Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network
In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-orde...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 53; no. 6; pp. 4015 - 4028 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush-Kuhn-Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined. |
---|---|
AbstractList | In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush–Kuhn–Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined. In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush-Kuhn-Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined.In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush-Kuhn-Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined. |
Author | Zhang, Shuo Pan, Guang Yu, Junzhi Liu, Lu Zhang, Lichuan |
Author_xml | – sequence: 1 givenname: Lu orcidid: 0000-0003-3179-1004 surname: Liu fullname: Liu, Lu email: liulu12201220@nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Shuo orcidid: 0000-0002-2824-618X surname: Zhang fullname: Zhang, Shuo email: zhangshuo1018@nwpu.edu.cn organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Lichuan orcidid: 0000-0001-8818-5721 surname: Zhang fullname: Zhang, Lichuan email: zlc@nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Guang orcidid: 0000-0003-1932-8252 surname: Pan fullname: Pan, Guang email: panguang@nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 5 givenname: Junzhi orcidid: 0000-0002-6347-572X surname: Yu fullname: Yu, Junzhi email: yujunzhi@pku.edu.cn organization: Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37015353$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS3UipbSD4CQkKVeuGTxn7UdH-lCC1JLJdhF4hQ5zqRySezWdkD99jjaZQ891JexRr83o3nvFTrwwQNCbyhZUEr0h_Xq1_mCEcYWnDFBiXyBjhmVdcWYEgf7v1RH6DSlO1JeXVq6fomOuCJUcMGP0cP1NGRXbTY_8bXxMP2B6PwtXoXJZ4jVpRkB9yHiT4_ejM7itYm3kPEPC95EF_C5SdDh4PFFNDa74M1Q3cQOIv4OdooRfMbfYIpmKCX_DfH3a3TYmyHB6a6eoM3F5_XqS3V1c_l19fGqsnypc9X2pq81FyA6ZZdK0ZbVtlW24z1vOe1YTXTLCSiQUhayNtpKIZUgreSEMn6C3m_n3sfwMEHKzeiShWEoZ4YpNUxpSWXxhBb07Al6F6ZYTilUTZdCML2cqXc7ampH6Jr76EYTH5v_ZhaAbgEbQ0oR-j1CSTNn1syZNXNmzS6zolFPNNZlMxuZo3HDs8q3W6UDgP0mrWsuCOH_AMtHofI |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_phycom_2023_102165 crossref_primary_10_1039_D4NR03050H crossref_primary_10_1109_TGRS_2023_3325298 crossref_primary_10_3390_rs15041076 crossref_primary_10_3390_math11081947 crossref_primary_10_3390_sym15040819 crossref_primary_10_1007_s44198_025_00273_w crossref_primary_10_1016_j_jksuci_2023_101909 crossref_primary_10_3934_math_20241414 crossref_primary_10_1007_s11082_023_05553_7 crossref_primary_10_3934_math_2023667 crossref_primary_10_1088_2632_2153_acf97a crossref_primary_10_1007_s40747_024_01685_9 crossref_primary_10_3390_s23125418 crossref_primary_10_3390_sym15030608 crossref_primary_10_1142_S0217984925500745 crossref_primary_10_3390_sym15030605 crossref_primary_10_1088_1402_4896_ad6f4c crossref_primary_10_1007_s13235_024_00584_5 crossref_primary_10_1007_s40819_025_01865_2 crossref_primary_10_3390_sym15051101 crossref_primary_10_1016_j_apenergy_2023_122107 crossref_primary_10_1109_TETCI_2023_3268707 crossref_primary_10_1007_s11277_024_11153_9 crossref_primary_10_3390_fractalfract8080445 crossref_primary_10_3390_sym15091768 crossref_primary_10_3934_math_20241024 crossref_primary_10_3390_jmse11081538 crossref_primary_10_1007_s11277_023_10777_7 crossref_primary_10_1007_s13042_024_02310_4 crossref_primary_10_1016_j_csite_2023_103670 crossref_primary_10_3390_math13010084 crossref_primary_10_1007_s40815_024_01955_1 crossref_primary_10_1109_JIOT_2023_3322197 crossref_primary_10_1038_s41598_023_37952_x crossref_primary_10_3934_math_20231422 crossref_primary_10_1016_j_applthermaleng_2024_124069 crossref_primary_10_1088_1402_4896_ad4c9e crossref_primary_10_1038_s41598_024_62851_0 crossref_primary_10_1007_s11277_024_11216_x crossref_primary_10_3934_math_20241419 crossref_primary_10_1080_15397734_2024_2354530 crossref_primary_10_1088_1402_4896_ad8d3c crossref_primary_10_3389_fnbot_2024_1448538 crossref_primary_10_3934_math_2025020 crossref_primary_10_1016_j_oceaneng_2024_118559 crossref_primary_10_3390_s23208601 crossref_primary_10_1093_ijlct_ctae098 crossref_primary_10_1016_j_aej_2025_02_052 crossref_primary_10_3389_fnbot_2024_1430155 crossref_primary_10_3390_s24206737 crossref_primary_10_1109_TNSE_2024_3406903 crossref_primary_10_1016_j_energy_2024_131403 crossref_primary_10_3934_math_20221422 crossref_primary_10_1007_s13226_024_00579_3 crossref_primary_10_3390_sym15020430 crossref_primary_10_3390_drones7050311 crossref_primary_10_1007_s11277_024_11228_7 crossref_primary_10_3390_drones7020132 crossref_primary_10_3390_land13070904 crossref_primary_10_1109_TCE_2023_3335155 crossref_primary_10_3390_sym15030703 crossref_primary_10_1016_j_aej_2024_11_106 crossref_primary_10_1109_JIOT_2024_3416616 crossref_primary_10_3934_math_20241123 crossref_primary_10_1515_phys_2024_0081 crossref_primary_10_1109_TVT_2024_3476921 crossref_primary_10_1016_j_asej_2024_103186 crossref_primary_10_3934_math_20241361 crossref_primary_10_1016_j_cjph_2024_06_019 crossref_primary_10_1038_s41598_024_68985_5 crossref_primary_10_1088_1402_4896_ad6b58 crossref_primary_10_1016_j_measurement_2024_115246 crossref_primary_10_3390_su151914597 crossref_primary_10_1007_s11042_023_14929_6 crossref_primary_10_1038_s41598_024_66309_1 crossref_primary_10_1038_s41598_024_73983_8 crossref_primary_10_1016_j_energy_2025_135418 crossref_primary_10_3934_math_2024994 crossref_primary_10_1007_s12190_024_02287_x crossref_primary_10_1088_1402_4896_ad7993 crossref_primary_10_1155_2024_2288527 crossref_primary_10_1038_s41598_024_52462_0 crossref_primary_10_1007_s11082_023_05634_7 |
Cites_doi | 10.1109/TCYB.2018.2890582 10.3390/fractalfract6050235 10.1109/TCYB.2018.2837134 10.1007/BF00339943 10.1515/fca-2020-0007 10.1016/j.oceaneng.2022.111493 10.1016/j.ast.2021.106972 10.1109/TCYB.2020.3035909 10.1007/s11063-019-10154-1 10.1109/JAS.2015.7032901 10.1016/j.actaastro.2017.02.023 10.1007/s11831-018-9300-5 10.1109/TCYB.2017.2752458 10.1109/TNNLS.2018.2885825 10.1109/TNNLS.2019.2955400 10.1016/j.ast.2018.01.035 10.1007/s11269-017-1848-6 10.1109/TNNLS.2016.2574842 10.1109/ACCESS.2019.2933022 10.1016/j.oceaneng.2021.109794 10.1142/S0218348X21400399 10.1109/TCYB.2018.2876901 10.1109/TCYB.2020.2967625 10.1016/0165-0114(89)90205-4 10.1016/S0165-0114(86)80034-3 10.1177/0954410019853982 10.1016/j.neucom.2020.07.036 10.1109/TCYB.2021.3065995 10.1016/j.jfranklin.2019.01.017 10.3233/JIFS-16229 10.1016/j.ast.2018.02.031 10.1109/TCYB.2022.3194059 10.1109/48.820733 10.1109/TCYB.2020.2973748 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2022.3225106 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 4028 |
ExternalDocumentID | 37015353 10_1109_TCYB_2022_3225106 9983500 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Local Science and Technology Special Foundation under the Guidance of the Central Government of Shenzhen grantid: 2021Szvup111 – fundername: National Natural Science Foundation of China grantid: 52001259; 11902252; 51979229 funderid: 10.13039/501100001809 – fundername: Shenzhen Science and Technology Program grantid: JCYJ20210324122010027 – fundername: National Research and Development Project grantid: 2021YFC2803001 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-bfaf8935e5d7c4771b28cb7cd3f3b31d2809b30e7e666f898a9c656750b630123 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 23:01:39 EDT 2025 Mon Jun 30 04:52:50 EDT 2025 Thu Jan 02 22:51:34 EST 2025 Thu Apr 24 23:12:03 EDT 2025 Tue Jul 01 00:54:04 EDT 2025 Wed Aug 27 02:50:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-bfaf8935e5d7c4771b28cb7cd3f3b31d2809b30e7e666f898a9c656750b630123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2824-618X 0000-0003-1932-8252 0000-0002-6347-572X 0000-0001-8818-5721 0000-0003-3179-1004 |
PMID | 37015353 |
PQID | 2814552941 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2022_3225106 ieee_primary_9983500 crossref_citationtrail_10_1109_TCYB_2022_3225106 proquest_miscellaneous_2796160811 pubmed_primary_37015353 proquest_journals_2814552941 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref34 ref15 liu (ref12) 2018; 11 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 li (ref33) 2013; 43 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1109/TCYB.2018.2890582 – ident: ref3 doi: 10.3390/fractalfract6050235 – ident: ref30 doi: 10.1109/TCYB.2018.2837134 – ident: ref20 doi: 10.1007/BF00339943 – ident: ref36 doi: 10.1515/fca-2020-0007 – ident: ref22 doi: 10.1016/j.oceaneng.2022.111493 – ident: ref18 doi: 10.1016/j.ast.2021.106972 – ident: ref31 doi: 10.1109/TCYB.2020.3035909 – ident: ref28 doi: 10.1007/s11063-019-10154-1 – ident: ref7 doi: 10.1109/JAS.2015.7032901 – volume: 43 start-page: 610 year: 2013 ident: ref33 article-title: An effective methodology for solving matrix games with fuzzy payoffs publication-title: IEEE Trans Syst Man Cybern B Cybern – ident: ref17 doi: 10.1016/j.actaastro.2017.02.023 – ident: ref15 doi: 10.1007/s11831-018-9300-5 – ident: ref1 doi: 10.1109/TCYB.2017.2752458 – ident: ref21 doi: 10.1109/TNNLS.2018.2885825 – ident: ref8 doi: 10.1109/TNNLS.2019.2955400 – ident: ref6 doi: 10.1016/j.ast.2018.01.035 – volume: 11 start-page: 35 year: 2018 ident: ref12 article-title: Summary of unmanned system cluster and its countermeasure technology publication-title: Unmanned Aerial Vehicles – ident: ref34 doi: 10.1007/s11269-017-1848-6 – ident: ref25 doi: 10.1109/TNNLS.2016.2574842 – ident: ref4 doi: 10.1109/ACCESS.2019.2933022 – ident: ref10 doi: 10.1016/j.oceaneng.2021.109794 – ident: ref13 doi: 10.1142/S0218348X21400399 – ident: ref26 doi: 10.1109/TCYB.2018.2876901 – ident: ref23 doi: 10.1109/TCYB.2020.2967625 – ident: ref16 doi: 10.1016/0165-0114(89)90205-4 – ident: ref32 doi: 10.1016/S0165-0114(86)80034-3 – ident: ref5 doi: 10.1177/0954410019853982 – ident: ref27 doi: 10.1016/j.neucom.2020.07.036 – ident: ref11 doi: 10.1109/TCYB.2021.3065995 – ident: ref29 doi: 10.1016/j.jfranklin.2019.01.017 – ident: ref35 doi: 10.3233/JIFS-16229 – ident: ref9 doi: 10.1016/j.ast.2018.02.031 – ident: ref24 doi: 10.1109/TCYB.2022.3194059 – ident: ref14 doi: 10.1109/48.820733 – ident: ref19 doi: 10.1109/TCYB.2020.2973748 |
SSID | ssj0000816898 |
Score | 2.6180897 |
Snippet | In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4015 |
SubjectTerms | Algorithms Decision making fractional calculus Fuzzy sets Game theory Games Heuristic algorithms interval fuzzy game theory Maneuvers multi-underwater unmanned vehicle (UUV) Neural networks Optimization recurrent neural network (RNN) Recurrent neural networks Strategy Uncertainty Underwater Unmanned vehicles Vehicle dynamics |
Title | Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network |
URI | https://ieeexplore.ieee.org/document/9983500 https://www.ncbi.nlm.nih.gov/pubmed/37015353 https://www.proquest.com/docview/2814552941 https://www.proquest.com/docview/2796160811 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHlAv0FKgS0tlJA6A8DaxnYePtGWpkLZIsIvKKfIrF0oC7aaH_nrGj40EAsQtUiaJo5nRfGPPfAPwnGlT8DK3lOXGUFFoSSVz6O5KWsYVM0Xg7pyfl2dL8f6iuNiA12MvjHMuFJ-5qb8MZ_m2N4PfKjvC1IAXGSbodzBxi71a435KGCARRt8yvKCIKqp0iJln8mhx8uUYk0HGpt6AMQ3agru8wlDIC_5LRAojVv6ONkPUmd2H-Xq9sdjk63RY6am5_Y3K8X9_aBvuJfhJ3kR72YEN1z2AneTg1-RFYqF-uQs_QmsuXS4_k7nq3HATOAuJ72FHVdB36psjCHjJaRxpTxahpJx8Mq7D9LsnxxgeLek7MruKvRPqkn7wPJ_ko9_i96RQxDOD4GrOYyn6Q1jO3i5Ozmiaz0ANF3JFdatahDuFK2xlRFXlmtVGV8bylmueW1ZnUvPMVQ5zJJSslTQIHxGj6JJ7LPcINru-c3tAEGVYoVuE-xUXKjO1RSQp6tY60Sojswlkax01JpGX-xkal01IYjLZeA03XsNN0vAEXo2PfI_MHf8S3vXaGQWTYiZwsDaEJvn2dcNqT-7OpMgn8Gy8jV7pj1pQIf2AMpUs8xJtEmUeRwMa3722uyd__uY-bPmR9rEc7QA2V1eDe4rAZ6UPg8X_BB2u-oQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLaqIkEv0FIeSwsMEgdAzDaZR5I50sKyQHeRYLcqp2heuVAS2m448OvrmWQjgQBxixQnmci2_HnG_gzwlBkreZY6ylJrqZBGUcU8urtWjnHNrIzcnbN5Nl2K96fydANeDr0w3vtYfObH4TKe5bvGtmGr7ABTAy4TTNCvYdyXrOvWGnZU4giJOPyW4QVFXJH3x5hpog4WR18OMR1kbBxMGBOhLbjOcwyGXPJfYlIcsvJ3vBnjzuQWzNYr7spNvo7blRnbn7-ROf7vL23DzR6AkledxezAhq9vw07v4pfkWc9D_XwXzmNzLl0uT8hM1779EVkLSehiR2XQt_qbJwh5yetuqD1ZxKJy8tn6GhPwhhxigHSkqcnkouue0Gf0Y2D6JJ_CJn-ghSKBGwRXM--K0e_AcvJmcTSl_YQGarlQK2oqXSHgkV663Io8Tw0rrMmt4xU3PHWsSJThic89ZkkoWWhlEUAiSjEZD2juLmzWTe3vA0Gc4YSpEPDnXOjEFg6xpCgq50WlrUpGkKx1VNqevjxM0TgrYxqTqDJouAwaLnsNj-DF8Mj3jrvjX8K7QTuDYK-YEeyvDaHsvfuyZEWgd2dKpCN4MtxGvwyHLaiQpkWZXGVphjaJMvc6Axrevba7B3_-5mO4MV3Mjsvjd_MPe7AVBtx3xWn7sLm6aP1DhEEr8yha_xVYRv3O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-UUV+Maneuvering+Counter-Game+for+Dynamic+Target+Scenario+Based+on+Fractional-Order+Recurrent+Neural+Network&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Lu&rft.au=Zhang%2C+Shuo&rft.au=Zhang%2C+Lichuan&rft.au=Pan%2C+Guang&rft.date=2023-06-01&rft.eissn=2168-2275&rft.volume=53&rft.issue=6&rft.spage=4015&rft_id=info:doi/10.1109%2FTCYB.2022.3225106&rft_id=info%3Apmid%2F37015353&rft.externalDocID=37015353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |