Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network

In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-orde...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 6; pp. 4015 - 4028
Main Authors Liu, Lu, Zhang, Shuo, Zhang, Lichuan, Pan, Guang, Yu, Junzhi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush-Kuhn-Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined.
AbstractList In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush–Kuhn–Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined.
In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush-Kuhn-Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined.In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush-Kuhn-Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined.
Author Zhang, Shuo
Pan, Guang
Yu, Junzhi
Liu, Lu
Zhang, Lichuan
Author_xml – sequence: 1
  givenname: Lu
  orcidid: 0000-0003-3179-1004
  surname: Liu
  fullname: Liu, Lu
  email: liulu12201220@nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Shuo
  orcidid: 0000-0002-2824-618X
  surname: Zhang
  fullname: Zhang, Shuo
  email: zhangshuo1018@nwpu.edu.cn
  organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Lichuan
  orcidid: 0000-0001-8818-5721
  surname: Zhang
  fullname: Zhang, Lichuan
  email: zlc@nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Guang
  orcidid: 0000-0003-1932-8252
  surname: Pan
  fullname: Pan, Guang
  email: panguang@nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Junzhi
  orcidid: 0000-0002-6347-572X
  surname: Yu
  fullname: Yu, Junzhi
  email: yujunzhi@pku.edu.cn
  organization: Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015353$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS3UipbSD4CQkKVeuGTxn7UdH-lCC1JLJdhF4hQ5zqRySezWdkD99jjaZQ891JexRr83o3nvFTrwwQNCbyhZUEr0h_Xq1_mCEcYWnDFBiXyBjhmVdcWYEgf7v1RH6DSlO1JeXVq6fomOuCJUcMGP0cP1NGRXbTY_8bXxMP2B6PwtXoXJZ4jVpRkB9yHiT4_ejM7itYm3kPEPC95EF_C5SdDh4PFFNDa74M1Q3cQOIv4OdooRfMbfYIpmKCX_DfH3a3TYmyHB6a6eoM3F5_XqS3V1c_l19fGqsnypc9X2pq81FyA6ZZdK0ZbVtlW24z1vOe1YTXTLCSiQUhayNtpKIZUgreSEMn6C3m_n3sfwMEHKzeiShWEoZ4YpNUxpSWXxhBb07Al6F6ZYTilUTZdCML2cqXc7ampH6Jr76EYTH5v_ZhaAbgEbQ0oR-j1CSTNn1syZNXNmzS6zolFPNNZlMxuZo3HDs8q3W6UDgP0mrWsuCOH_AMtHofI
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_phycom_2023_102165
crossref_primary_10_1039_D4NR03050H
crossref_primary_10_1109_TGRS_2023_3325298
crossref_primary_10_3390_rs15041076
crossref_primary_10_3390_math11081947
crossref_primary_10_3390_sym15040819
crossref_primary_10_1007_s44198_025_00273_w
crossref_primary_10_1016_j_jksuci_2023_101909
crossref_primary_10_3934_math_20241414
crossref_primary_10_1007_s11082_023_05553_7
crossref_primary_10_3934_math_2023667
crossref_primary_10_1088_2632_2153_acf97a
crossref_primary_10_1007_s40747_024_01685_9
crossref_primary_10_3390_s23125418
crossref_primary_10_3390_sym15030608
crossref_primary_10_1142_S0217984925500745
crossref_primary_10_3390_sym15030605
crossref_primary_10_1088_1402_4896_ad6f4c
crossref_primary_10_1007_s13235_024_00584_5
crossref_primary_10_1007_s40819_025_01865_2
crossref_primary_10_3390_sym15051101
crossref_primary_10_1016_j_apenergy_2023_122107
crossref_primary_10_1109_TETCI_2023_3268707
crossref_primary_10_1007_s11277_024_11153_9
crossref_primary_10_3390_fractalfract8080445
crossref_primary_10_3390_sym15091768
crossref_primary_10_3934_math_20241024
crossref_primary_10_3390_jmse11081538
crossref_primary_10_1007_s11277_023_10777_7
crossref_primary_10_1007_s13042_024_02310_4
crossref_primary_10_1016_j_csite_2023_103670
crossref_primary_10_3390_math13010084
crossref_primary_10_1007_s40815_024_01955_1
crossref_primary_10_1109_JIOT_2023_3322197
crossref_primary_10_1038_s41598_023_37952_x
crossref_primary_10_3934_math_20231422
crossref_primary_10_1016_j_applthermaleng_2024_124069
crossref_primary_10_1088_1402_4896_ad4c9e
crossref_primary_10_1038_s41598_024_62851_0
crossref_primary_10_1007_s11277_024_11216_x
crossref_primary_10_3934_math_20241419
crossref_primary_10_1080_15397734_2024_2354530
crossref_primary_10_1088_1402_4896_ad8d3c
crossref_primary_10_3389_fnbot_2024_1448538
crossref_primary_10_3934_math_2025020
crossref_primary_10_1016_j_oceaneng_2024_118559
crossref_primary_10_3390_s23208601
crossref_primary_10_1093_ijlct_ctae098
crossref_primary_10_1016_j_aej_2025_02_052
crossref_primary_10_3389_fnbot_2024_1430155
crossref_primary_10_3390_s24206737
crossref_primary_10_1109_TNSE_2024_3406903
crossref_primary_10_1016_j_energy_2024_131403
crossref_primary_10_3934_math_20221422
crossref_primary_10_1007_s13226_024_00579_3
crossref_primary_10_3390_sym15020430
crossref_primary_10_3390_drones7050311
crossref_primary_10_1007_s11277_024_11228_7
crossref_primary_10_3390_drones7020132
crossref_primary_10_3390_land13070904
crossref_primary_10_1109_TCE_2023_3335155
crossref_primary_10_3390_sym15030703
crossref_primary_10_1016_j_aej_2024_11_106
crossref_primary_10_1109_JIOT_2024_3416616
crossref_primary_10_3934_math_20241123
crossref_primary_10_1515_phys_2024_0081
crossref_primary_10_1109_TVT_2024_3476921
crossref_primary_10_1016_j_asej_2024_103186
crossref_primary_10_3934_math_20241361
crossref_primary_10_1016_j_cjph_2024_06_019
crossref_primary_10_1038_s41598_024_68985_5
crossref_primary_10_1088_1402_4896_ad6b58
crossref_primary_10_1016_j_measurement_2024_115246
crossref_primary_10_3390_su151914597
crossref_primary_10_1007_s11042_023_14929_6
crossref_primary_10_1038_s41598_024_66309_1
crossref_primary_10_1038_s41598_024_73983_8
crossref_primary_10_1016_j_energy_2025_135418
crossref_primary_10_3934_math_2024994
crossref_primary_10_1007_s12190_024_02287_x
crossref_primary_10_1088_1402_4896_ad7993
crossref_primary_10_1155_2024_2288527
crossref_primary_10_1038_s41598_024_52462_0
crossref_primary_10_1007_s11082_023_05634_7
Cites_doi 10.1109/TCYB.2018.2890582
10.3390/fractalfract6050235
10.1109/TCYB.2018.2837134
10.1007/BF00339943
10.1515/fca-2020-0007
10.1016/j.oceaneng.2022.111493
10.1016/j.ast.2021.106972
10.1109/TCYB.2020.3035909
10.1007/s11063-019-10154-1
10.1109/JAS.2015.7032901
10.1016/j.actaastro.2017.02.023
10.1007/s11831-018-9300-5
10.1109/TCYB.2017.2752458
10.1109/TNNLS.2018.2885825
10.1109/TNNLS.2019.2955400
10.1016/j.ast.2018.01.035
10.1007/s11269-017-1848-6
10.1109/TNNLS.2016.2574842
10.1109/ACCESS.2019.2933022
10.1016/j.oceaneng.2021.109794
10.1142/S0218348X21400399
10.1109/TCYB.2018.2876901
10.1109/TCYB.2020.2967625
10.1016/0165-0114(89)90205-4
10.1016/S0165-0114(86)80034-3
10.1177/0954410019853982
10.1016/j.neucom.2020.07.036
10.1109/TCYB.2021.3065995
10.1016/j.jfranklin.2019.01.017
10.3233/JIFS-16229
10.1016/j.ast.2018.02.031
10.1109/TCYB.2022.3194059
10.1109/48.820733
10.1109/TCYB.2020.2973748
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3225106
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4028
ExternalDocumentID 37015353
10_1109_TCYB_2022_3225106
9983500
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Local Science and Technology Special Foundation under the Guidance of the Central Government of Shenzhen
  grantid: 2021Szvup111
– fundername: National Natural Science Foundation of China
  grantid: 52001259; 11902252; 51979229
  funderid: 10.13039/501100001809
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20210324122010027
– fundername: National Research and Development Project
  grantid: 2021YFC2803001
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-bfaf8935e5d7c4771b28cb7cd3f3b31d2809b30e7e666f898a9c656750b630123
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Jul 10 23:01:39 EDT 2025
Mon Jun 30 04:52:50 EDT 2025
Thu Jan 02 22:51:34 EST 2025
Thu Apr 24 23:12:03 EDT 2025
Tue Jul 01 00:54:04 EDT 2025
Wed Aug 27 02:50:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-bfaf8935e5d7c4771b28cb7cd3f3b31d2809b30e7e666f898a9c656750b630123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2824-618X
0000-0003-1932-8252
0000-0002-6347-572X
0000-0001-8818-5721
0000-0003-3179-1004
PMID 37015353
PQID 2814552941
PQPubID 85422
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCYB_2022_3225106
ieee_primary_9983500
crossref_citationtrail_10_1109_TCYB_2022_3225106
proquest_miscellaneous_2796160811
pubmed_primary_37015353
proquest_journals_2814552941
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
liu (ref12) 2018; 11
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
li (ref33) 2013; 43
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/TCYB.2018.2890582
– ident: ref3
  doi: 10.3390/fractalfract6050235
– ident: ref30
  doi: 10.1109/TCYB.2018.2837134
– ident: ref20
  doi: 10.1007/BF00339943
– ident: ref36
  doi: 10.1515/fca-2020-0007
– ident: ref22
  doi: 10.1016/j.oceaneng.2022.111493
– ident: ref18
  doi: 10.1016/j.ast.2021.106972
– ident: ref31
  doi: 10.1109/TCYB.2020.3035909
– ident: ref28
  doi: 10.1007/s11063-019-10154-1
– ident: ref7
  doi: 10.1109/JAS.2015.7032901
– volume: 43
  start-page: 610
  year: 2013
  ident: ref33
  article-title: An effective methodology for solving matrix games with fuzzy payoffs
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– ident: ref17
  doi: 10.1016/j.actaastro.2017.02.023
– ident: ref15
  doi: 10.1007/s11831-018-9300-5
– ident: ref1
  doi: 10.1109/TCYB.2017.2752458
– ident: ref21
  doi: 10.1109/TNNLS.2018.2885825
– ident: ref8
  doi: 10.1109/TNNLS.2019.2955400
– ident: ref6
  doi: 10.1016/j.ast.2018.01.035
– volume: 11
  start-page: 35
  year: 2018
  ident: ref12
  article-title: Summary of unmanned system cluster and its countermeasure technology
  publication-title: Unmanned Aerial Vehicles
– ident: ref34
  doi: 10.1007/s11269-017-1848-6
– ident: ref25
  doi: 10.1109/TNNLS.2016.2574842
– ident: ref4
  doi: 10.1109/ACCESS.2019.2933022
– ident: ref10
  doi: 10.1016/j.oceaneng.2021.109794
– ident: ref13
  doi: 10.1142/S0218348X21400399
– ident: ref26
  doi: 10.1109/TCYB.2018.2876901
– ident: ref23
  doi: 10.1109/TCYB.2020.2967625
– ident: ref16
  doi: 10.1016/0165-0114(89)90205-4
– ident: ref32
  doi: 10.1016/S0165-0114(86)80034-3
– ident: ref5
  doi: 10.1177/0954410019853982
– ident: ref27
  doi: 10.1016/j.neucom.2020.07.036
– ident: ref11
  doi: 10.1109/TCYB.2021.3065995
– ident: ref29
  doi: 10.1016/j.jfranklin.2019.01.017
– ident: ref35
  doi: 10.3233/JIFS-16229
– ident: ref9
  doi: 10.1016/j.ast.2018.02.031
– ident: ref24
  doi: 10.1109/TCYB.2022.3194059
– ident: ref14
  doi: 10.1109/48.820733
– ident: ref19
  doi: 10.1109/TCYB.2020.2973748
SSID ssj0000816898
Score 2.6180897
Snippet In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4015
SubjectTerms Algorithms
Decision making
fractional calculus
Fuzzy sets
Game theory
Games
Heuristic algorithms
interval fuzzy game theory
Maneuvers
multi-underwater unmanned vehicle (UUV)
Neural networks
Optimization
recurrent neural network (RNN)
Recurrent neural networks
Strategy
Uncertainty
Underwater
Unmanned vehicles
Vehicle dynamics
Title Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network
URI https://ieeexplore.ieee.org/document/9983500
https://www.ncbi.nlm.nih.gov/pubmed/37015353
https://www.proquest.com/docview/2814552941
https://www.proquest.com/docview/2796160811
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHlAv0FKgS0tlJA6A8DaxnYePtGWpkLZIsIvKKfIrF0oC7aaH_nrGj40EAsQtUiaJo5nRfGPPfAPwnGlT8DK3lOXGUFFoSSVz6O5KWsYVM0Xg7pyfl2dL8f6iuNiA12MvjHMuFJ-5qb8MZ_m2N4PfKjvC1IAXGSbodzBxi71a435KGCARRt8yvKCIKqp0iJln8mhx8uUYk0HGpt6AMQ3agru8wlDIC_5LRAojVv6ONkPUmd2H-Xq9sdjk63RY6am5_Y3K8X9_aBvuJfhJ3kR72YEN1z2AneTg1-RFYqF-uQs_QmsuXS4_k7nq3HATOAuJ72FHVdB36psjCHjJaRxpTxahpJx8Mq7D9LsnxxgeLek7MruKvRPqkn7wPJ_ko9_i96RQxDOD4GrOYyn6Q1jO3i5Ozmiaz0ANF3JFdatahDuFK2xlRFXlmtVGV8bylmueW1ZnUvPMVQ5zJJSslTQIHxGj6JJ7LPcINru-c3tAEGVYoVuE-xUXKjO1RSQp6tY60Sojswlkax01JpGX-xkal01IYjLZeA03XsNN0vAEXo2PfI_MHf8S3vXaGQWTYiZwsDaEJvn2dcNqT-7OpMgn8Gy8jV7pj1pQIf2AMpUs8xJtEmUeRwMa3722uyd__uY-bPmR9rEc7QA2V1eDe4rAZ6UPg8X_BB2u-oQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLaqIkEv0FIeSwsMEgdAzDaZR5I50sKyQHeRYLcqp2heuVAS2m448OvrmWQjgQBxixQnmci2_HnG_gzwlBkreZY6ylJrqZBGUcU8urtWjnHNrIzcnbN5Nl2K96fydANeDr0w3vtYfObH4TKe5bvGtmGr7ABTAy4TTNCvYdyXrOvWGnZU4giJOPyW4QVFXJH3x5hpog4WR18OMR1kbBxMGBOhLbjOcwyGXPJfYlIcsvJ3vBnjzuQWzNYr7spNvo7blRnbn7-ROf7vL23DzR6AkledxezAhq9vw07v4pfkWc9D_XwXzmNzLl0uT8hM1779EVkLSehiR2XQt_qbJwh5yetuqD1ZxKJy8tn6GhPwhhxigHSkqcnkouue0Gf0Y2D6JJ_CJn-ghSKBGwRXM--K0e_AcvJmcTSl_YQGarlQK2oqXSHgkV663Io8Tw0rrMmt4xU3PHWsSJThic89ZkkoWWhlEUAiSjEZD2juLmzWTe3vA0Gc4YSpEPDnXOjEFg6xpCgq50WlrUpGkKx1VNqevjxM0TgrYxqTqDJouAwaLnsNj-DF8Mj3jrvjX8K7QTuDYK-YEeyvDaHsvfuyZEWgd2dKpCN4MtxGvwyHLaiQpkWZXGVphjaJMvc6Axrevba7B3_-5mO4MV3Mjsvjd_MPe7AVBtx3xWn7sLm6aP1DhEEr8yha_xVYRv3O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-UUV+Maneuvering+Counter-Game+for+Dynamic+Target+Scenario+Based+on+Fractional-Order+Recurrent+Neural+Network&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Lu&rft.au=Zhang%2C+Shuo&rft.au=Zhang%2C+Lichuan&rft.au=Pan%2C+Guang&rft.date=2023-06-01&rft.eissn=2168-2275&rft.volume=53&rft.issue=6&rft.spage=4015&rft_id=info:doi/10.1109%2FTCYB.2022.3225106&rft_id=info%3Apmid%2F37015353&rft.externalDocID=37015353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon