Adjustment of basal insulin infusion rate in T1DM by hybrid PSO

Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1 diabetes mellitus (T1DM) patients for maintaining the blood glucose level approximately steady within reference range in order to avoid the comp...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 19; no. 7; pp. 1921 - 1937
Main Authors Lou, Zhijiang, Liu, Bo, Xie, Hongzhi, Wang, Youqing
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-014-1378-6

Cover

Abstract Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1 diabetes mellitus (T1DM) patients for maintaining the blood glucose level approximately steady within reference range in order to avoid the complications developed from diabetes. This paper proposes an effective hybrid particle swarm optimization (HPSO) algorithm for solving the basal insulin infusion rate problem. In HPSO, bad experience lesson learning scheme and local search based on chaotic dynamics are proposed to make a good balance between global exploration and local exploitation. Simulation results based on a set of well-known optimization benchmark instances and the basal insulin infusion rate adjustment problem for T1DM demonstrate the effectiveness of the proposed HPSO. In silico tests on standard virtual subject via HPSO show that under nominal condition the blood glucose concentrations could be kept within a range of 80–150 mg/dL within less than 5 days; meanwhile, in case of random variations in meal timings within ± 60 min or meal amounts within ± 75 % deviation from the nominal values, the blood glucose concentrations could be kept within the safe regions.
AbstractList Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1 diabetes mellitus (T1DM) patients for maintaining the blood glucose level approximately steady within reference range in order to avoid the complications developed from diabetes. This paper proposes an effective hybrid particle swarm optimization (HPSO) algorithm for solving the basal insulin infusion rate problem. In HPSO, bad experience lesson learning scheme and local search based on chaotic dynamics are proposed to make a good balance between global exploration and local exploitation. Simulation results based on a set of well-known optimization benchmark instances and the basal insulin infusion rate adjustment problem for T1DM demonstrate the effectiveness of the proposed HPSO. In silico tests on standard virtual subject via HPSO show that under nominal condition the blood glucose concentrations could be kept within a range of 80–150 mg/dL within less than 5 days; meanwhile, in case of random variations in meal timings within ±60 min or meal amounts within ±75 % deviation from the nominal values, the blood glucose concentrations could be kept within the safe regions.
Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1 diabetes mellitus (T1DM) patients for maintaining the blood glucose level approximately steady within reference range in order to avoid the complications developed from diabetes. This paper proposes an effective hybrid particle swarm optimization (HPSO) algorithm for solving the basal insulin infusion rate problem. In HPSO, bad experience lesson learning scheme and local search based on chaotic dynamics are proposed to make a good balance between global exploration and local exploitation. Simulation results based on a set of well-known optimization benchmark instances and the basal insulin infusion rate adjustment problem for T1DM demonstrate the effectiveness of the proposed HPSO. In silico tests on standard virtual subject via HPSO show that under nominal condition the blood glucose concentrations could be kept within a range of 80–150 mg/dL within less than 5 days; meanwhile, in case of random variations in meal timings within ± 60 min or meal amounts within ± 75 % deviation from the nominal values, the blood glucose concentrations could be kept within the safe regions.
Author Liu, Bo
Wang, Youqing
Xie, Hongzhi
Lou, Zhijiang
Author_xml – sequence: 1
  givenname: Zhijiang
  surname: Lou
  fullname: Lou, Zhijiang
  organization: College of Information Science and Technology, Beijing University of Chemical Technology
– sequence: 2
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 3
  givenname: Hongzhi
  surname: Xie
  fullname: Xie, Hongzhi
  organization: College of Information Science and Technology, Beijing University of Chemical Technology
– sequence: 4
  givenname: Youqing
  surname: Wang
  fullname: Wang, Youqing
  email: wang.youqing@ieee.org
  organization: College of Information Science and Technology, Beijing University of Chemical Technology
BookMark eNp9kEtLAzEUhYNUsK3-AHcB19G8mmRWUuoTKhWs65CZJDplOlOTzKL_3tQRBEFX5144332cCRi1XesAOCf4kmAsryLGM4wRJhwRJhUSR2BMOGNIclmMvmqKpODsBExi3GBMiZyxMbie200f09a1CXYeliaaBtZt7Ju6zer7WHctDCa53ME1uXmC5R6-78tQW_j8sjoFx9400Z196xS83t2uFw9oubp_XMyXqGK8SKhUUlFVVQWzymNXKF5yyomxmHtplbKVV0ZYjomUJRWi9IQYbysiDfNOzNgUXAxzd6H76F1MetP1oc0rNS2ILGghBc4uObiq0MUYnNdVnUzKL6Rg6kYTrA9p6SEtndPSh7S0yCT5Re5CvTVh_y9DByZmb_vmws9Nf0Ofg3V8qg
CitedBy_id crossref_primary_10_3390_s21155226
crossref_primary_10_1002_cjce_23488
crossref_primary_10_1038_s41598_021_02676_3
crossref_primary_10_1007_s00500_015_1786_2
Cites_doi 10.1109/TEVC.2008.2009460
10.1016/j.swevo.2011.06.005
10.1109/TBME.2006.883792
10.1109/TBME.2007.893506
10.1016/j.jprocont.2007.07.010
10.2337/diacare.20.11.1655
10.1109/TCBB.2011.126
10.1016/j.jprocont.2010.10.003
10.1089/dia.2010.0029
10.1177/193229681000400522
10.1007/s10462-010-9191-9
10.1016/j.aei.2005.01.004
10.1136/bmj.d1855
10.1109/ICNN.1995.488968
10.1109/MCI.2010.936309
10.1177/193229680900300106
10.1007/s10479-011-0894-3
10.1177/193229680700100303
10.1007/s00500-012-0803-y
10.1109/CI-M.2006.248054
10.1016/j.arcontrol.2012.09.007
10.1002/aic.12081
10.1016/j.cor.2006.12.013
10.1007/978-3-540-78490-6_1
10.1109/4235.985692
10.1016/j.compchemeng.2009.12.010
10.2337/dc14-S014
10.1007/s00500-012-0855-z
10.1016/j.ins.2012.06.003
10.1016/j.chaos.2004.11.095
10.1016/j.ejor.2006.06.046
10.1109/MCI.2011.2176995
10.1109/TSMCB.2009.2015956
10.1109/TBME.2006.872818
10.1109/TBME.2009.2024409
10.1109/TEVC.2011.2132725
10.1109/RBME.2009.2036073
10.1109/TEVC.2003.819944
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Springer-Verlag Berlin Heidelberg 2014.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Springer-Verlag Berlin Heidelberg 2014.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-014-1378-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1937
ExternalDocumentID 10_1007_s00500_014_1378_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c349t-b87828cc93d8f0e984b4241ad04f7d88dcf8a6d40177b266bf11afdc17a3fe653
IEDL.DBID AGYKE
ISSN 1432-7643
IngestDate Sat Aug 23 12:23:13 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Tue Jul 01 02:01:52 EDT 2025
Fri Feb 21 02:40:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Glycemic control
Particle swarm optimization (PSO)
Basal insulin infusion rate optimization
Type 1 diabetes mellitus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b87828cc93d8f0e984b4241ad04f7d88dcf8a6d40177b266bf11afdc17a3fe653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917929760
PQPubID 2043697
PageCount 17
ParticipantIDs proquest_journals_2917929760
crossref_citationtrail_10_1007_s00500_014_1378_6
crossref_primary_10_1007_s00500_014_1378_6
springer_journals_10_1007_s00500_014_1378_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LiuBWangLJinYHAn effective hybrid PSO-based algorithm for flow shop scheduling with limited buffersComput Oper Res2008359279128061144.9038510.1016/j.cor.2006.12.013
Ong Y-S, Lim MH, Chen X (2010) Research frontier-memetic computation–past, present & future. IEEE Comput Intell Mag 5(2):24–36
SochaKDorigoMAnt colony optimization for continuous domainsEur J Oper Res20081853115511731146.90537236175010.1016/j.ejor.2006.06.046
Wang YQ, Zisser H, Dassau E, Jovanovic L, Doyle FJ (2010c) Model predictive control with learning-type set-point: application to artificial pancreatic beta-cell. AIChE J 56(6):1510–1518
Dalla ManCRaimondoDMRizzaRACobelliCGIM, simulation software of meal glucose-insulin modelJ Diabetes Sci Technol20071332333010.1177/193229680700100303
ElbeltagiEHegazyTGriersonDComparison among five evolutionary-based optimization algorithmsAdv Eng Inf2005191435310.1016/j.aei.2005.01.004
RanaSJasolaSKumarRA review on particle swarm optimization algorithms and their applications to data clusteringArtif Intell Rev201135321122210.1007/s10462-010-9191-9
Moussouni F, Brisset S, Brochet P (2008) Comparison of two multi-agent algorithms: ACO and PSO for the optimization of a brushless DC wheel motor. In: Intelligent computer techniques in applied electromagnetics. Springer, Berlin, pp 3–10
Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110
ZhanZHZhangJLiYChungHSHAdaptive particle swarm optimizationIEEE Trans Syst Man Cybern Part B Cybern20093961362138110.1109/TSMCB.2009.2015956
DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag200614283910.1109/CI-M.2006.248054
XuWXGengZQZhuQXGuXBA piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimizationInf Sci2013218851021293.90088298923910.1016/j.ins.2012.06.003
WangYQDassauEDoyleFJClosed-loop control of artificial pancreatic beta-cell in type 1 diabetes mellitus using model predictive iterative learning controlIEEE Trans Biomed Eng201057221121910.1109/TBME.2009.2024409
WangYQDassauEZisserHJovanovicLDoyleFJIIIAutomatic bolus and adaptive basal algorithm for the artificial pancreatic beta-cellDiabetes Technol Ther2010121187988710.1089/dia.2010.0029
Nguyen QH, Ong Y-S, Lim MH (2009) A probabilistic memetic framework. IEEE Trans Evol Comput 13(3):604–623
PercivalMWBevierWCWangYDassauEZisserHCJovanovicLDoyleFJ3rdModeling the effects of subcutaneous insulin administration and carbohydrate consumption on blood glucoseJ Diabetes Sci Technol2010451214122810.1177/193229681000400522
Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing DY, Kollman C, Nodale M, Murphy HR, Dunger DB, Amiel SA, Heller SR, Wilinska ME, Evans ML (2011) Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. Br Med J 342:d1855
LiuBWangLLiuYWangSYA unified framework for population-based metaheuristicsAnn Oper Res201118612312621225.9016310.1007/s10479-011-0894-3
LiuBWangLLiuYQianBJinYHAn effective hybrid particle swarm optimization for batch scheduling of polypropylene processesComput Chem Eng201034451852810.1016/j.compchemeng.2009.12.010
CobelliCDalla ManCSparacinoGMagniLDe NicolaoGKovatchevBPDiabetes: models, signals, and controlIEEE Rev Biomed Eng20092549610.1109/RBME.2009.2036073
DeepaSugumaranModel order formulation of a multivariable discrete system using a modified particle swarm optimization approachSwarm Evolut Comput20111420421210.1016/j.swevo.2011.06.005
ClercMKennedyJThe particle swarm—explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans Evol Comput200261587310.1109/4235.985692
OwensCZisserHJovanovicLSrinivasanBBonvinDDoyleFJRun-to-run control of blood glucose concentrations for people with type 1 diabetes mellitusIEEE Trans Biomed Eng2006536996100510.1109/TBME.2006.872818
LiuLZWuFXZhangWJInference of biological S-system using the separable estimation method and the genetic algorithmIEEE/ACM Trans Comput Biol Bioinf201294955965298385310.1109/TCBB.2011.126
DengWChenRHeBLiuYQYinLFGuoJHA novel two-stage hybrid swarm intelligence optimization algorithm and applicationSoft Comput201216101707172210.1007/s00500-012-0855-z
LeMNOngYSJinYCSendhoffBA unified framework for symbiosis of evolutionary mechanisms with application to water clusters potential model designIEEE Comput Intell Mag201271203510.1109/MCI.2011.2176995
KovatchevBPCoxDJGonder-FrederickLAClarkeWSymmetrization of the blood glucose measurement scale and its applicationsDiabetes Care199720111655165810.2337/diacare.20.11.1655
Li YY, Xiang RR, Jiao LC, Liu RC (2012) An improved cooperative quantum-behaved particle swarm optimization. Soft Comput 16(6):1061–1069
BequetteBWChallenges and recent progress in the development of a closed-loop artificial pancreasAnnu Rev Control201236225526610.1016/j.arcontrol.2012.09.007
American Diabetes Association (2014) Standards of medical care in diabetes—2014. Diabetes Care 37(Supplement 1):S14–S80
Liu B, Wang L, Jin Y-H, Tang F (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25:1261–1271
Dalla ManCRizzaRACobelliCMeal simulation model of the glucose-insulin systemIEEE Trans Bio-Med Eng200754101740174910.1109/TBME.2007.893506
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neutral networks, vol 2, Australia, pp 1942–1948
PalermCCZisserHJovanovicLDoyleFIJA run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetesJ Process Control2008183–425826510.1016/j.jprocont.2007.07.010
Kovatchev BP, Breton M, Man CD, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 3(1):44–55
Chen X, Ong Y-S, Lim M-H, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607
Dalla ManCCamilleriMCobelliCA system model of oral glucose absorption: validation on gold standard dataIEEE Trans Biomed Eng200653122472247810.1109/TBME.2006.883792
PercivalMWWangYGrosmanBDassauEZisserHJovanovicLDoyleFJDevelopment of a multi-parametric model predictive control algorithm for insulin delivery in type 1 diabetes mellitus using clinical parametersJ Process Control201121339140410.1016/j.jprocont.2010.10.003
Deepa (1378_CR9) 2011; 1
WX Xu (1378_CR37) 2013; 218
K Socha (1378_CR33) 2008; 185
ZH Zhan (1378_CR38) 2009; 39
1378_CR16
C Cobelli (1378_CR5) 2009; 2
1378_CR19
B Liu (1378_CR20) 2008; 35
1378_CR18
B Liu (1378_CR22) 2011; 186
CC Palerm (1378_CR29) 2008; 18
YQ Wang (1378_CR35) 2010; 12
C Dalla Man (1378_CR8) 2007; 54
LZ Liu (1378_CR23) 2012; 9
C Dalla Man (1378_CR7) 2007; 1
B Liu (1378_CR21) 2010; 34
S Rana (1378_CR32) 2011; 35
C Dalla Man (1378_CR6) 2006; 53
1378_CR13
MW Percival (1378_CR31) 2011; 21
1378_CR14
1378_CR36
MW Percival (1378_CR30) 2010; 4
YQ Wang (1378_CR34) 2010; 57
1378_CR27
M Clerc (1378_CR4) 2002; 6
MN Le (1378_CR17) 2012; 7
BP Kovatchev (1378_CR15) 1997; 20
M Dorigo (1378_CR11) 2006; 1
1378_CR1
C Owens (1378_CR28) 2006; 53
1378_CR24
BW Bequette (1378_CR2) 2012; 36
W Deng (1378_CR10) 2012; 16
1378_CR26
1378_CR3
E Elbeltagi (1378_CR12) 2005; 19
1378_CR25
References_xml – reference: Moussouni F, Brisset S, Brochet P (2008) Comparison of two multi-agent algorithms: ACO and PSO for the optimization of a brushless DC wheel motor. In: Intelligent computer techniques in applied electromagnetics. Springer, Berlin, pp 3–10
– reference: XuWXGengZQZhuQXGuXBA piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimizationInf Sci2013218851021293.90088298923910.1016/j.ins.2012.06.003
– reference: DeepaSugumaranModel order formulation of a multivariable discrete system using a modified particle swarm optimization approachSwarm Evolut Comput20111420421210.1016/j.swevo.2011.06.005
– reference: ElbeltagiEHegazyTGriersonDComparison among five evolutionary-based optimization algorithmsAdv Eng Inf2005191435310.1016/j.aei.2005.01.004
– reference: LiuBWangLLiuYWangSYA unified framework for population-based metaheuristicsAnn Oper Res201118612312621225.9016310.1007/s10479-011-0894-3
– reference: BequetteBWChallenges and recent progress in the development of a closed-loop artificial pancreasAnnu Rev Control201236225526610.1016/j.arcontrol.2012.09.007
– reference: ZhanZHZhangJLiYChungHSHAdaptive particle swarm optimizationIEEE Trans Syst Man Cybern Part B Cybern20093961362138110.1109/TSMCB.2009.2015956
– reference: Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing DY, Kollman C, Nodale M, Murphy HR, Dunger DB, Amiel SA, Heller SR, Wilinska ME, Evans ML (2011) Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. Br Med J 342:d1855
– reference: SochaKDorigoMAnt colony optimization for continuous domainsEur J Oper Res20081853115511731146.90537236175010.1016/j.ejor.2006.06.046
– reference: DengWChenRHeBLiuYQYinLFGuoJHA novel two-stage hybrid swarm intelligence optimization algorithm and applicationSoft Comput201216101707172210.1007/s00500-012-0855-z
– reference: Ong Y-S, Lim MH, Chen X (2010) Research frontier-memetic computation–past, present & future. IEEE Comput Intell Mag 5(2):24–36
– reference: American Diabetes Association (2014) Standards of medical care in diabetes—2014. Diabetes Care 37(Supplement 1):S14–S80
– reference: Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110
– reference: LiuBWangLJinYHAn effective hybrid PSO-based algorithm for flow shop scheduling with limited buffersComput Oper Res2008359279128061144.9038510.1016/j.cor.2006.12.013
– reference: Nguyen QH, Ong Y-S, Lim MH (2009) A probabilistic memetic framework. IEEE Trans Evol Comput 13(3):604–623
– reference: Li YY, Xiang RR, Jiao LC, Liu RC (2012) An improved cooperative quantum-behaved particle swarm optimization. Soft Comput 16(6):1061–1069
– reference: PercivalMWWangYGrosmanBDassauEZisserHJovanovicLDoyleFJDevelopment of a multi-parametric model predictive control algorithm for insulin delivery in type 1 diabetes mellitus using clinical parametersJ Process Control201121339140410.1016/j.jprocont.2010.10.003
– reference: LeMNOngYSJinYCSendhoffBA unified framework for symbiosis of evolutionary mechanisms with application to water clusters potential model designIEEE Comput Intell Mag201271203510.1109/MCI.2011.2176995
– reference: LiuBWangLLiuYQianBJinYHAn effective hybrid particle swarm optimization for batch scheduling of polypropylene processesComput Chem Eng201034451852810.1016/j.compchemeng.2009.12.010
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neutral networks, vol 2, Australia, pp 1942–1948
– reference: Liu B, Wang L, Jin Y-H, Tang F (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25:1261–1271
– reference: LiuLZWuFXZhangWJInference of biological S-system using the separable estimation method and the genetic algorithmIEEE/ACM Trans Comput Biol Bioinf201294955965298385310.1109/TCBB.2011.126
– reference: Dalla ManCRizzaRACobelliCMeal simulation model of the glucose-insulin systemIEEE Trans Bio-Med Eng200754101740174910.1109/TBME.2007.893506
– reference: Dalla ManCCamilleriMCobelliCA system model of oral glucose absorption: validation on gold standard dataIEEE Trans Biomed Eng200653122472247810.1109/TBME.2006.883792
– reference: DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag200614283910.1109/CI-M.2006.248054
– reference: KovatchevBPCoxDJGonder-FrederickLAClarkeWSymmetrization of the blood glucose measurement scale and its applicationsDiabetes Care199720111655165810.2337/diacare.20.11.1655
– reference: Chen X, Ong Y-S, Lim M-H, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607
– reference: ClercMKennedyJThe particle swarm—explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans Evol Comput200261587310.1109/4235.985692
– reference: PercivalMWBevierWCWangYDassauEZisserHCJovanovicLDoyleFJ3rdModeling the effects of subcutaneous insulin administration and carbohydrate consumption on blood glucoseJ Diabetes Sci Technol2010451214122810.1177/193229681000400522
– reference: Dalla ManCRaimondoDMRizzaRACobelliCGIM, simulation software of meal glucose-insulin modelJ Diabetes Sci Technol20071332333010.1177/193229680700100303
– reference: RanaSJasolaSKumarRA review on particle swarm optimization algorithms and their applications to data clusteringArtif Intell Rev201135321122210.1007/s10462-010-9191-9
– reference: Kovatchev BP, Breton M, Man CD, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 3(1):44–55
– reference: WangYQDassauEZisserHJovanovicLDoyleFJIIIAutomatic bolus and adaptive basal algorithm for the artificial pancreatic beta-cellDiabetes Technol Ther2010121187988710.1089/dia.2010.0029
– reference: Wang YQ, Zisser H, Dassau E, Jovanovic L, Doyle FJ (2010c) Model predictive control with learning-type set-point: application to artificial pancreatic beta-cell. AIChE J 56(6):1510–1518
– reference: WangYQDassauEDoyleFJClosed-loop control of artificial pancreatic beta-cell in type 1 diabetes mellitus using model predictive iterative learning controlIEEE Trans Biomed Eng201057221121910.1109/TBME.2009.2024409
– reference: OwensCZisserHJovanovicLSrinivasanBBonvinDDoyleFJRun-to-run control of blood glucose concentrations for people with type 1 diabetes mellitusIEEE Trans Biomed Eng2006536996100510.1109/TBME.2006.872818
– reference: CobelliCDalla ManCSparacinoGMagniLDe NicolaoGKovatchevBPDiabetes: models, signals, and controlIEEE Rev Biomed Eng20092549610.1109/RBME.2009.2036073
– reference: PalermCCZisserHJovanovicLDoyleFIJA run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetesJ Process Control2008183–425826510.1016/j.jprocont.2007.07.010
– ident: 1378_CR25
  doi: 10.1109/TEVC.2008.2009460
– volume: 1
  start-page: 204
  issue: 4
  year: 2011
  ident: 1378_CR9
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2011.06.005
– volume: 53
  start-page: 2472
  issue: 12
  year: 2006
  ident: 1378_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.883792
– volume: 54
  start-page: 1740
  issue: 10
  year: 2007
  ident: 1378_CR8
  publication-title: IEEE Trans Bio-Med Eng
  doi: 10.1109/TBME.2007.893506
– volume: 18
  start-page: 258
  issue: 3–4
  year: 2008
  ident: 1378_CR29
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2007.07.010
– volume: 20
  start-page: 1655
  issue: 11
  year: 1997
  ident: 1378_CR15
  publication-title: Diabetes Care
  doi: 10.2337/diacare.20.11.1655
– volume: 9
  start-page: 955
  issue: 4
  year: 2012
  ident: 1378_CR23
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2011.126
– volume: 21
  start-page: 391
  issue: 3
  year: 2011
  ident: 1378_CR31
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2010.10.003
– volume: 12
  start-page: 879
  issue: 11
  year: 2010
  ident: 1378_CR35
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2010.0029
– volume: 4
  start-page: 1214
  issue: 5
  year: 2010
  ident: 1378_CR30
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229681000400522
– volume: 35
  start-page: 211
  issue: 3
  year: 2011
  ident: 1378_CR32
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-010-9191-9
– volume: 19
  start-page: 43
  issue: 1
  year: 2005
  ident: 1378_CR12
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2005.01.004
– ident: 1378_CR13
  doi: 10.1136/bmj.d1855
– ident: 1378_CR14
  doi: 10.1109/ICNN.1995.488968
– ident: 1378_CR27
  doi: 10.1109/MCI.2010.936309
– ident: 1378_CR16
  doi: 10.1177/193229680900300106
– volume: 186
  start-page: 231
  issue: 1
  year: 2011
  ident: 1378_CR22
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-011-0894-3
– volume: 1
  start-page: 323
  issue: 3
  year: 2007
  ident: 1378_CR7
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229680700100303
– ident: 1378_CR18
  doi: 10.1007/s00500-012-0803-y
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 1378_CR11
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/CI-M.2006.248054
– volume: 36
  start-page: 255
  issue: 2
  year: 2012
  ident: 1378_CR2
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2012.09.007
– ident: 1378_CR36
  doi: 10.1002/aic.12081
– volume: 35
  start-page: 2791
  issue: 9
  year: 2008
  ident: 1378_CR20
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2006.12.013
– ident: 1378_CR24
  doi: 10.1007/978-3-540-78490-6_1
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 1378_CR4
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.985692
– volume: 34
  start-page: 518
  issue: 4
  year: 2010
  ident: 1378_CR21
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2009.12.010
– ident: 1378_CR1
  doi: 10.2337/dc14-S014
– volume: 16
  start-page: 1707
  issue: 10
  year: 2012
  ident: 1378_CR10
  publication-title: Soft Comput
  doi: 10.1007/s00500-012-0855-z
– volume: 218
  start-page: 85
  year: 2013
  ident: 1378_CR37
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.06.003
– ident: 1378_CR19
  doi: 10.1016/j.chaos.2004.11.095
– volume: 185
  start-page: 1155
  issue: 3
  year: 2008
  ident: 1378_CR33
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.06.046
– volume: 7
  start-page: 20
  issue: 1
  year: 2012
  ident: 1378_CR17
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2011.2176995
– volume: 39
  start-page: 1362
  issue: 6
  year: 2009
  ident: 1378_CR38
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2009.2015956
– volume: 53
  start-page: 996
  issue: 6
  year: 2006
  ident: 1378_CR28
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.872818
– volume: 57
  start-page: 211
  issue: 2
  year: 2010
  ident: 1378_CR34
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2024409
– ident: 1378_CR3
  doi: 10.1109/TEVC.2011.2132725
– volume: 2
  start-page: 54
  year: 2009
  ident: 1378_CR5
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2009.2036073
– ident: 1378_CR26
  doi: 10.1109/TEVC.2003.819944
SSID ssj0021753
Score 2.0701015
Snippet Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1921
SubjectTerms Algorithms
Artificial Intelligence
Blood
Computational Intelligence
Control
Diabetes
Diabetes mellitus
Engineering
Glucose
Hyperglycemia
Hypoglycemia
Insulin
Mathematical Logic and Foundations
Mechatronics
Metabolism
Methodologies and Application
Optimization
Particle swarm optimization
Random variables
Robotics
Simulation
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULl58G1E0PXjSNO6j2-2eCCqEmIBEIeHW9LGNMQZQ4MC_d7p0IZrIadNs28NM22-mM_0GoZuMMgOujyYKvAVClVUkY5ZC02ieOz4Q4yK63R7rDOnzKBn5C7eZT6ssz8TioDYT7e7I7yPwKwDKUxY0pl_EVY1y0VVfQmMXVeEI5rDOqw-tXv917XJ5HkowCsCOBPAt45pBQSOauFfVISVhDK4U-41MG3PzT4S0AJ72Idr3FiNurlR8hHby8TE6KKsxYL85T1CjaT4WsyJpHE8sBniCUT7VHL524e7FsGOGgBYehE9drJb4femebOH-28spGrZbg8cO8eURiI5pNieKA7pzrbPYcBvkGaeKAh5LE1CbGs6NtlwyAw5UmirAYWXDUFqjw1TGNmdJfIYq48k4P0dYRUpKHptERpLyWIKKpLRJJG2gQprLGgpK0QjtucNdCYtPsWY9LqQpQJrCSVOwGrpdD5muiDO2da6X8hZ-D83ERuM1dFfqYPP738kutk92ifbA6ElWKbd1VJl_L_IrMCzm6tqvnh9jh8hF
  priority: 102
  providerName: ProQuest
Title Adjustment of basal insulin infusion rate in T1DM by hybrid PSO
URI https://link.springer.com/article/10.1007/s00500-014-1378-6
https://www.proquest.com/docview/2917929760
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXPTgAzXig_TgSbNkH93d7smAAkYjGoUET5s-tjFqwAgc8Nc7hS4-oiaemqbdZnem3fmmM_0KcJjQSKHrIx2B3oJDhRZOEmmKVSVZZvhAlInoXnWi8x696Id9e457lGe75yHJ2Z96cdjNUJWYJCrqeAG6PlEBSqHHElaEUr19f9lc-FmWfBKRAIJHtLh5MPOnQb6aow-M-S0sOrM2rTXo5u85TzJ5qk3GoibfvlE4_vND1mHVok9Sn0-XDVjKBmVYy292IHahl2HlE03hJpzU1eNkNEtHJ0NN0PDhGDaJHUs9MTtuxHBOYI10vbMrIqbkYWoOg5Gbu-st6LWa3dNzx1684MiAJmNHMMQNTMokUEy7WcKooGjpuXKpjhVjSmrGI4WuWRwLtPBCex7XSnoxD3QWhcE2FAfDQbYDRPiCcxaokPucsoCj8jnXoc-1Kzya8Qq4ufxTaVnJzeUYz-mCT3kmrhTFlRpxpVEFjhaPvMwpOf7qvJ8rNbWrc5T66KMiLIwjtwLHuY4-mn8dbPdfvfdgGdFVOM_t3Yfi-HWSHSCCGYsqFFirXcV522o0OlU7f7FsNDs3t9ja8-vvc7npfA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QPejFtxFF3YNeNI19bNvtwRAiIiqgiZB4q_voxhgDKBDDn_I3OltaiCZy49Rs2t3D7HS--XZmZwBOIhoopD7SEsgWLCq0sKJAUxwqyRJTD0SZiG6zFdQ79O7Zfy7Ad34XxqRV5jYxNdSqJ80Z-YWLvAKhPAzscv_DMl2jTHQ1b6ExUYv7ZPyFlG1weVvF_T113dp1-6puZV0FLOnRaGgJhqDIpIw8xbSdRIwKijDGlU11qBhTUjMeKOQdYSgQvoR2HK6VdELu6SQwXSLQ5C9Tz4tMqwhWu5kSvKzqJbog6LUi1OdRVDstWuqbO9wOtRwPiVvwGwdnzu2feGwKc7UNWMv8U1KZKNQmFJLuFqznvR9IZgq2oVxRb6NBmqJOepogGOKsLLEdn3pkTuGIqUOBI9J2qk0ixuR1bC6Ikcenhx3oLERsu7DU7XWTPSDCFZwzT_nc5ZR5HBWCc-27XNvCoQkvgp2LJpZZpXLTMOM9ntZYTqUZozRjI804KMLZdEp_UqZj3selXN5x9scO4pl-FeE834PZ638X25-_2DGs1NvNRty4bd0fwCq6W_4k2bcES8PPUXKILs1QHKV6ROBl0Yr7A6cCBIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1WsVt2DJyWYxybZnKRYS320Fmyht7CbzSIiabHpof_e2byqooKnsGSzh9nH901m9huA84B6El2fyBDoLRhUKGEEnqLYlBGLtR6I1BHdXt_rjuj92B0XdU5nZbZ7GZLM7zRolaYkvZpKdVVdfNOyJTqhihqWg26QtwpreBpbeqGP7FblcRUylMgJkEYi9pZhzZ-G-ApMS7b5LUCa4U5nB7YKwkha-Qzvwkqc1GG7LMZAir1Zh81PyoJ7cN2Sr_NZlkFOJoogVuEYRd45PtVc_yQjWiYCW2RotXtELMjLQt_fIoPnp30YdW6HN12jqJVgRA4NUkMwhHoWRYEjmTLjgFFBEZy5NKnyJWMyUox7Er0p3xcIykJZFlcysnzuqNhznQOoJZMkPgQibME5c6TLbU6Zw3G-OFeuzZUpLBrzBpilocKoEBLX9SzewkoCObNtiLYNtW1DrwEX1SfTXEXjr87N0vphsaFmoY1uJTI53zMbcFnOyPL1r4Md_av3GawP2p3w8a7_cAwbyI3cPDO3CbX0fR6fIP9IxWm2xj4Ar7nO9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adjustment+of+basal+insulin+infusion+rate+in+T1DM+by+hybrid+PSO&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Lou%2C+Zhijiang&rft.au=Liu%2C+Bo&rft.au=Xie%2C+Hongzhi&rft.au=Wang%2C+Youqing&rft.date=2015-07-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=19&rft.issue=7&rft.spage=1921&rft.epage=1937&rft_id=info:doi/10.1007%2Fs00500-014-1378-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_014_1378_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon