Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data

A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 25; no. 1; pp. 43 - 53
Main Authors Zhou, Zhiguang, Meng, Linhao, Tang, Cheng, Zhao, Ying, Guo, Zhiyong, Hu, Miaoxin, Chen, Wei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows.
AbstractList A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows.
A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows.A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows.
Author Ying Zhao
Miaoxin Hu
Linhao Meng
Wei Chen
Cheng Tang
Zhiyong Guo
Zhiguang Zhou
Author_xml – sequence: 1
  givenname: Zhiguang
  surname: Zhou
  fullname: Zhou, Zhiguang
– sequence: 2
  givenname: Linhao
  surname: Meng
  fullname: Meng, Linhao
– sequence: 3
  givenname: Cheng
  surname: Tang
  fullname: Tang, Cheng
– sequence: 4
  givenname: Ying
  surname: Zhao
  fullname: Zhao, Ying
– sequence: 5
  givenname: Zhiyong
  surname: Guo
  fullname: Guo, Zhiyong
– sequence: 6
  givenname: Miaoxin
  surname: Hu
  fullname: Hu, Miaoxin
– sequence: 7
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30130199$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaT7aH1AKxdBLL97OyLI-jmHTbgsbcmiaq9Dao6DgtbaSHei_rza76SGHwsAMzPMOw_ues5MxjsTYe4QFIpgvt3fL1YID6gXXUrTQvGJnaATW0II8KTMoVXPJ5Sk7z_kBAIXQ5g07bQBLGXPGru9Cnt1QXW7ylFw3hThW0Vdrl-6p-tm5gaoVxbxzUyjUTQr3YayvKE9hdE_wdXykLY1TdeUm95a99m7I9O7YL9ivb19vl9_r9c3qx_JyXXeNMFO9MQJc38ueiGvVcCc6kso7Cbr3iK3XyguApvVeqUZyjqANaKGk1JuuLC7Y58PdXYq_5_KN3Ybc0TC4keKcLQeDmjcIoqCfXqAPcU5j-c5ybAW0HFEV6uORmjdb6u0uha1Lf-yzUQVQB6BLMedE3nZhenKg2BYGi2D3kdh9JHYfiT1GUpT4Qvl8_H-aDwdNIKJ_vBZ7U0zzF94hk-g
CODEN ITVGEA
CitedBy_id crossref_primary_10_1007_s12650_021_00777_9
crossref_primary_10_3390_en16031166
crossref_primary_10_1109_TVCG_2020_3030440
crossref_primary_10_1109_TITS_2021_3092036
crossref_primary_10_1038_s41598_023_42862_z
crossref_primary_10_3724_SP_J_1089_2022_19466
crossref_primary_10_1109_TR_2021_3109122
crossref_primary_10_1109_TVCG_2022_3209373
crossref_primary_10_1007_s43762_022_00049_8
crossref_primary_10_1007_s12650_024_00971_5
crossref_primary_10_1371_journal_pone_0249145
crossref_primary_10_1109_ACCESS_2019_2932051
crossref_primary_10_1007_s12650_019_00598_x
crossref_primary_10_1007_s12650_025_01049_6
crossref_primary_10_1109_ACCESS_2020_3045182
crossref_primary_10_1007_s11704_021_0609_0
crossref_primary_10_1007_s12650_024_00990_2
crossref_primary_10_1007_s41095_022_0275_7
crossref_primary_10_1631_FITEE_1900532
crossref_primary_10_1016_j_visinf_2025_02_002
crossref_primary_10_3390_ijgi13110373
crossref_primary_10_1109_TVCG_2022_3189094
crossref_primary_10_1109_TVCG_2021_3114853
crossref_primary_10_1016_j_visinf_2025_01_001
crossref_primary_10_1016_j_cities_2020_102610
crossref_primary_10_1109_TVCG_2020_3030458
crossref_primary_10_1109_TVCG_2019_2934670
crossref_primary_10_1109_TVCG_2019_2934671
crossref_primary_10_1016_j_visinf_2024_06_002
crossref_primary_10_3390_urbansci3030074
crossref_primary_10_1109_ACCESS_2019_2935471
crossref_primary_10_1109_TVCG_2023_3261938
crossref_primary_10_15701_kcgs_2024_30_3_9
crossref_primary_10_1109_TVCG_2019_2934591
crossref_primary_10_1109_ACCESS_2019_2948304
crossref_primary_10_3390_ijms20236019
crossref_primary_10_1007_s12650_022_00882_3
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1080_23729333_2023_2189431
crossref_primary_10_1109_TSMC_2020_3040262
crossref_primary_10_1109_TVCG_2019_2934208
crossref_primary_10_1109_TVCG_2019_2934800
crossref_primary_10_1016_j_trip_2019_100069
crossref_primary_10_1016_j_trip_2023_100997
crossref_primary_10_1109_TSMC_2021_3072357
crossref_primary_10_3390_ijgi10040210
crossref_primary_10_3390_ijgi10120804
crossref_primary_10_1109_TVCG_2020_3030428
crossref_primary_10_3390_electronics13030467
crossref_primary_10_1109_ACCESS_2019_2929061
crossref_primary_10_1016_j_visinf_2021_09_001
crossref_primary_10_1016_j_cag_2024_104013
crossref_primary_10_1111_cgf_15091
crossref_primary_10_1007_s12650_019_00577_2
crossref_primary_10_1007_s12650_019_00579_0
crossref_primary_10_1007_s12650_024_01008_7
crossref_primary_10_1007_s41095_023_0392_y
crossref_primary_10_1371_journal_pone_0267436
crossref_primary_10_1145_3418215
crossref_primary_10_1016_j_neucom_2021_01_067
crossref_primary_10_1109_TVCG_2019_2934657
crossref_primary_10_1016_j_visinf_2021_10_002
crossref_primary_10_1631_FITEE_2300453
crossref_primary_10_1016_j_neucom_2021_01_105
crossref_primary_10_1007_s11042_023_15314_z
crossref_primary_10_1109_TVCG_2019_2934655
crossref_primary_10_3390_ijgi8030117
crossref_primary_10_1080_24725854_2021_1914879
crossref_primary_10_3390_s24082523
crossref_primary_10_1007_s12650_019_00569_2
crossref_primary_10_1080_15230406_2023_2190164
crossref_primary_10_1109_MCG_2019_2926242
crossref_primary_10_1145_3345640
crossref_primary_10_1016_j_cag_2023_07_031
crossref_primary_10_1007_s12650_021_00775_x
Cites_doi 10.1109/TVCG.2015.2467691
10.1109/TVCG.2013.226
10.1111/j.0033-0124.1981.00419.x
10.1109/TVCG.2017.2744322
10.1109/TVCG.2016.2598885
10.1109/PacificVis.2012.6183575
10.1109/TVCG.2011.202
10.1109/TVCG.2016.2598667
10.1109/TVCG.2016.2641963
10.1109/TVCG.2013.196
10.1109/PACIFICVIS.2011.5742390
10.1016/j.compenvurbsys.2009.01.007
10.1109/TVCG.2014.2346746
10.1145/2461912.2462023
10.1145/3072959.3119910
10.2307/1791753
10.1109/TVCG.2011.233
10.1179/000870410X12658023467367
10.1109/MCG.2017.6
10.14714/CP30.663
10.1109/TVCG.2016.2598432
10.1109/TVCG.2009.143
10.1145/2487228.2487233
10.1080/13658810701349037
10.1111/tgis.12042
10.1109/TVCG.2016.2607204
10.1145/2684822.2685317
10.3138/carto.46.4.239
10.1177/1473871612457601
10.3390/ijgi6110321
10.1109/TVCG.2014.2346271
10.1145/2939672.2939754
10.1111/tgis.12100
10.1080/03085696708592302
10.23915/distill.00002
10.1088/1742-5468/2008/10/P10008
10.1007/s00371-013-0892-3
10.1109/TVCG.2014.2346594
10.1109/TVCG.2008.135
10.1109/TVCG.2016.2616404
10.1145/2516971.2516973
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2018.2864503
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 53
ExternalDocumentID 30130199
10_1109_TVCG_2018_2864503
8440039
Genre orig-research
Journal Article
GrantInformation_xml – fundername: State Key Lab of CAD&CG of Zhejiang University
  grantid: A1806
– fundername: Humanities and Social Sciences Foundation of Ministry of Education in China
  grantid: 18YJC910017
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY18F020024
  funderid: 10.13039/501100004731
– fundername: National 973 Program of China
  grantid: 2015CB352503
– fundername: National Natural Science Foundation of China
  grantid: 61872314; 61772456; 61672538; U1609217; U1736109
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-b940add6dee28732a4ce67fa608df115f87f40035ff77362210890847668bc003
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 15:37:37 EDT 2025
Mon Jun 30 05:16:20 EDT 2025
Wed Feb 19 02:09:30 EST 2025
Thu Apr 24 23:06:30 EDT 2025
Tue Jul 01 03:58:53 EDT 2025
Wed Aug 27 05:51:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b940add6dee28732a4ce67fa608df115f87f40035ff77362210890847668bc003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30130199
PQID 2154052117
PQPubID 75741
PageCount 11
ParticipantIDs proquest_miscellaneous_2091823104
pubmed_primary_30130199
proquest_journals_2154052117
crossref_citationtrail_10_1109_TVCG_2018_2864503
crossref_primary_10_1109_TVCG_2018_2864503
ieee_primary_8440039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
mikolov (ref32) 2013
ref15
ref14
ref11
ref10
guo (ref18) 2009; 15
ref17
ref16
ref19
liu (ref28) 2014; 30
ref51
ref50
wattenberg (ref46) 2016
ref45
ref48
ref47
ref41
ref44
yan (ref49) 2013; 32
liu (ref25) 2017; 23
ref7
ref9
ref4
tobler (ref42) 1987; 14
ref3
ref6
ref5
ref40
ref34
ref37
heck (ref20) 2013; 32
ref36
ref2
ref1
ref38
phan (ref35) 2005
su (ref39) 2014
turian (ref43) 2010
maaten (ref30) 2008; 9
ref24
ref23
ebeida (ref12) 2018; 37
ref26
ref22
boyandin (ref8) 2010
ref21
ref27
mikolov (ref33) 2013
marble (ref31) 1997
liu (ref29) 2013; 19
References_xml – ident: ref44
  doi: 10.1109/TVCG.2015.2467691
– ident: ref14
  doi: 10.1109/TVCG.2013.226
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref30
  article-title: Visualizing data using t-sne
  publication-title: Journal of Machine Learning Research
– ident: ref41
  doi: 10.1111/j.0033-0124.1981.00419.x
– ident: ref2
  doi: 10.1109/TVCG.2017.2744322
– ident: ref50
  doi: 10.1109/TVCG.2016.2598885
– ident: ref34
  doi: 10.1109/PacificVis.2012.6183575
– ident: ref9
  doi: 10.1109/TVCG.2011.202
– start-page: 219
  year: 2005
  ident: ref35
  article-title: Flow map layout
  publication-title: Proceedings of the IEEE Symposium on Information Visualization
– ident: ref5
  doi: 10.1109/TVCG.2016.2598667
– ident: ref1
  doi: 10.1109/TVCG.2016.2641963
– volume: 19
  start-page: 2436
  year: 2013
  ident: ref29
  article-title: Storyflow: Tracking the evolution of stories
  publication-title: IEEE Transactions on Visualization & Computer Graphics
  doi: 10.1109/TVCG.2013.196
– year: 1997
  ident: ref31
  publication-title: Recent Advances in the Exploratory Analysis of Interregional Flows in Space and Time
– ident: ref21
  doi: 10.1109/PACIFICVIS.2011.5742390
– ident: ref37
  doi: 10.1016/j.compenvurbsys.2009.01.007
– ident: ref45
  doi: 10.1109/TVCG.2014.2346746
– ident: ref40
  doi: 10.1145/2461912.2462023
– ident: ref36
  doi: 10.1145/3072959.3119910
– ident: ref22
  doi: 10.2307/1791753
– ident: ref13
  doi: 10.1109/TVCG.2011.233
– ident: ref47
  doi: 10.1179/000870410X12658023467367
– start-page: 3111
  year: 2013
  ident: ref33
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems
– ident: ref24
  doi: 10.1109/MCG.2017.6
– ident: ref23
  doi: 10.14714/CP30.663
– start-page: 1
  year: 2014
  ident: ref39
  article-title: Chinese sentiment classification using a neural network toolword2vec
  publication-title: Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI)
– volume: 23
  start-page: 1
  year: 2017
  ident: ref25
  article-title: Smar-tadp: Visual analytics of large-scale taxi trajectories for selecting billboard locations
  publication-title: IEEE Transactions on Visualization & Computer Graphics
  doi: 10.1109/TVCG.2016.2598432
– volume: 14
  start-page: 155
  year: 1987
  ident: ref42
  article-title: Experiments in migration mapping by computer
  publication-title: Cartography and Geographic Information Science
– volume: 15
  start-page: 1041
  year: 2009
  ident: ref18
  article-title: Flow mapping and multivariate visualization of large spatial interaction data
  publication-title: IEEE Transactions on Visualization & Computer Graphics
  doi: 10.1109/TVCG.2009.143
– year: 2010
  ident: ref8
  article-title: Visualizing the worlds refugee data with jflowmap
  publication-title: Proceedings of the Eurographics/IEEE-VGTC Symposium on Visualization
– volume: 32
  start-page: 1
  year: 2013
  ident: ref20
  article-title: Blue noise sampling with controlled aliasing
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/2487228.2487233
– ident: ref17
  doi: 10.1080/13658810701349037
– ident: ref15
  doi: 10.1111/tgis.12042
– ident: ref27
  doi: 10.1109/TVCG.2016.2607204
– ident: ref6
  doi: 10.1145/2684822.2685317
– ident: ref48
  doi: 10.3138/carto.46.4.239
– ident: ref4
  doi: 10.1177/1473871612457601
– ident: ref26
  doi: 10.3390/ijgi6110321
– ident: ref19
  doi: 10.1109/TVCG.2014.2346271
– year: 2013
  ident: ref32
  article-title: Exploiting similarities among languages for machine translation
  publication-title: Computer Science
– ident: ref16
  doi: 10.1145/2939672.2939754
– volume: 37
  year: 2018
  ident: ref12
  article-title: Spoke darts for efficient high dimensional blue noise sampling
  publication-title: ACM Transactions on Graphics
– ident: ref51
  doi: 10.1111/tgis.12100
– ident: ref38
  doi: 10.1080/03085696708592302
– year: 2016
  ident: ref46
  article-title: How to use t-sne effectively
  publication-title: Distillation
  doi: 10.23915/distill.00002
– start-page: 384
  year: 2010
  ident: ref43
  article-title: Word representations: A simple and general method for semi-supervised learning
  publication-title: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics
– ident: ref7
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 30
  start-page: 1373
  year: 2014
  ident: ref28
  article-title: A survey on information visualization: Recent advances and challenges
  publication-title: The Visual Computer
  doi: 10.1007/s00371-013-0892-3
– ident: ref10
  doi: 10.1109/TVCG.2014.2346594
– ident: ref11
  doi: 10.1109/TVCG.2008.135
– ident: ref3
  doi: 10.1109/TVCG.2016.2616404
– volume: 32
  start-page: 1
  year: 2013
  ident: ref49
  article-title: Gap processing for adaptive maximal poisson-disk sampling
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/2516971.2516973
SSID ssj0014489
Score 2.519801
Snippet A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms Case studies
Clustering
Clutter
Correlation
Data visualization
Datasets
Filtration
flow map
Flow mapping
Geospatial analysis
human mobility
Human motion
Intersections
Mobile handsets
Natural language processing
origin-destination
Quantitative analysis
representation learning
Semantics
Visual abstraction
Visualization
Title Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data
URI https://ieeexplore.ieee.org/document/8440039
https://www.ncbi.nlm.nih.gov/pubmed/30130199
https://www.proquest.com/docview/2154052117
https://www.proquest.com/docview/2091823104
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJzjwKK-0UAWpp4os3sSb2EcEBYTYciggblHsHUuo1QaxyaW_vjN2NiAEqLdIniSOZ5z5xvMC-GaQ8xMrTVvckIGCEhNt8oxkmXSVylHYlLORxz_zi1t5eT-6X4DDPhcGEX3wGQ740vvyJ7Vt-ajsSEnJuaSLsEiGW8jV6j0GZGboEF9YJCmh9M6DORT66Obu5JyDuNQgVbkcCe6dk7HHLlR8fVZHvr_K-1DTq5yzNRjPJxsiTX4P2sYM7N9XdRz_92vWYbXDnvFxEJYNWMDpJ1h5UZFwE8Z3D7OWaQwfgfich7h28RXHi8e_iJ8Yn2M94zBsorr2XbUStl0fwqliPK59AfImPq2aagtuz37cnFwkXceFxGZSN4nRUlTcYwqRLKksraTFvHBVLtTEEXZ0qnA86ZFzRUGqj-xFpQUpuDxXxtLANixN6ynuQmxTbYcuRUJUmazQqiE9iX4AE2eUTaWLQMwXvrRdOXLuivGn9GaJ0CWzrWS2lR3bIvje3_IYanF8RLzJS94Tdqsdwd6cu2W3W2clwR7JSczDIoKDfpj2GTtPqinWLdEQsGKXqZAR7ASp6J89F6bPb7_zCyzTzHQ4uNmDpeapxX2CMo356mX4H6BT6oM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvAo0UCBIcEHK1ut4E_vAAbW0W7pbDmyr3tLEO5Yqqg1iEyH4LfwV_hszdjYgBNwqcYvkifPw5_G8B-B5hZyfWBra4hUpKKgwMVWWEpbprNIZCis5G3l6lI2P1dvT0ekafOtzYRDRB5_hgC-9L39e25ZNZdtaKc4l7UIoD_HLZ1LQlq8Odmk1X0i592a2M066HgKJTZVpksooUXLXJETSDVJZKotZ7spM6Lkjacjp3PGkI-fynJg5aUDaCGLZWaYrSwM07xW4SnLGSIbssN5HQYqNCRGNeSJJL-h8pkNhtmcnO_scNqYHUmdqJLhbT8o-wlBj9ucB6Du6_F249Yfc3i34vvo9Ibblw6BtqoH9-lvlyP_1_92Gm510Hb8O2-EOrOHiLtz4pebiBkxPzpct01Rs5PFZHXHt4glHxMfvCbEY72O95EBzonrn-4YlrJ2fB7tpPK19ifUm3i2b8h4cX8r33If1Rb3ATYitNHboJJLMmKoSrR7STMTi5q7SVioXgVgtdGG7guvc9-Oi8IqXMAXDpGCYFB1MInjZ3_IxVBv5F_EGL3FP2K1uBFsrNBUdP1oWJNgpTtMe5hE864eJk7B7qFxg3RINiY7sFBYqggcBhf3cK_A-_PMzn8K18Ww6KSYHR4eP4Dq9pQlmqi1Ybz61-JgEt6Z64vdPDGeXDbgfPbJFpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Abstraction+of+Large+Scale+Geospatial+Origin-Destination+Movement+Data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Zhou%2C+Zhiguang&rft.au=Meng%2C+Linhao&rft.au=Tang%2C+Cheng&rft.au=Zhao%2C+Ying&rft.date=2019-01-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft_id=info:doi/10.1109%2FTVCG.2018.2864503&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon