Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data
A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 25; no. 1; pp. 43 - 53 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows. |
---|---|
AbstractList | A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows. A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows.A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows. |
Author | Ying Zhao Miaoxin Hu Linhao Meng Wei Chen Cheng Tang Zhiyong Guo Zhiguang Zhou |
Author_xml | – sequence: 1 givenname: Zhiguang surname: Zhou fullname: Zhou, Zhiguang – sequence: 2 givenname: Linhao surname: Meng fullname: Meng, Linhao – sequence: 3 givenname: Cheng surname: Tang fullname: Tang, Cheng – sequence: 4 givenname: Ying surname: Zhao fullname: Zhao, Ying – sequence: 5 givenname: Zhiyong surname: Guo fullname: Guo, Zhiyong – sequence: 6 givenname: Miaoxin surname: Hu fullname: Hu, Miaoxin – sequence: 7 givenname: Wei surname: Chen fullname: Chen, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30130199$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJaT7aH1AKxdBLL97OyLI-jmHTbgsbcmiaq9Dao6DgtbaSHei_rza76SGHwsAMzPMOw_ues5MxjsTYe4QFIpgvt3fL1YID6gXXUrTQvGJnaATW0II8KTMoVXPJ5Sk7z_kBAIXQ5g07bQBLGXPGru9Cnt1QXW7ylFw3hThW0Vdrl-6p-tm5gaoVxbxzUyjUTQr3YayvKE9hdE_wdXykLY1TdeUm95a99m7I9O7YL9ivb19vl9_r9c3qx_JyXXeNMFO9MQJc38ueiGvVcCc6kso7Cbr3iK3XyguApvVeqUZyjqANaKGk1JuuLC7Y58PdXYq_5_KN3Ybc0TC4keKcLQeDmjcIoqCfXqAPcU5j-c5ybAW0HFEV6uORmjdb6u0uha1Lf-yzUQVQB6BLMedE3nZhenKg2BYGi2D3kdh9JHYfiT1GUpT4Qvl8_H-aDwdNIKJ_vBZ7U0zzF94hk-g |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1007_s12650_021_00777_9 crossref_primary_10_3390_en16031166 crossref_primary_10_1109_TVCG_2020_3030440 crossref_primary_10_1109_TITS_2021_3092036 crossref_primary_10_1038_s41598_023_42862_z crossref_primary_10_3724_SP_J_1089_2022_19466 crossref_primary_10_1109_TR_2021_3109122 crossref_primary_10_1109_TVCG_2022_3209373 crossref_primary_10_1007_s43762_022_00049_8 crossref_primary_10_1007_s12650_024_00971_5 crossref_primary_10_1371_journal_pone_0249145 crossref_primary_10_1109_ACCESS_2019_2932051 crossref_primary_10_1007_s12650_019_00598_x crossref_primary_10_1007_s12650_025_01049_6 crossref_primary_10_1109_ACCESS_2020_3045182 crossref_primary_10_1007_s11704_021_0609_0 crossref_primary_10_1007_s12650_024_00990_2 crossref_primary_10_1007_s41095_022_0275_7 crossref_primary_10_1631_FITEE_1900532 crossref_primary_10_1016_j_visinf_2025_02_002 crossref_primary_10_3390_ijgi13110373 crossref_primary_10_1109_TVCG_2022_3189094 crossref_primary_10_1109_TVCG_2021_3114853 crossref_primary_10_1016_j_visinf_2025_01_001 crossref_primary_10_1016_j_cities_2020_102610 crossref_primary_10_1109_TVCG_2020_3030458 crossref_primary_10_1109_TVCG_2019_2934670 crossref_primary_10_1109_TVCG_2019_2934671 crossref_primary_10_1016_j_visinf_2024_06_002 crossref_primary_10_3390_urbansci3030074 crossref_primary_10_1109_ACCESS_2019_2935471 crossref_primary_10_1109_TVCG_2023_3261938 crossref_primary_10_15701_kcgs_2024_30_3_9 crossref_primary_10_1109_TVCG_2019_2934591 crossref_primary_10_1109_ACCESS_2019_2948304 crossref_primary_10_3390_ijms20236019 crossref_primary_10_1007_s12650_022_00882_3 crossref_primary_10_1007_s41095_020_0191_7 crossref_primary_10_1080_23729333_2023_2189431 crossref_primary_10_1109_TSMC_2020_3040262 crossref_primary_10_1109_TVCG_2019_2934208 crossref_primary_10_1109_TVCG_2019_2934800 crossref_primary_10_1016_j_trip_2019_100069 crossref_primary_10_1016_j_trip_2023_100997 crossref_primary_10_1109_TSMC_2021_3072357 crossref_primary_10_3390_ijgi10040210 crossref_primary_10_3390_ijgi10120804 crossref_primary_10_1109_TVCG_2020_3030428 crossref_primary_10_3390_electronics13030467 crossref_primary_10_1109_ACCESS_2019_2929061 crossref_primary_10_1016_j_visinf_2021_09_001 crossref_primary_10_1016_j_cag_2024_104013 crossref_primary_10_1111_cgf_15091 crossref_primary_10_1007_s12650_019_00577_2 crossref_primary_10_1007_s12650_019_00579_0 crossref_primary_10_1007_s12650_024_01008_7 crossref_primary_10_1007_s41095_023_0392_y crossref_primary_10_1371_journal_pone_0267436 crossref_primary_10_1145_3418215 crossref_primary_10_1016_j_neucom_2021_01_067 crossref_primary_10_1109_TVCG_2019_2934657 crossref_primary_10_1016_j_visinf_2021_10_002 crossref_primary_10_1631_FITEE_2300453 crossref_primary_10_1016_j_neucom_2021_01_105 crossref_primary_10_1007_s11042_023_15314_z crossref_primary_10_1109_TVCG_2019_2934655 crossref_primary_10_3390_ijgi8030117 crossref_primary_10_1080_24725854_2021_1914879 crossref_primary_10_3390_s24082523 crossref_primary_10_1007_s12650_019_00569_2 crossref_primary_10_1080_15230406_2023_2190164 crossref_primary_10_1109_MCG_2019_2926242 crossref_primary_10_1145_3345640 crossref_primary_10_1016_j_cag_2023_07_031 crossref_primary_10_1007_s12650_021_00775_x |
Cites_doi | 10.1109/TVCG.2015.2467691 10.1109/TVCG.2013.226 10.1111/j.0033-0124.1981.00419.x 10.1109/TVCG.2017.2744322 10.1109/TVCG.2016.2598885 10.1109/PacificVis.2012.6183575 10.1109/TVCG.2011.202 10.1109/TVCG.2016.2598667 10.1109/TVCG.2016.2641963 10.1109/TVCG.2013.196 10.1109/PACIFICVIS.2011.5742390 10.1016/j.compenvurbsys.2009.01.007 10.1109/TVCG.2014.2346746 10.1145/2461912.2462023 10.1145/3072959.3119910 10.2307/1791753 10.1109/TVCG.2011.233 10.1179/000870410X12658023467367 10.1109/MCG.2017.6 10.14714/CP30.663 10.1109/TVCG.2016.2598432 10.1109/TVCG.2009.143 10.1145/2487228.2487233 10.1080/13658810701349037 10.1111/tgis.12042 10.1109/TVCG.2016.2607204 10.1145/2684822.2685317 10.3138/carto.46.4.239 10.1177/1473871612457601 10.3390/ijgi6110321 10.1109/TVCG.2014.2346271 10.1145/2939672.2939754 10.1111/tgis.12100 10.1080/03085696708592302 10.23915/distill.00002 10.1088/1742-5468/2008/10/P10008 10.1007/s00371-013-0892-3 10.1109/TVCG.2014.2346594 10.1109/TVCG.2008.135 10.1109/TVCG.2016.2616404 10.1145/2516971.2516973 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2018.2864503 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 53 |
ExternalDocumentID | 30130199 10_1109_TVCG_2018_2864503 8440039 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: State Key Lab of CAD&CG of Zhejiang University grantid: A1806 – fundername: Humanities and Social Sciences Foundation of Ministry of Education in China grantid: 18YJC910017 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY18F020024 funderid: 10.13039/501100004731 – fundername: National 973 Program of China grantid: 2015CB352503 – fundername: National Natural Science Foundation of China grantid: 61872314; 61772456; 61672538; U1609217; U1736109 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG NPM RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-b940add6dee28732a4ce67fa608df115f87f40035ff77362210890847668bc003 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 15:37:37 EDT 2025 Mon Jun 30 05:16:20 EDT 2025 Wed Feb 19 02:09:30 EST 2025 Thu Apr 24 23:06:30 EDT 2025 Tue Jul 01 03:58:53 EDT 2025 Wed Aug 27 05:51:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-b940add6dee28732a4ce67fa608df115f87f40035ff77362210890847668bc003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30130199 |
PQID | 2154052117 |
PQPubID | 75741 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2091823104 pubmed_primary_30130199 proquest_journals_2154052117 crossref_citationtrail_10_1109_TVCG_2018_2864503 crossref_primary_10_1109_TVCG_2018_2864503 ieee_primary_8440039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 mikolov (ref32) 2013 ref15 ref14 ref11 ref10 guo (ref18) 2009; 15 ref17 ref16 ref19 liu (ref28) 2014; 30 ref51 ref50 wattenberg (ref46) 2016 ref45 ref48 ref47 ref41 ref44 yan (ref49) 2013; 32 liu (ref25) 2017; 23 ref7 ref9 ref4 tobler (ref42) 1987; 14 ref3 ref6 ref5 ref40 ref34 ref37 heck (ref20) 2013; 32 ref36 ref2 ref1 ref38 phan (ref35) 2005 su (ref39) 2014 turian (ref43) 2010 maaten (ref30) 2008; 9 ref24 ref23 ebeida (ref12) 2018; 37 ref26 ref22 boyandin (ref8) 2010 ref21 ref27 mikolov (ref33) 2013 marble (ref31) 1997 liu (ref29) 2013; 19 |
References_xml | – ident: ref44 doi: 10.1109/TVCG.2015.2467691 – ident: ref14 doi: 10.1109/TVCG.2013.226 – volume: 9 start-page: 2579 year: 2008 ident: ref30 article-title: Visualizing data using t-sne publication-title: Journal of Machine Learning Research – ident: ref41 doi: 10.1111/j.0033-0124.1981.00419.x – ident: ref2 doi: 10.1109/TVCG.2017.2744322 – ident: ref50 doi: 10.1109/TVCG.2016.2598885 – ident: ref34 doi: 10.1109/PacificVis.2012.6183575 – ident: ref9 doi: 10.1109/TVCG.2011.202 – start-page: 219 year: 2005 ident: ref35 article-title: Flow map layout publication-title: Proceedings of the IEEE Symposium on Information Visualization – ident: ref5 doi: 10.1109/TVCG.2016.2598667 – ident: ref1 doi: 10.1109/TVCG.2016.2641963 – volume: 19 start-page: 2436 year: 2013 ident: ref29 article-title: Storyflow: Tracking the evolution of stories publication-title: IEEE Transactions on Visualization & Computer Graphics doi: 10.1109/TVCG.2013.196 – year: 1997 ident: ref31 publication-title: Recent Advances in the Exploratory Analysis of Interregional Flows in Space and Time – ident: ref21 doi: 10.1109/PACIFICVIS.2011.5742390 – ident: ref37 doi: 10.1016/j.compenvurbsys.2009.01.007 – ident: ref45 doi: 10.1109/TVCG.2014.2346746 – ident: ref40 doi: 10.1145/2461912.2462023 – ident: ref36 doi: 10.1145/3072959.3119910 – ident: ref22 doi: 10.2307/1791753 – ident: ref13 doi: 10.1109/TVCG.2011.233 – ident: ref47 doi: 10.1179/000870410X12658023467367 – start-page: 3111 year: 2013 ident: ref33 article-title: Distributed representations of words and phrases and their compositionality publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems – ident: ref24 doi: 10.1109/MCG.2017.6 – ident: ref23 doi: 10.14714/CP30.663 – start-page: 1 year: 2014 ident: ref39 article-title: Chinese sentiment classification using a neural network toolword2vec publication-title: Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI) – volume: 23 start-page: 1 year: 2017 ident: ref25 article-title: Smar-tadp: Visual analytics of large-scale taxi trajectories for selecting billboard locations publication-title: IEEE Transactions on Visualization & Computer Graphics doi: 10.1109/TVCG.2016.2598432 – volume: 14 start-page: 155 year: 1987 ident: ref42 article-title: Experiments in migration mapping by computer publication-title: Cartography and Geographic Information Science – volume: 15 start-page: 1041 year: 2009 ident: ref18 article-title: Flow mapping and multivariate visualization of large spatial interaction data publication-title: IEEE Transactions on Visualization & Computer Graphics doi: 10.1109/TVCG.2009.143 – year: 2010 ident: ref8 article-title: Visualizing the worlds refugee data with jflowmap publication-title: Proceedings of the Eurographics/IEEE-VGTC Symposium on Visualization – volume: 32 start-page: 1 year: 2013 ident: ref20 article-title: Blue noise sampling with controlled aliasing publication-title: ACM Transactions on Graphics doi: 10.1145/2487228.2487233 – ident: ref17 doi: 10.1080/13658810701349037 – ident: ref15 doi: 10.1111/tgis.12042 – ident: ref27 doi: 10.1109/TVCG.2016.2607204 – ident: ref6 doi: 10.1145/2684822.2685317 – ident: ref48 doi: 10.3138/carto.46.4.239 – ident: ref4 doi: 10.1177/1473871612457601 – ident: ref26 doi: 10.3390/ijgi6110321 – ident: ref19 doi: 10.1109/TVCG.2014.2346271 – year: 2013 ident: ref32 article-title: Exploiting similarities among languages for machine translation publication-title: Computer Science – ident: ref16 doi: 10.1145/2939672.2939754 – volume: 37 year: 2018 ident: ref12 article-title: Spoke darts for efficient high dimensional blue noise sampling publication-title: ACM Transactions on Graphics – ident: ref51 doi: 10.1111/tgis.12100 – ident: ref38 doi: 10.1080/03085696708592302 – year: 2016 ident: ref46 article-title: How to use t-sne effectively publication-title: Distillation doi: 10.23915/distill.00002 – start-page: 384 year: 2010 ident: ref43 article-title: Word representations: A simple and general method for semi-supervised learning publication-title: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics – ident: ref7 doi: 10.1088/1742-5468/2008/10/P10008 – volume: 30 start-page: 1373 year: 2014 ident: ref28 article-title: A survey on information visualization: Recent advances and challenges publication-title: The Visual Computer doi: 10.1007/s00371-013-0892-3 – ident: ref10 doi: 10.1109/TVCG.2014.2346594 – ident: ref11 doi: 10.1109/TVCG.2008.135 – ident: ref3 doi: 10.1109/TVCG.2016.2616404 – volume: 32 start-page: 1 year: 2013 ident: ref49 article-title: Gap processing for adaptive maximal poisson-disk sampling publication-title: ACM Transactions on Graphics doi: 10.1145/2516971.2516973 |
SSID | ssj0014489 |
Score | 2.519801 |
Snippet | A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 43 |
SubjectTerms | Case studies Clustering Clutter Correlation Data visualization Datasets Filtration flow map Flow mapping Geospatial analysis human mobility Human motion Intersections Mobile handsets Natural language processing origin-destination Quantitative analysis representation learning Semantics Visual abstraction Visualization |
Title | Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data |
URI | https://ieeexplore.ieee.org/document/8440039 https://www.ncbi.nlm.nih.gov/pubmed/30130199 https://www.proquest.com/docview/2154052117 https://www.proquest.com/docview/2091823104 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJzjwKK-0UAWpp4os3sSb2EcEBYTYciggblHsHUuo1QaxyaW_vjN2NiAEqLdIniSOZ5z5xvMC-GaQ8xMrTVvckIGCEhNt8oxkmXSVylHYlLORxz_zi1t5eT-6X4DDPhcGEX3wGQ740vvyJ7Vt-ajsSEnJuaSLsEiGW8jV6j0GZGboEF9YJCmh9M6DORT66Obu5JyDuNQgVbkcCe6dk7HHLlR8fVZHvr_K-1DTq5yzNRjPJxsiTX4P2sYM7N9XdRz_92vWYbXDnvFxEJYNWMDpJ1h5UZFwE8Z3D7OWaQwfgfich7h28RXHi8e_iJ8Yn2M94zBsorr2XbUStl0fwqliPK59AfImPq2aagtuz37cnFwkXceFxGZSN4nRUlTcYwqRLKksraTFvHBVLtTEEXZ0qnA86ZFzRUGqj-xFpQUpuDxXxtLANixN6ynuQmxTbYcuRUJUmazQqiE9iX4AE2eUTaWLQMwXvrRdOXLuivGn9GaJ0CWzrWS2lR3bIvje3_IYanF8RLzJS94Tdqsdwd6cu2W3W2clwR7JSczDIoKDfpj2GTtPqinWLdEQsGKXqZAR7ASp6J89F6bPb7_zCyzTzHQ4uNmDpeapxX2CMo356mX4H6BT6oM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvAo0UCBIcEHK1ut4E_vAAbW0W7pbDmyr3tLEO5Yqqg1iEyH4LfwV_hszdjYgBNwqcYvkifPw5_G8B-B5hZyfWBra4hUpKKgwMVWWEpbprNIZCis5G3l6lI2P1dvT0ekafOtzYRDRB5_hgC-9L39e25ZNZdtaKc4l7UIoD_HLZ1LQlq8Odmk1X0i592a2M066HgKJTZVpksooUXLXJETSDVJZKotZ7spM6Lkjacjp3PGkI-fynJg5aUDaCGLZWaYrSwM07xW4SnLGSIbssN5HQYqNCRGNeSJJL-h8pkNhtmcnO_scNqYHUmdqJLhbT8o-wlBj9ucB6Du6_F249Yfc3i34vvo9Ibblw6BtqoH9-lvlyP_1_92Gm510Hb8O2-EOrOHiLtz4pebiBkxPzpct01Rs5PFZHXHt4glHxMfvCbEY72O95EBzonrn-4YlrJ2fB7tpPK19ifUm3i2b8h4cX8r33If1Rb3ATYitNHboJJLMmKoSrR7STMTi5q7SVioXgVgtdGG7guvc9-Oi8IqXMAXDpGCYFB1MInjZ3_IxVBv5F_EGL3FP2K1uBFsrNBUdP1oWJNgpTtMe5hE864eJk7B7qFxg3RINiY7sFBYqggcBhf3cK_A-_PMzn8K18Ww6KSYHR4eP4Dq9pQlmqi1Ybz61-JgEt6Z64vdPDGeXDbgfPbJFpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Abstraction+of+Large+Scale+Geospatial+Origin-Destination+Movement+Data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Zhou%2C+Zhiguang&rft.au=Meng%2C+Linhao&rft.au=Tang%2C+Cheng&rft.au=Zhao%2C+Ying&rft.date=2019-01-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft_id=info:doi/10.1109%2FTVCG.2018.2864503&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |