Gated Stacked Target-Related Autoencoder: A Novel Deep Feature Extraction and Layerwise Ensemble Method for Industrial Soft Sensor Application

These days, data-driven soft sensors have been widely applied to estimate the difficult-to-measure quality variables in the industrial process. How to extract effective feature representations from complex process data is still the difficult and hot spot in the soft sensing application field. Deep l...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 5; pp. 3457 - 3468
Main Authors Sun, Qingqiang, Ge, Zhiqiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract These days, data-driven soft sensors have been widely applied to estimate the difficult-to-measure quality variables in the industrial process. How to extract effective feature representations from complex process data is still the difficult and hot spot in the soft sensing application field. Deep learning (DL), which has made great progresses in many fields recently, has been used for process monitoring and quality prediction purposes for its outstanding nonlinear modeling and feature extraction abilities. In this work, deep stacked autoencoder (SAE) is introduced to construct a soft sensor model. Nevertheless, conventional SAE-based methods do not take information related to target values in the pretraining stage and just use the feature representations in the last hidden layer for final prediction. To this end, a novel gated stacked target-related autoencoder (GSTAE) is proposed for improving modeling performance in view of the above two issues. By adding prediction errors of target values into the loss function when executing a layerwise pretraining procedure, the target-related information is used to guide the feature learning process. Besides, gated neurons are utilized to control the information flow from different layers to the final output neuron that take full advantage of different levels of abstraction representations and quantify their contributions. Finally, the effectiveness and feasibility of the proposed approach are verified in two real industrial cases.
AbstractList These days, data-driven soft sensors have been widely applied to estimate the difficult-to-measure quality variables in the industrial process. How to extract effective feature representations from complex process data is still the difficult and hot spot in the soft sensing application field. Deep learning (DL), which has made great progresses in many fields recently, has been used for process monitoring and quality prediction purposes for its outstanding nonlinear modeling and feature extraction abilities. In this work, deep stacked autoencoder (SAE) is introduced to construct a soft sensor model. Nevertheless, conventional SAE-based methods do not take information related to target values in the pretraining stage and just use the feature representations in the last hidden layer for final prediction. To this end, a novel gated stacked target-related autoencoder (GSTAE) is proposed for improving modeling performance in view of the above two issues. By adding prediction errors of target values into the loss function when executing a layerwise pretraining procedure, the target-related information is used to guide the feature learning process. Besides, gated neurons are utilized to control the information flow from different layers to the final output neuron that take full advantage of different levels of abstraction representations and quantify their contributions. Finally, the effectiveness and feasibility of the proposed approach are verified in two real industrial cases.These days, data-driven soft sensors have been widely applied to estimate the difficult-to-measure quality variables in the industrial process. How to extract effective feature representations from complex process data is still the difficult and hot spot in the soft sensing application field. Deep learning (DL), which has made great progresses in many fields recently, has been used for process monitoring and quality prediction purposes for its outstanding nonlinear modeling and feature extraction abilities. In this work, deep stacked autoencoder (SAE) is introduced to construct a soft sensor model. Nevertheless, conventional SAE-based methods do not take information related to target values in the pretraining stage and just use the feature representations in the last hidden layer for final prediction. To this end, a novel gated stacked target-related autoencoder (GSTAE) is proposed for improving modeling performance in view of the above two issues. By adding prediction errors of target values into the loss function when executing a layerwise pretraining procedure, the target-related information is used to guide the feature learning process. Besides, gated neurons are utilized to control the information flow from different layers to the final output neuron that take full advantage of different levels of abstraction representations and quantify their contributions. Finally, the effectiveness and feasibility of the proposed approach are verified in two real industrial cases.
These days, data-driven soft sensors have been widely applied to estimate the difficult-to-measure quality variables in the industrial process. How to extract effective feature representations from complex process data is still the difficult and hot spot in the soft sensing application field. Deep learning (DL), which has made great progresses in many fields recently, has been used for process monitoring and quality prediction purposes for its outstanding nonlinear modeling and feature extraction abilities. In this work, deep stacked autoencoder (SAE) is introduced to construct a soft sensor model. Nevertheless, conventional SAE-based methods do not take information related to target values in the pretraining stage and just use the feature representations in the last hidden layer for final prediction. To this end, a novel gated stacked target-related autoencoder (GSTAE) is proposed for improving modeling performance in view of the above two issues. By adding prediction errors of target values into the loss function when executing a layerwise pretraining procedure, the target-related information is used to guide the feature learning process. Besides, gated neurons are utilized to control the information flow from different layers to the final output neuron that take full advantage of different levels of abstraction representations and quantify their contributions. Finally, the effectiveness and feasibility of the proposed approach are verified in two real industrial cases.
Author Sun, Qingqiang
Ge, Zhiqiang
Author_xml – sequence: 1
  givenname: Qingqiang
  orcidid: 0000-0002-7042-5640
  surname: Sun
  fullname: Sun, Qingqiang
  email: sunqingqiang@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0000-0002-2071-4380
  surname: Ge
  fullname: Ge, Zhiqiang
  email: gezhiqiang@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32833658$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1UREvpAyAkZIkNm0z9EzsOu2FoS6UpSMywYBU59g2kZOxgO0BfgmfG0xlm0QXeXOv6O9f2OU_RkfMOEHpOyYxSUp-vF1_ezhhhZMYJJZzTR-iEUakKxipxdNjL6hidxXhL8lK5Vasn6JgzxbkU6gT9udIJLF4lbb7nutbhK6TiEwz37fmUPDjjLYQ3eI4_-J8w4HcAI74EnaYA-OJ3Ctqk3jusncVLfQfhVx_zgYuwaQfAN5C-eYs7H_C1s1NModcDXvku4RW4mNvzcRx6o7dDnqHHnR4inO3rKfp8ebFevC-WH6-uF_NlYXhZp6K1jAtdd8YyxrSwugVTGasEq5hVNH-dmJIr1Upda6JNLTojKDGiKy3tQPJT9Ho3dwz-xwQxNZs-GhgG7cBPsWElryirpSAZffUAvfVTcPl1DZOyIlRmUzP1ck9N7QZsM4Z-o8Nd88_pDNAdYIKPMUB3QChptoE220CbbaDNPtCsqR5oTJ_ufcqm98N_lS92yh4ADjfVtCqlqPlfzDGtlg
CODEN ITCEB8
CitedBy_id crossref_primary_10_1002_cjce_25483
crossref_primary_10_1177_01423312231182464
crossref_primary_10_1016_j_aei_2025_103172
crossref_primary_10_1109_TII_2023_3323675
crossref_primary_10_3390_act13010038
crossref_primary_10_1109_TSMC_2022_3198833
crossref_primary_10_1109_TCYB_2023_3295852
crossref_primary_10_1016_j_chemolab_2023_104934
crossref_primary_10_1109_JSEN_2024_3420124
crossref_primary_10_1109_TII_2023_3275700
crossref_primary_10_1109_TCYB_2023_3235155
crossref_primary_10_1016_j_conengprac_2024_105955
crossref_primary_10_1109_TIM_2022_3214611
crossref_primary_10_1016_j_precisioneng_2024_02_015
crossref_primary_10_1109_TCYB_2021_3109618
crossref_primary_10_1109_JSEN_2023_3346849
crossref_primary_10_1109_TII_2022_3227731
crossref_primary_10_1109_TIM_2023_3331407
crossref_primary_10_1002_cjce_25676
crossref_primary_10_1109_JSEN_2024_3522323
crossref_primary_10_1016_j_jprocont_2022_09_009
crossref_primary_10_1109_JSEN_2024_3351431
crossref_primary_10_1109_JSEN_2022_3199474
crossref_primary_10_1109_TII_2024_3463703
crossref_primary_10_1016_j_engappai_2022_105547
crossref_primary_10_1109_JSEN_2024_3388455
crossref_primary_10_1109_TSMC_2023_3322195
crossref_primary_10_1109_TII_2023_3257307
crossref_primary_10_1109_TII_2023_3316179
crossref_primary_10_1109_TIM_2024_3502784
crossref_primary_10_1016_j_compchemeng_2023_108324
crossref_primary_10_1002_cjce_25447
crossref_primary_10_1109_JSEN_2021_3096215
crossref_primary_10_1109_JSEN_2022_3219253
crossref_primary_10_1109_TII_2021_3053128
crossref_primary_10_1109_TII_2023_3330342
crossref_primary_10_3390_s24072073
crossref_primary_10_1109_TAI_2023_3240114
crossref_primary_10_1109_JSEN_2024_3367909
crossref_primary_10_1109_TNNLS_2023_3321691
crossref_primary_10_1007_s40815_023_01544_8
crossref_primary_10_1016_j_measurement_2023_113477
crossref_primary_10_1002_cem_3529
crossref_primary_10_1109_TKDE_2021_3137792
crossref_primary_10_1109_TIM_2022_3228278
crossref_primary_10_3390_en15155743
crossref_primary_10_1016_j_conengprac_2024_105934
crossref_primary_10_1002_cem_3605
crossref_primary_10_1088_1361_6501_ad7483
crossref_primary_10_1109_TCYB_2022_3178116
crossref_primary_10_1002_cjce_24808
crossref_primary_10_1109_TIE_2022_3227274
crossref_primary_10_1109_TII_2021_3127204
crossref_primary_10_1109_TCST_2023_3240980
crossref_primary_10_1016_j_jprocont_2024_103300
crossref_primary_10_1109_TASE_2023_3281336
crossref_primary_10_1002_cjce_24886
crossref_primary_10_1109_TII_2022_3213819
crossref_primary_10_1109_TII_2024_3476522
crossref_primary_10_1016_j_jprocont_2024_103301
crossref_primary_10_1109_TCYB_2025_3537809
crossref_primary_10_1007_s11517_024_03120_0
crossref_primary_10_1109_TII_2024_3431034
crossref_primary_10_1109_TCYB_2024_3431636
crossref_primary_10_1109_TII_2023_3268745
crossref_primary_10_1109_TSMC_2024_3493071
crossref_primary_10_1021_acsomega_4c01254
crossref_primary_10_1109_ACCESS_2024_3409899
crossref_primary_10_1109_JIOT_2023_3299201
crossref_primary_10_1088_1361_6501_ad6684
crossref_primary_10_1109_TCYB_2024_3365068
crossref_primary_10_1088_1361_6501_aceb82
crossref_primary_10_1109_TII_2021_3131471
crossref_primary_10_1007_s10489_025_06368_7
crossref_primary_10_1016_j_engappai_2024_108361
crossref_primary_10_1016_j_eswa_2024_124909
crossref_primary_10_1109_TII_2021_3130411
crossref_primary_10_1109_TII_2024_3465597
crossref_primary_10_1021_acsomega_2c01108
crossref_primary_10_1016_j_ins_2025_122036
crossref_primary_10_1016_j_asoc_2024_111977
crossref_primary_10_1088_1361_6501_ad66f7
crossref_primary_10_1109_TII_2022_3220857
crossref_primary_10_1109_TII_2022_3205356
crossref_primary_10_1007_s10845_023_02303_0
crossref_primary_10_1016_j_measurement_2023_113491
Cites_doi 10.1109/TIE.2016.2622668
10.1016/j.ifacol.2016.03.036
10.21437/Interspeech.2014-80
10.1109/TII.2018.2809730
10.1016/j.chemolab.2018.07.002
10.1016/j.conengprac.2019.104198
10.1109/ACCESS.2017.2756872
10.5555/2999134.2999257
10.1016/j.bej.2018.04.015
10.1109/TCYB.2016.2536638
10.1109/TCYB.2016.2625419
10.1016/j.isatra.2019.07.001
10.1016/j.conengprac.2019.07.016
10.1109/TII.2016.2610839
10.1109/TII.2019.2902129
10.1016/j.compchemeng.2008.12.012
10.1016/j.jprocont.2013.05.007
10.1016/j.jprocont.2018.04.004
10.21437/Interspeech.2010-343
10.1016/j.jprocont.2014.01.012
10.1016/j.chemolab.2019.103813
10.1126/science.1127647
10.1038/nature14539
10.1016/j.chemolab.2019.103814
10.1109/TCYB.2014.2363492
10.1162/neco.2006.18.7.1527
10.1016/j.conengprac.2004.04.013
10.1109/TIE.2017.2733448
10.1109/TCYB.2019.2947622
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3010331
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3468
ExternalDocumentID 32833658
10_1109_TCYB_2020_3010331
9174659
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LR18F030001
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 61722310
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-bd235a9fcd222a5dabec7cd85272d812160c4388b6a9a0ac95fc510c5f4d1fe63
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 06:32:52 EDT 2025
Sun Jun 29 16:33:08 EDT 2025
Thu Jan 02 22:53:56 EST 2025
Tue Jul 01 00:53:56 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Aug 27 02:37:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-bd235a9fcd222a5dabec7cd85272d812160c4388b6a9a0ac95fc510c5f4d1fe63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2071-4380
0000-0002-7042-5640
PMID 32833658
PQID 2667016689
PQPubID 85422
PageCount 12
ParticipantIDs ieee_primary_9174659
crossref_primary_10_1109_TCYB_2020_3010331
pubmed_primary_32833658
proquest_miscellaneous_2437129650
crossref_citationtrail_10_1109_TCYB_2020_3010331
proquest_journals_2667016689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Chung (ref29) 2014
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Makhzani (ref23) 2014
ref26
ref25
ref20
ref22
ref21
Rasmus (ref24) 2015
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1109/TIE.2016.2622668
– ident: ref20
  doi: 10.1016/j.ifacol.2016.03.036
– ident: ref28
  doi: 10.21437/Interspeech.2014-80
– ident: ref25
  doi: 10.1109/TII.2018.2809730
– ident: ref3
  doi: 10.1016/j.chemolab.2018.07.002
– volume-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  year: 2014
  ident: ref29
– volume-title: k-sparse autoencoders
  year: 2014
  ident: ref23
– ident: ref27
  doi: 10.1016/j.conengprac.2019.104198
– ident: ref8
  doi: 10.1109/ACCESS.2017.2756872
– start-page: 3546
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: ref24
  article-title: Semi-supervised learning with ladder networks
– ident: ref10
  doi: 10.5555/2999134.2999257
– ident: ref7
  doi: 10.1016/j.bej.2018.04.015
– ident: ref13
  doi: 10.1109/TCYB.2016.2536638
– ident: ref9
  doi: 10.1109/TCYB.2016.2625419
– ident: ref18
  doi: 10.1016/j.isatra.2019.07.001
– ident: ref19
  doi: 10.1016/j.conengprac.2019.07.016
– ident: ref32
  doi: 10.1109/TII.2016.2610839
– ident: ref30
  doi: 10.1109/TII.2019.2902129
– ident: ref5
  doi: 10.1016/j.compchemeng.2008.12.012
– ident: ref2
  doi: 10.1016/j.jprocont.2013.05.007
– ident: ref6
  doi: 10.1016/j.jprocont.2018.04.004
– ident: ref11
  doi: 10.21437/Interspeech.2010-343
– ident: ref21
  doi: 10.1016/j.jprocont.2014.01.012
– ident: ref1
  doi: 10.1016/j.chemolab.2019.103813
– ident: ref12
  doi: 10.1126/science.1127647
– ident: ref14
  doi: 10.1038/nature14539
– ident: ref26
  doi: 10.1016/j.chemolab.2019.103814
– ident: ref15
  doi: 10.1109/TCYB.2014.2363492
– ident: ref16
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref31
  doi: 10.1016/j.conengprac.2004.04.013
– ident: ref22
  doi: 10.1109/TIE.2017.2733448
– ident: ref17
  doi: 10.1109/TCYB.2019.2947622
SSID ssj0000816898
Score 2.5968919
Snippet These days, data-driven soft sensors have been widely applied to estimate the difficult-to-measure quality variables in the industrial process. How to extract...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3457
SubjectTerms Computational modeling
Data mining
Data models
Deep learning
Deep learning (DL)
Feature extraction
gated neurons
Information flow
Logic gates
Machine learning
Modelling
Neurons
nonlinear feature extraction
Process control
Representations
soft sensor
stacked autoencoder (SAE)
target-related information
Title Gated Stacked Target-Related Autoencoder: A Novel Deep Feature Extraction and Layerwise Ensemble Method for Industrial Soft Sensor Application
URI https://ieeexplore.ieee.org/document/9174659
https://www.ncbi.nlm.nih.gov/pubmed/32833658
https://www.proquest.com/docview/2667016689
https://www.proquest.com/docview/2437129650
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGBPniElspIHACRbRI7D3PbllYVYnvpViqnyLHHEmJJqt0EED-C38zYyaYVAsQtiZ2HNTPxN_bMfAAvEoGZtWkVxkZoclA4hiqWKpTaSqlVoax0-c6zi-z8Sry_Tq834M2YC4OIPvgMJ-7Q7-WbRnduqeyIXAuRpXITNslx63O1xvUUTyDhqW8TOggJVeTDJmYcyaP5ycdjcgYT8lEdsQF3BDGcZlaeOa73OzOSp1j5O9r0s87ZA5itv7cPNvk86dpqon_8Vsrxfwe0DfcH-Mmmvb7swAbWu7AzGPiKvRyqUL_ag59uXc0wAqNk54bNfcR46GPn6HTatY0rgWlw-ZZN2UXzFRfsHeINc5iyWyI7_d4u-6QJpmrDPijC9t8-raihXuGXaoFs5smrGaFmdksgwi5pXmCX5FzT5ent7vpDuDo7nZ-chwN5Q6i5kG1YmYSnSlptCIGo1ChSllybIk3yxBCqiLNIC14UVaakipSWqdX0f9CpFSa2mPFHsFU3NT4BpqPE8lxZIQsuElMpibkqCFrmFZI7FAUQrQVY6qGyuSPYWJTew4lk6cRfOvGXg_gDeD3ectOX9fhX5z0nurHjILUADtZaUg6GvyoJ7-SEokkVA3g-NpPJun0YVWPTUR_Bc4JZNIAAHvfaNT57rZRP__zOfbiXuPwLH3F5AFvtssNnhIra6tCbwy-FVgc1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALUAolpYCROAAi2yTOy9yW0mqB3b10K5VT5NhjCbFNqt0EED-C38zYyaYIAeKWh_PSzGS-sWfmA3gWxZgak5R-qGNFAQpHX4ZC-kIZIZTMpRG23nk2Tydn8fvz5HwLXg21MIjoks9wZDfdWr6uVWunyg4ptIjTRFyD6-T3k7Cr1hpmVByFhCO_jWjDJ1yR9cuYYSAOF0cf31A4GFGUaqkNuKWI4eRbeWrZ3n_xSY5k5e940_mdk9sw27xxl27yedQ25Uh9_62Z4_9-0h241QNQNu40Zge2sLoLO72Jr9nzvg_1i134YWfWNCM4Spau2cLljPsue452x21T2yaYGlev2ZjN6y-4ZG8RL5lFle0K2fG3ZtWVTTBZaTaVhO6_flrTiWqNF-US2czRVzPCzeyKQoSdkmdgpxRe0-Hx1fr6PTg7OV4cTfyevsFXPBaNX-qIJ1IYpQmDyERLUpdM6TyJskgTrgjTQMU8z8tUChlIJRKj6A-hEhPr0GDK78N2VVf4AJgKIsMzaWKR8zjSpRSYyZzAZVYiBUSBB8FGgIXqe5tbio1l4WKcQBRW_IUVf9GL34OXwyWXXWOPfw3etaIbBvZS8-BgoyVFb_rrghBPRjiaVNGDp8NpMlq7EiMrrFsaE_OMgBZ9gAd7nXYN994o5f6fn_kEbkwWs2kxfTf_8BBuRrYaw-VfHsB2s2rxEWGkpnzsTOMnYZsKfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gated+Stacked+Target-Related+Autoencoder%3A+A+Novel+Deep+Feature+Extraction+and+Layerwise+Ensemble+Method+for+Industrial+Soft+Sensor+Application&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Sun%2C+Qingqiang&rft.au=Ge%2C+Zhiqiang&rft.date=2022-05-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=5&rft.spage=3457&rft_id=info:doi/10.1109%2FTCYB.2020.3010331&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon