crossref_primary_10_1109_TCDS_2020_3001642 crossref_primary_10_3389_fpsyt_2020_00661 crossref_primary_10_1109_TNSRE_2023_3346955 crossref_primary_10_1109_TNSRE_2022_3175483 crossref_primary_10_1109_TAFFC_2024_3385651 crossref_primary_10_1109_JTEHM_2023_3320132 crossref_primary_10_3390_brainsci14121166 crossref_primary_10_1109_ACCESS_2021_3100638 crossref_primary_10_1109_JSEN_2021_3108471 crossref_primary_10_1109_TAFFC_2023_3305982 crossref_primary_10_2139_ssrn_4153708 crossref_primary_10_1016_j_jneumeth_2025_110360 crossref_primary_10_17482_uumfd_793775 crossref_primary_10_3389_fpsyt_2020_00676 crossref_primary_10_1109_TBME_2023_3294509 |
Cites_doi | 10.1007/s11571-017-9447-z 10.1109/TBME.2010.2048568 10.1109/72.298224 10.1016/j.patcog.2009.06.009 10.1016/S0731-7085(99)00125-9 10.1109/T-AFFC.2011.25 10.1371/journal.pone.0064704 10.1007/s521-001-8051-z 10.1016/j.patcog.2017.01.026 10.1037/1089-2680.5.4.323 10.1038/nrn2575 10.1109/ICME.2014.6890161 10.1109/72.536309 10.1109/JSTSP.2016.2602007 10.1016/S0304-3940(01)02246-7 10.2307/1170654 10.1016/j.neuroimage.2005.06.023 10.1093/brain/awn262 10.1080/02664763.2012.690857 10.1186/1471-2105-9-470 10.1103/PhysRevLett.100.234101 10.1109/TBME.2014.2305159 10.1016/j.patrec.2015.07.007 10.1109/CVPR.2014.121 10.1109/TAMD.2015.2431497 10.1016/S0278-2626(03)00009-5 10.1016/j.tics.2010.04.004 10.1093/cercor/bhv001 10.1007/11848035_70 10.1109/ICME.2014.6890301 10.1109/TPAMI.2005.159 10.1109/TAFFC.2017.2712143 10.1109/T-AFFC.2011.15 10.1109/IndianCMIT.2013.6529408 10.1109/TBME.2013.2270283 10.2307/1927962 10.1109/ACCESS.2017.2724555 10.1016/j.bspc.2013.10.006 10.1080/02699930802204677 10.2307/2685263 10.1371/journal.pone.0066032 10.1016/j.compbiomed.2011.06.020 10.1109/JPROC.2015.2469106 10.1007/PL00007990 10.1016/j.ins.2016.01.082 10.1145/2671188.2749364 10.1037/0894-4105.7.4.476 10.1201/b15477-5 10.1109/GlobalSIP.2015.7418411 10.1111/j.1469-8986.2007.00497.x 10.1016/j.neuroimage.2013.11.007 10.1109/EMBC.2013.6610118 10.1109/TBME.2010.2055564 10.1016/j.biopsych.2003.11.017 10.1089/brain.2014.0307 10.1080/02699930126048 10.1038/srep15129 10.1007/s11571-015-9327-3 10.1111/mec.13029 10.1109/TAFFC.2015.2436926 10.1109/NEBEC.2015.7117118 10.1109/TAMD.2015.2463113 10.1016/j.neuroimage.2016.04.030 10.1093/brain/121.6.1013 10.1109/T-AFFC.2011.37 10.1016/j.bspc.2017.01.008 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2019.2897651 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2881 |
ExternalDocumentID | 30735981 10_1109_TBME_2019_2897651 8634938 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: #61522105; #61603344; #81401484; #81330032; #61701089 funderid: 10.13039/501100001809 – fundername: Open Foundation of Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology grantid: HNBBL17001 – fundername: National Key Research and Development Plan of China grantid: # 2017YFB1002501 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-c17e4103a006faedda849a2571aab1c14ed4c6721e5d6377072c29cfcfac5f373 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 00:52:02 EDT 2025 Mon Jun 30 08:21:36 EDT 2025 Thu Apr 03 07:01:59 EDT 2025 Tue Jul 01 03:28:31 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Wed Aug 27 02:52:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-c17e4103a006faedda849a2571aab1c14ed4c6721e5d6377072c29cfcfac5f373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2450-4591 0000-0002-3937-2560 0000-0002-7932-0386 0000-0002-8042-879X 0000-0002-6764-3567 |
PMID | 30735981 |
PQID | 2293975387 |
PQPubID | 85474 |
PageCount | 13 |
ParticipantIDs | ieee_primary_8634938 crossref_citationtrail_10_1109_TBME_2019_2897651 crossref_primary_10_1109_TBME_2019_2897651 proquest_miscellaneous_2229089820 pubmed_primary_30735981 proquest_journals_2293975387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref17 gómez-herrero (ref41) 2007 ref16 ref19 ref51 ref50 ref46 ref45 ref48 ref47 fan (ref42) 0 ref43 ref49 ref8 ref7 ref9 rajpurkar (ref74) 2017 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref76 ref32 ref2 ref1 ref39 ref38 koelstra (ref26) 2012 ref71 ref70 ref73 chung (ref44) 0 ref72 mathews (ref75) 2017 ref68 ref24 nnamoko (ref34) 2014; 21 ref67 dongwei (ref18) 0 ref69 ref25 ref64 ref20 ref63 (ref61) 2015 ref66 ref22 ref65 ref21 lin (ref10) 2010; 57 ref28 ref27 ref29 brandstein (ref23) 2013 ref60 ref62 |
References_xml | – ident: ref29 doi: 10.1007/s11571-017-9447-z – volume: 57 start-page: 1798 year: 2010 ident: ref10 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2048568 – ident: ref37 doi: 10.1109/72.298224 – ident: ref65 doi: 10.1016/j.patcog.2009.06.009 – ident: ref66 doi: 10.1016/S0731-7085(99)00125-9 – ident: ref3 doi: 10.1109/T-AFFC.2011.25 – ident: ref36 doi: 10.1371/journal.pone.0064704 – ident: ref72 doi: 10.1007/s521-001-8051-z – ident: ref71 doi: 10.1016/j.patcog.2017.01.026 – year: 2015 ident: ref61 – ident: ref58 doi: 10.1037/1089-2680.5.4.323 – ident: ref19 doi: 10.1038/nrn2575 – ident: ref60 doi: 10.1109/ICME.2014.6890161 – ident: ref22 doi: 10.1109/72.536309 – ident: ref30 doi: 10.1109/JSTSP.2016.2602007 – ident: ref8 doi: 10.1016/S0304-3940(01)02246-7 – ident: ref31 doi: 10.2307/1170654 – ident: ref53 doi: 10.1016/j.neuroimage.2005.06.023 – ident: ref33 doi: 10.1093/brain/awn262 – ident: ref68 doi: 10.1080/02664763.2012.690857 – ident: ref64 doi: 10.1186/1471-2105-9-470 – ident: ref25 doi: 10.1103/PhysRevLett.100.234101 – ident: ref17 doi: 10.1109/TBME.2014.2305159 – ident: ref39 doi: 10.1016/j.patrec.2015.07.007 – ident: ref70 doi: 10.1109/CVPR.2014.121 – ident: ref49 doi: 10.1109/TAMD.2015.2431497 – ident: ref5 doi: 10.1016/S0278-2626(03)00009-5 – start-page: 1768 year: 0 ident: ref44 article-title: Affective classification using Bayesian classifier and supervised learning publication-title: Proc 12th Int Conf Control Autom Syst – ident: ref14 doi: 10.1016/j.tics.2010.04.004 – ident: ref55 doi: 10.1093/cercor/bhv001 – ident: ref11 doi: 10.1007/11848035_70 – ident: ref50 doi: 10.1109/ICME.2014.6890301 – ident: ref38 doi: 10.1109/TPAMI.2005.159 – ident: ref12 doi: 10.1109/TAFFC.2017.2712143 – ident: ref4 doi: 10.1109/T-AFFC.2011.15 – year: 2017 ident: ref75 article-title: Dictionary and deep learning algorithms with applications to remote health monitoring systems – volume: 21 start-page: 33 year: 2014 ident: ref34 article-title: Evaluation of filter and wrapper methods for feature selection in supervised machine learning publication-title: Age – ident: ref1 doi: 10.1109/IndianCMIT.2013.6529408 – start-page: 6081 year: 0 ident: ref42 article-title: Diagnosis of breast cancer using HPLC metabonomics fingerprints coupled with computational methods publication-title: Proc Annu Conf IEEE Eng Med Biol Soc – ident: ref47 doi: 10.1109/TBME.2013.2270283 – ident: ref67 doi: 10.2307/1927962 – ident: ref76 doi: 10.1109/ACCESS.2017.2724555 – ident: ref40 doi: 10.1016/j.bspc.2013.10.006 – ident: ref13 doi: 10.1080/02699930802204677 – ident: ref35 doi: 10.2307/2685263 – ident: ref51 doi: 10.1371/journal.pone.0066032 – ident: ref20 doi: 10.1016/j.compbiomed.2011.06.020 – ident: ref46 doi: 10.1109/JPROC.2015.2469106 – ident: ref24 doi: 10.1007/PL00007990 – ident: ref43 doi: 10.1016/j.ins.2016.01.082 – ident: ref27 doi: 10.1145/2671188.2749364 – ident: ref2 doi: 10.1037/0894-4105.7.4.476 – year: 2013 ident: ref23 publication-title: Microphone Arrays Signal Processing Techniques and Applications – ident: ref63 doi: 10.1201/b15477-5 – year: 2012 ident: ref26 article-title: Affective and implicit tagging using facial expressions and electroencephalography – ident: ref59 doi: 10.1109/GlobalSIP.2015.7418411 – ident: ref7 doi: 10.1111/j.1469-8986.2007.00497.x – ident: ref45 doi: 10.1016/j.neuroimage.2013.11.007 – ident: ref16 doi: 10.1109/EMBC.2013.6610118 – ident: ref48 doi: 10.1109/TBME.2010.2055564 – ident: ref56 doi: 10.1016/j.biopsych.2003.11.017 – ident: ref54 doi: 10.1089/brain.2014.0307 – ident: ref6 doi: 10.1080/02699930126048 – ident: ref15 doi: 10.1038/srep15129 – ident: ref32 doi: 10.1007/s11571-015-9327-3 – ident: ref69 doi: 10.1111/mec.13029 – ident: ref9 doi: 10.1109/TAFFC.2015.2436926 – year: 2007 ident: ref41 article-title: Automatic artifact removal (AAR) toolbox v1. 3 (Release 09.12. 2007) for MATLAB – ident: ref73 doi: 10.1109/NEBEC.2015.7117118 – year: 2017 ident: ref74 article-title: Cardiologist-level arrhythmia detection with convolutional neural networks – ident: ref28 doi: 10.1109/TAMD.2015.2463113 – ident: ref62 doi: 10.1016/j.neuroimage.2016.04.030 – ident: ref57 doi: 10.1093/brain/121.6.1013 – ident: ref52 doi: 10.1109/T-AFFC.2011.37 – start-page: 1 year: 0 ident: ref18 article-title: EEG-based emotion recognition with brain network using independent components analysis and granger causality publication-title: Proc Int Conf Comput Med Appl – ident: ref21 doi: 10.1016/j.bspc.2017.01.008 |
SSID | ssj0014846 |
Score | 2.678304 |
Snippet | Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among... Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2869 |
SubjectTerms | activation patterns Brain Data processing EEG Electric power distribution Electroencephalogram (EEG) Electroencephalography Emotion recognition Emotions Feature extraction Frequency dependence Information dissemination Information processing Locking multiple-feature fusion network patterns Neural networks Performance enhancement Synchronization System effectiveness |
Title | EEG Based Emotion Recognition by Combining Functional Connectivity Network and Local Activations |
URI | https://ieeexplore.ieee.org/document/8634938 https://www.ncbi.nlm.nih.gov/pubmed/30735981 https://www.proquest.com/docview/2293975387 https://www.proquest.com/docview/2229089820 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9UwDLa2HRAcBmzAHmwoSJwQfWuatE2O29S3CfF2QJu0W0mc9DLUh9h7B_j1OElbAQK0W6SmqSvHsR1_tgHecjRYFeSpapfLTHZWZpb0VEaWgukqZQVGEM3ysrq4lh9uypsteD_lwnjvI_jMz8MwxvLdCjfhquxYVUJqobZhmxy3lKs1RQykSkk5OScBLrQcIpg818dXp8smgLj0nLyLuir5bzooNlX5t30Z9cziMSxHChO85Ha-Wds5_vijeON9f-EJ7A4GJztJO-QpbPl-Dx79UoZwDx4shwD7PnxumnN2SprNsSY1-GGfRogRje13RgeIjU0l2IJUYrpJZBEug6kRBbtMyHJmesc-BlXJTnBsonb3DK4XzdXZRTY0YciQKF1nyGsveS4MiWdnvHNGSW1I0LkxliOX3kmsyI_0patEXed1gYXGDjuDZSdq8Rx2-lXvD4CpEmslhFECO-lEZcn15LSi03mnLK9nkI9saXGoUB4aZXxpo6eS6zZwsg2cbAdOzuDd9MrXVJ7jf5P3A0OmiQMvZnA48r4dBPiuLcgMCjnHiqh6Mz0m0QvxFNP71SbMKULUlGyoGbxIe2ZaOxydpVb85d-_-QoeBsoSKvAQdtbfNv6IrJu1fR239U8GufS3 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GiBbilgJE6IbOPYSexji7IssNkD2kq9Bb9yAWUrunsov75jO4kAAeJmKY4z0Xg8M55vZgBeU6NMkaGnKm3KE95qnmjUUwlaCqothGYmgGjqZTE_5x8v8osdeDvmwjjnAvjMTf0wxPLt2mz9VdmJKBiXTNyC26j38yxma40xAy5iWk5KUYQzyfsYJk3lyeqsrjyMS07RvyiLnP6ihUJblb9bmEHTzB5APdAYASZfp9uNnpofv5Vv_N-feAj3e5OTnMY98gh2XLcP934qRLgPd-o-xH4AX6rqPTlD3WZJFVv8kM8DyAjH-prgEaJDWwkyQ6UY7xJJAMyY2IqCLCO2nKjOkoVXluTUDG3Urh7D-axavZsnfRuGxCClm8TQ0nGaMoUC2ipnrRJcKhR1qpSmhnJnuSnQk3S5LVhZpmVmMmla0yqTt6xkT2C3W3fuEIjITSkYU4KZlltWaHQ-Ka5oZdoKTcsJpANbGtPXKPetMr41wVdJZeM52XhONj0nJ_BmfOUyFuj41-QDz5BxYs-LCRwPvG96Eb5qMjSEfNaxQKpejY9R-HxERXVuvfVzMh83RStqAk_jnhnX9odnLgU9-vM3X8Ld-apeNIsPy0_PYM9TGTGCx7C7-b51z9HW2egXYYvfAPGm-AE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Based+Emotion+Recognition+by+Combining+Functional+Connectivity+Network+and+Local+Activations&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Li%2C+Peiyang&rft.au=Zhang%2C+Yangsong&rft.au=Xu%2C+Peng&rft.au=Liu%2C+Huan&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=66&rft.issue=10&rft.spage=2869&rft.epage=2881&rft_id=info:doi/10.1109%2FTBME.2019.2897651&rft.externalDocID=8634938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |