Adjustment of basal insulin infusion rate in T1DM by hybrid PSO
Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1 diabetes mellitus (T1DM) patients for maintaining the blood glucose level approximately steady within reference range in order to avoid the comp...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 19; no. 7; pp. 1921 - 1937 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1432-7643 1433-7479 |
DOI | 10.1007/s00500-014-1378-6 |
Cover
Abstract | Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1 diabetes mellitus (T1DM) patients for maintaining the blood glucose level approximately steady within reference range in order to avoid the complications developed from diabetes. This paper proposes an effective hybrid particle swarm optimization (HPSO) algorithm for solving the basal insulin infusion rate problem. In HPSO, bad experience lesson learning scheme and local search based on chaotic dynamics are proposed to make a good balance between global exploration and local exploitation. Simulation results based on a set of well-known optimization benchmark instances and the basal insulin infusion rate adjustment problem for T1DM demonstrate the effectiveness of the proposed HPSO. In silico tests on standard virtual subject via HPSO show that under nominal condition the blood glucose concentrations could be kept within a range of 80–150 mg/dL within less than 5 days; meanwhile, in case of random variations in meal timings within
±
60 min or meal amounts within
±
75 % deviation from the nominal values, the blood glucose concentrations could be kept within the safe regions. |
---|---|
AbstractList | Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1 diabetes mellitus (T1DM) patients for maintaining the blood glucose level approximately steady within reference range in order to avoid the complications developed from diabetes. This paper proposes an effective hybrid particle swarm optimization (HPSO) algorithm for solving the basal insulin infusion rate problem. In HPSO, bad experience lesson learning scheme and local search based on chaotic dynamics are proposed to make a good balance between global exploration and local exploitation. Simulation results based on a set of well-known optimization benchmark instances and the basal insulin infusion rate adjustment problem for T1DM demonstrate the effectiveness of the proposed HPSO. In silico tests on standard virtual subject via HPSO show that under nominal condition the blood glucose concentrations could be kept within a range of 80–150 mg/dL within less than 5 days; meanwhile, in case of random variations in meal timings within ±60 min or meal amounts within ±75 % deviation from the nominal values, the blood glucose concentrations could be kept within the safe regions. Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1 diabetes mellitus (T1DM) patients for maintaining the blood glucose level approximately steady within reference range in order to avoid the complications developed from diabetes. This paper proposes an effective hybrid particle swarm optimization (HPSO) algorithm for solving the basal insulin infusion rate problem. In HPSO, bad experience lesson learning scheme and local search based on chaotic dynamics are proposed to make a good balance between global exploration and local exploitation. Simulation results based on a set of well-known optimization benchmark instances and the basal insulin infusion rate adjustment problem for T1DM demonstrate the effectiveness of the proposed HPSO. In silico tests on standard virtual subject via HPSO show that under nominal condition the blood glucose concentrations could be kept within a range of 80–150 mg/dL within less than 5 days; meanwhile, in case of random variations in meal timings within ± 60 min or meal amounts within ± 75 % deviation from the nominal values, the blood glucose concentrations could be kept within the safe regions. |
Author | Liu, Bo Wang, Youqing Xie, Hongzhi Lou, Zhijiang |
Author_xml | – sequence: 1 givenname: Zhijiang surname: Lou fullname: Lou, Zhijiang organization: College of Information Science and Technology, Beijing University of Chemical Technology – sequence: 2 givenname: Bo surname: Liu fullname: Liu, Bo organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 3 givenname: Hongzhi surname: Xie fullname: Xie, Hongzhi organization: College of Information Science and Technology, Beijing University of Chemical Technology – sequence: 4 givenname: Youqing surname: Wang fullname: Wang, Youqing email: wang.youqing@ieee.org organization: College of Information Science and Technology, Beijing University of Chemical Technology |
BookMark | eNp9kEtLAzEUhYNUsK3-AHcB19G8mmRWUuoTKhWs65CZJDplOlOTzKL_3tQRBEFX5144332cCRi1XesAOCf4kmAsryLGM4wRJhwRJhUSR2BMOGNIclmMvmqKpODsBExi3GBMiZyxMbie200f09a1CXYeliaaBtZt7Ju6zer7WHctDCa53ME1uXmC5R6-78tQW_j8sjoFx9400Z196xS83t2uFw9oubp_XMyXqGK8SKhUUlFVVQWzymNXKF5yyomxmHtplbKVV0ZYjomUJRWi9IQYbysiDfNOzNgUXAxzd6H76F1MetP1oc0rNS2ILGghBc4uObiq0MUYnNdVnUzKL6Rg6kYTrA9p6SEtndPSh7S0yCT5Re5CvTVh_y9DByZmb_vmws9Nf0Ofg3V8qg |
CitedBy_id | crossref_primary_10_3390_s21155226 crossref_primary_10_1002_cjce_23488 crossref_primary_10_1038_s41598_021_02676_3 crossref_primary_10_1007_s00500_015_1786_2 |
Cites_doi | 10.1109/TEVC.2008.2009460 10.1016/j.swevo.2011.06.005 10.1109/TBME.2006.883792 10.1109/TBME.2007.893506 10.1016/j.jprocont.2007.07.010 10.2337/diacare.20.11.1655 10.1109/TCBB.2011.126 10.1016/j.jprocont.2010.10.003 10.1089/dia.2010.0029 10.1177/193229681000400522 10.1007/s10462-010-9191-9 10.1016/j.aei.2005.01.004 10.1136/bmj.d1855 10.1109/ICNN.1995.488968 10.1109/MCI.2010.936309 10.1177/193229680900300106 10.1007/s10479-011-0894-3 10.1177/193229680700100303 10.1007/s00500-012-0803-y 10.1109/CI-M.2006.248054 10.1016/j.arcontrol.2012.09.007 10.1002/aic.12081 10.1016/j.cor.2006.12.013 10.1007/978-3-540-78490-6_1 10.1109/4235.985692 10.1016/j.compchemeng.2009.12.010 10.2337/dc14-S014 10.1007/s00500-012-0855-z 10.1016/j.ins.2012.06.003 10.1016/j.chaos.2004.11.095 10.1016/j.ejor.2006.06.046 10.1109/MCI.2011.2176995 10.1109/TSMCB.2009.2015956 10.1109/TBME.2006.872818 10.1109/TBME.2009.2024409 10.1109/TEVC.2011.2132725 10.1109/RBME.2009.2036073 10.1109/TEVC.2003.819944 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 Springer-Verlag Berlin Heidelberg 2014. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Springer-Verlag Berlin Heidelberg 2014. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00500-014-1378-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 1937 |
ExternalDocumentID | 10_1007_s00500_014_1378_6 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c349t-b87828cc93d8f0e984b4241ad04f7d88dcf8a6d40177b266bf11afdc17a3fe653 |
IEDL.DBID | AGYKE |
ISSN | 1432-7643 |
IngestDate | Sat Aug 23 12:23:13 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Tue Jul 01 02:01:52 EDT 2025 Fri Feb 21 02:40:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Glycemic control Particle swarm optimization (PSO) Basal insulin infusion rate optimization Type 1 diabetes mellitus |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-b87828cc93d8f0e984b4241ad04f7d88dcf8a6d40177b266bf11afdc17a3fe653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2917929760 |
PQPubID | 2043697 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2917929760 crossref_citationtrail_10_1007_s00500_014_1378_6 crossref_primary_10_1007_s00500_014_1378_6 springer_journals_10_1007_s00500_014_1378_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | LiuBWangLJinYHAn effective hybrid PSO-based algorithm for flow shop scheduling with limited buffersComput Oper Res2008359279128061144.9038510.1016/j.cor.2006.12.013 Ong Y-S, Lim MH, Chen X (2010) Research frontier-memetic computation–past, present & future. IEEE Comput Intell Mag 5(2):24–36 SochaKDorigoMAnt colony optimization for continuous domainsEur J Oper Res20081853115511731146.90537236175010.1016/j.ejor.2006.06.046 Wang YQ, Zisser H, Dassau E, Jovanovic L, Doyle FJ (2010c) Model predictive control with learning-type set-point: application to artificial pancreatic beta-cell. AIChE J 56(6):1510–1518 Dalla ManCRaimondoDMRizzaRACobelliCGIM, simulation software of meal glucose-insulin modelJ Diabetes Sci Technol20071332333010.1177/193229680700100303 ElbeltagiEHegazyTGriersonDComparison among five evolutionary-based optimization algorithmsAdv Eng Inf2005191435310.1016/j.aei.2005.01.004 RanaSJasolaSKumarRA review on particle swarm optimization algorithms and their applications to data clusteringArtif Intell Rev201135321122210.1007/s10462-010-9191-9 Moussouni F, Brisset S, Brochet P (2008) Comparison of two multi-agent algorithms: ACO and PSO for the optimization of a brushless DC wheel motor. In: Intelligent computer techniques in applied electromagnetics. Springer, Berlin, pp 3–10 Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110 ZhanZHZhangJLiYChungHSHAdaptive particle swarm optimizationIEEE Trans Syst Man Cybern Part B Cybern20093961362138110.1109/TSMCB.2009.2015956 DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag200614283910.1109/CI-M.2006.248054 XuWXGengZQZhuQXGuXBA piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimizationInf Sci2013218851021293.90088298923910.1016/j.ins.2012.06.003 WangYQDassauEDoyleFJClosed-loop control of artificial pancreatic beta-cell in type 1 diabetes mellitus using model predictive iterative learning controlIEEE Trans Biomed Eng201057221121910.1109/TBME.2009.2024409 WangYQDassauEZisserHJovanovicLDoyleFJIIIAutomatic bolus and adaptive basal algorithm for the artificial pancreatic beta-cellDiabetes Technol Ther2010121187988710.1089/dia.2010.0029 Nguyen QH, Ong Y-S, Lim MH (2009) A probabilistic memetic framework. IEEE Trans Evol Comput 13(3):604–623 PercivalMWBevierWCWangYDassauEZisserHCJovanovicLDoyleFJ3rdModeling the effects of subcutaneous insulin administration and carbohydrate consumption on blood glucoseJ Diabetes Sci Technol2010451214122810.1177/193229681000400522 Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing DY, Kollman C, Nodale M, Murphy HR, Dunger DB, Amiel SA, Heller SR, Wilinska ME, Evans ML (2011) Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. Br Med J 342:d1855 LiuBWangLLiuYWangSYA unified framework for population-based metaheuristicsAnn Oper Res201118612312621225.9016310.1007/s10479-011-0894-3 LiuBWangLLiuYQianBJinYHAn effective hybrid particle swarm optimization for batch scheduling of polypropylene processesComput Chem Eng201034451852810.1016/j.compchemeng.2009.12.010 CobelliCDalla ManCSparacinoGMagniLDe NicolaoGKovatchevBPDiabetes: models, signals, and controlIEEE Rev Biomed Eng20092549610.1109/RBME.2009.2036073 DeepaSugumaranModel order formulation of a multivariable discrete system using a modified particle swarm optimization approachSwarm Evolut Comput20111420421210.1016/j.swevo.2011.06.005 ClercMKennedyJThe particle swarm—explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans Evol Comput200261587310.1109/4235.985692 OwensCZisserHJovanovicLSrinivasanBBonvinDDoyleFJRun-to-run control of blood glucose concentrations for people with type 1 diabetes mellitusIEEE Trans Biomed Eng2006536996100510.1109/TBME.2006.872818 LiuLZWuFXZhangWJInference of biological S-system using the separable estimation method and the genetic algorithmIEEE/ACM Trans Comput Biol Bioinf201294955965298385310.1109/TCBB.2011.126 DengWChenRHeBLiuYQYinLFGuoJHA novel two-stage hybrid swarm intelligence optimization algorithm and applicationSoft Comput201216101707172210.1007/s00500-012-0855-z LeMNOngYSJinYCSendhoffBA unified framework for symbiosis of evolutionary mechanisms with application to water clusters potential model designIEEE Comput Intell Mag201271203510.1109/MCI.2011.2176995 KovatchevBPCoxDJGonder-FrederickLAClarkeWSymmetrization of the blood glucose measurement scale and its applicationsDiabetes Care199720111655165810.2337/diacare.20.11.1655 Li YY, Xiang RR, Jiao LC, Liu RC (2012) An improved cooperative quantum-behaved particle swarm optimization. Soft Comput 16(6):1061–1069 BequetteBWChallenges and recent progress in the development of a closed-loop artificial pancreasAnnu Rev Control201236225526610.1016/j.arcontrol.2012.09.007 American Diabetes Association (2014) Standards of medical care in diabetes—2014. Diabetes Care 37(Supplement 1):S14–S80 Liu B, Wang L, Jin Y-H, Tang F (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25:1261–1271 Dalla ManCRizzaRACobelliCMeal simulation model of the glucose-insulin systemIEEE Trans Bio-Med Eng200754101740174910.1109/TBME.2007.893506 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neutral networks, vol 2, Australia, pp 1942–1948 PalermCCZisserHJovanovicLDoyleFIJA run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetesJ Process Control2008183–425826510.1016/j.jprocont.2007.07.010 Kovatchev BP, Breton M, Man CD, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 3(1):44–55 Chen X, Ong Y-S, Lim M-H, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607 Dalla ManCCamilleriMCobelliCA system model of oral glucose absorption: validation on gold standard dataIEEE Trans Biomed Eng200653122472247810.1109/TBME.2006.883792 PercivalMWWangYGrosmanBDassauEZisserHJovanovicLDoyleFJDevelopment of a multi-parametric model predictive control algorithm for insulin delivery in type 1 diabetes mellitus using clinical parametersJ Process Control201121339140410.1016/j.jprocont.2010.10.003 Deepa (1378_CR9) 2011; 1 WX Xu (1378_CR37) 2013; 218 K Socha (1378_CR33) 2008; 185 ZH Zhan (1378_CR38) 2009; 39 1378_CR16 C Cobelli (1378_CR5) 2009; 2 1378_CR19 B Liu (1378_CR20) 2008; 35 1378_CR18 B Liu (1378_CR22) 2011; 186 CC Palerm (1378_CR29) 2008; 18 YQ Wang (1378_CR35) 2010; 12 C Dalla Man (1378_CR8) 2007; 54 LZ Liu (1378_CR23) 2012; 9 C Dalla Man (1378_CR7) 2007; 1 B Liu (1378_CR21) 2010; 34 S Rana (1378_CR32) 2011; 35 C Dalla Man (1378_CR6) 2006; 53 1378_CR13 MW Percival (1378_CR31) 2011; 21 1378_CR14 1378_CR36 MW Percival (1378_CR30) 2010; 4 YQ Wang (1378_CR34) 2010; 57 1378_CR27 M Clerc (1378_CR4) 2002; 6 MN Le (1378_CR17) 2012; 7 BP Kovatchev (1378_CR15) 1997; 20 M Dorigo (1378_CR11) 2006; 1 1378_CR1 C Owens (1378_CR28) 2006; 53 1378_CR24 BW Bequette (1378_CR2) 2012; 36 W Deng (1378_CR10) 2012; 16 1378_CR26 1378_CR3 E Elbeltagi (1378_CR12) 2005; 19 1378_CR25 |
References_xml | – reference: Moussouni F, Brisset S, Brochet P (2008) Comparison of two multi-agent algorithms: ACO and PSO for the optimization of a brushless DC wheel motor. In: Intelligent computer techniques in applied electromagnetics. Springer, Berlin, pp 3–10 – reference: XuWXGengZQZhuQXGuXBA piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimizationInf Sci2013218851021293.90088298923910.1016/j.ins.2012.06.003 – reference: DeepaSugumaranModel order formulation of a multivariable discrete system using a modified particle swarm optimization approachSwarm Evolut Comput20111420421210.1016/j.swevo.2011.06.005 – reference: ElbeltagiEHegazyTGriersonDComparison among five evolutionary-based optimization algorithmsAdv Eng Inf2005191435310.1016/j.aei.2005.01.004 – reference: LiuBWangLLiuYWangSYA unified framework for population-based metaheuristicsAnn Oper Res201118612312621225.9016310.1007/s10479-011-0894-3 – reference: BequetteBWChallenges and recent progress in the development of a closed-loop artificial pancreasAnnu Rev Control201236225526610.1016/j.arcontrol.2012.09.007 – reference: ZhanZHZhangJLiYChungHSHAdaptive particle swarm optimizationIEEE Trans Syst Man Cybern Part B Cybern20093961362138110.1109/TSMCB.2009.2015956 – reference: Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing DY, Kollman C, Nodale M, Murphy HR, Dunger DB, Amiel SA, Heller SR, Wilinska ME, Evans ML (2011) Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. Br Med J 342:d1855 – reference: SochaKDorigoMAnt colony optimization for continuous domainsEur J Oper Res20081853115511731146.90537236175010.1016/j.ejor.2006.06.046 – reference: DengWChenRHeBLiuYQYinLFGuoJHA novel two-stage hybrid swarm intelligence optimization algorithm and applicationSoft Comput201216101707172210.1007/s00500-012-0855-z – reference: Ong Y-S, Lim MH, Chen X (2010) Research frontier-memetic computation–past, present & future. IEEE Comput Intell Mag 5(2):24–36 – reference: American Diabetes Association (2014) Standards of medical care in diabetes—2014. Diabetes Care 37(Supplement 1):S14–S80 – reference: Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110 – reference: LiuBWangLJinYHAn effective hybrid PSO-based algorithm for flow shop scheduling with limited buffersComput Oper Res2008359279128061144.9038510.1016/j.cor.2006.12.013 – reference: Nguyen QH, Ong Y-S, Lim MH (2009) A probabilistic memetic framework. IEEE Trans Evol Comput 13(3):604–623 – reference: Li YY, Xiang RR, Jiao LC, Liu RC (2012) An improved cooperative quantum-behaved particle swarm optimization. Soft Comput 16(6):1061–1069 – reference: PercivalMWWangYGrosmanBDassauEZisserHJovanovicLDoyleFJDevelopment of a multi-parametric model predictive control algorithm for insulin delivery in type 1 diabetes mellitus using clinical parametersJ Process Control201121339140410.1016/j.jprocont.2010.10.003 – reference: LeMNOngYSJinYCSendhoffBA unified framework for symbiosis of evolutionary mechanisms with application to water clusters potential model designIEEE Comput Intell Mag201271203510.1109/MCI.2011.2176995 – reference: LiuBWangLLiuYQianBJinYHAn effective hybrid particle swarm optimization for batch scheduling of polypropylene processesComput Chem Eng201034451852810.1016/j.compchemeng.2009.12.010 – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neutral networks, vol 2, Australia, pp 1942–1948 – reference: Liu B, Wang L, Jin Y-H, Tang F (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25:1261–1271 – reference: LiuLZWuFXZhangWJInference of biological S-system using the separable estimation method and the genetic algorithmIEEE/ACM Trans Comput Biol Bioinf201294955965298385310.1109/TCBB.2011.126 – reference: Dalla ManCRizzaRACobelliCMeal simulation model of the glucose-insulin systemIEEE Trans Bio-Med Eng200754101740174910.1109/TBME.2007.893506 – reference: Dalla ManCCamilleriMCobelliCA system model of oral glucose absorption: validation on gold standard dataIEEE Trans Biomed Eng200653122472247810.1109/TBME.2006.883792 – reference: DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag200614283910.1109/CI-M.2006.248054 – reference: KovatchevBPCoxDJGonder-FrederickLAClarkeWSymmetrization of the blood glucose measurement scale and its applicationsDiabetes Care199720111655165810.2337/diacare.20.11.1655 – reference: Chen X, Ong Y-S, Lim M-H, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607 – reference: ClercMKennedyJThe particle swarm—explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans Evol Comput200261587310.1109/4235.985692 – reference: PercivalMWBevierWCWangYDassauEZisserHCJovanovicLDoyleFJ3rdModeling the effects of subcutaneous insulin administration and carbohydrate consumption on blood glucoseJ Diabetes Sci Technol2010451214122810.1177/193229681000400522 – reference: Dalla ManCRaimondoDMRizzaRACobelliCGIM, simulation software of meal glucose-insulin modelJ Diabetes Sci Technol20071332333010.1177/193229680700100303 – reference: RanaSJasolaSKumarRA review on particle swarm optimization algorithms and their applications to data clusteringArtif Intell Rev201135321122210.1007/s10462-010-9191-9 – reference: Kovatchev BP, Breton M, Man CD, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 3(1):44–55 – reference: WangYQDassauEZisserHJovanovicLDoyleFJIIIAutomatic bolus and adaptive basal algorithm for the artificial pancreatic beta-cellDiabetes Technol Ther2010121187988710.1089/dia.2010.0029 – reference: Wang YQ, Zisser H, Dassau E, Jovanovic L, Doyle FJ (2010c) Model predictive control with learning-type set-point: application to artificial pancreatic beta-cell. AIChE J 56(6):1510–1518 – reference: WangYQDassauEDoyleFJClosed-loop control of artificial pancreatic beta-cell in type 1 diabetes mellitus using model predictive iterative learning controlIEEE Trans Biomed Eng201057221121910.1109/TBME.2009.2024409 – reference: OwensCZisserHJovanovicLSrinivasanBBonvinDDoyleFJRun-to-run control of blood glucose concentrations for people with type 1 diabetes mellitusIEEE Trans Biomed Eng2006536996100510.1109/TBME.2006.872818 – reference: CobelliCDalla ManCSparacinoGMagniLDe NicolaoGKovatchevBPDiabetes: models, signals, and controlIEEE Rev Biomed Eng20092549610.1109/RBME.2009.2036073 – reference: PalermCCZisserHJovanovicLDoyleFIJA run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetesJ Process Control2008183–425826510.1016/j.jprocont.2007.07.010 – ident: 1378_CR25 doi: 10.1109/TEVC.2008.2009460 – volume: 1 start-page: 204 issue: 4 year: 2011 ident: 1378_CR9 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2011.06.005 – volume: 53 start-page: 2472 issue: 12 year: 2006 ident: 1378_CR6 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.883792 – volume: 54 start-page: 1740 issue: 10 year: 2007 ident: 1378_CR8 publication-title: IEEE Trans Bio-Med Eng doi: 10.1109/TBME.2007.893506 – volume: 18 start-page: 258 issue: 3–4 year: 2008 ident: 1378_CR29 publication-title: J Process Control doi: 10.1016/j.jprocont.2007.07.010 – volume: 20 start-page: 1655 issue: 11 year: 1997 ident: 1378_CR15 publication-title: Diabetes Care doi: 10.2337/diacare.20.11.1655 – volume: 9 start-page: 955 issue: 4 year: 2012 ident: 1378_CR23 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2011.126 – volume: 21 start-page: 391 issue: 3 year: 2011 ident: 1378_CR31 publication-title: J Process Control doi: 10.1016/j.jprocont.2010.10.003 – volume: 12 start-page: 879 issue: 11 year: 2010 ident: 1378_CR35 publication-title: Diabetes Technol Ther doi: 10.1089/dia.2010.0029 – volume: 4 start-page: 1214 issue: 5 year: 2010 ident: 1378_CR30 publication-title: J Diabetes Sci Technol doi: 10.1177/193229681000400522 – volume: 35 start-page: 211 issue: 3 year: 2011 ident: 1378_CR32 publication-title: Artif Intell Rev doi: 10.1007/s10462-010-9191-9 – volume: 19 start-page: 43 issue: 1 year: 2005 ident: 1378_CR12 publication-title: Adv Eng Inf doi: 10.1016/j.aei.2005.01.004 – ident: 1378_CR13 doi: 10.1136/bmj.d1855 – ident: 1378_CR14 doi: 10.1109/ICNN.1995.488968 – ident: 1378_CR27 doi: 10.1109/MCI.2010.936309 – ident: 1378_CR16 doi: 10.1177/193229680900300106 – volume: 186 start-page: 231 issue: 1 year: 2011 ident: 1378_CR22 publication-title: Ann Oper Res doi: 10.1007/s10479-011-0894-3 – volume: 1 start-page: 323 issue: 3 year: 2007 ident: 1378_CR7 publication-title: J Diabetes Sci Technol doi: 10.1177/193229680700100303 – ident: 1378_CR18 doi: 10.1007/s00500-012-0803-y – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 1378_CR11 publication-title: IEEE Comput Intell Mag doi: 10.1109/CI-M.2006.248054 – volume: 36 start-page: 255 issue: 2 year: 2012 ident: 1378_CR2 publication-title: Annu Rev Control doi: 10.1016/j.arcontrol.2012.09.007 – ident: 1378_CR36 doi: 10.1002/aic.12081 – volume: 35 start-page: 2791 issue: 9 year: 2008 ident: 1378_CR20 publication-title: Comput Oper Res doi: 10.1016/j.cor.2006.12.013 – ident: 1378_CR24 doi: 10.1007/978-3-540-78490-6_1 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 1378_CR4 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.985692 – volume: 34 start-page: 518 issue: 4 year: 2010 ident: 1378_CR21 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2009.12.010 – ident: 1378_CR1 doi: 10.2337/dc14-S014 – volume: 16 start-page: 1707 issue: 10 year: 2012 ident: 1378_CR10 publication-title: Soft Comput doi: 10.1007/s00500-012-0855-z – volume: 218 start-page: 85 year: 2013 ident: 1378_CR37 publication-title: Inf Sci doi: 10.1016/j.ins.2012.06.003 – ident: 1378_CR19 doi: 10.1016/j.chaos.2004.11.095 – volume: 185 start-page: 1155 issue: 3 year: 2008 ident: 1378_CR33 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.06.046 – volume: 7 start-page: 20 issue: 1 year: 2012 ident: 1378_CR17 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2011.2176995 – volume: 39 start-page: 1362 issue: 6 year: 2009 ident: 1378_CR38 publication-title: IEEE Trans Syst Man Cybern Part B Cybern doi: 10.1109/TSMCB.2009.2015956 – volume: 53 start-page: 996 issue: 6 year: 2006 ident: 1378_CR28 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.872818 – volume: 57 start-page: 211 issue: 2 year: 2010 ident: 1378_CR34 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2024409 – ident: 1378_CR3 doi: 10.1109/TEVC.2011.2132725 – volume: 2 start-page: 54 year: 2009 ident: 1378_CR5 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2009.2036073 – ident: 1378_CR26 doi: 10.1109/TEVC.2003.819944 |
SSID | ssj0021753 |
Score | 2.0701015 |
Snippet | Basal insulin infusion rate which should be adjusted to increase or decrease insulin delivery with the varying blood sugar level plays a key role in type 1... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1921 |
SubjectTerms | Algorithms Artificial Intelligence Blood Computational Intelligence Control Diabetes Diabetes mellitus Engineering Glucose Hyperglycemia Hypoglycemia Insulin Mathematical Logic and Foundations Mechatronics Metabolism Methodologies and Application Optimization Particle swarm optimization Random variables Robotics Simulation Velocity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULl58G1E0PXjSNO6j2-2eCCqEmIBEIeHW9LGNMQZQ4MC_d7p0IZrIadNs28NM22-mM_0GoZuMMgOujyYKvAVClVUkY5ZC02ieOz4Q4yK63R7rDOnzKBn5C7eZT6ssz8TioDYT7e7I7yPwKwDKUxY0pl_EVY1y0VVfQmMXVeEI5rDOqw-tXv917XJ5HkowCsCOBPAt45pBQSOauFfVISVhDK4U-41MG3PzT4S0AJ72Idr3FiNurlR8hHby8TE6KKsxYL85T1CjaT4WsyJpHE8sBniCUT7VHL524e7FsGOGgBYehE9drJb4femebOH-28spGrZbg8cO8eURiI5pNieKA7pzrbPYcBvkGaeKAh5LE1CbGs6NtlwyAw5UmirAYWXDUFqjw1TGNmdJfIYq48k4P0dYRUpKHptERpLyWIKKpLRJJG2gQprLGgpK0QjtucNdCYtPsWY9LqQpQJrCSVOwGrpdD5muiDO2da6X8hZ-D83ERuM1dFfqYPP738kutk92ifbA6ElWKbd1VJl_L_IrMCzm6tqvnh9jh8hF priority: 102 providerName: ProQuest |
Title | Adjustment of basal insulin infusion rate in T1DM by hybrid PSO |
URI | https://link.springer.com/article/10.1007/s00500-014-1378-6 https://www.proquest.com/docview/2917929760 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXPTgAzXig_TgSbNkH93d7smAAkYjGoUET5s-tjFqwAgc8Nc7hS4-oiaemqbdZnem3fmmM_0KcJjQSKHrIx2B3oJDhRZOEmmKVSVZZvhAlInoXnWi8x696Id9e457lGe75yHJ2Z96cdjNUJWYJCrqeAG6PlEBSqHHElaEUr19f9lc-FmWfBKRAIJHtLh5MPOnQb6aow-M-S0sOrM2rTXo5u85TzJ5qk3GoibfvlE4_vND1mHVok9Sn0-XDVjKBmVYy292IHahl2HlE03hJpzU1eNkNEtHJ0NN0PDhGDaJHUs9MTtuxHBOYI10vbMrIqbkYWoOg5Gbu-st6LWa3dNzx1684MiAJmNHMMQNTMokUEy7WcKooGjpuXKpjhVjSmrGI4WuWRwLtPBCex7XSnoxD3QWhcE2FAfDQbYDRPiCcxaokPucsoCj8jnXoc-1Kzya8Qq4ufxTaVnJzeUYz-mCT3kmrhTFlRpxpVEFjhaPvMwpOf7qvJ8rNbWrc5T66KMiLIwjtwLHuY4-mn8dbPdfvfdgGdFVOM_t3Yfi-HWSHSCCGYsqFFirXcV522o0OlU7f7FsNDs3t9ja8-vvc7npfA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QPejFtxFF3YNeNI19bNvtwRAiIiqgiZB4q_voxhgDKBDDn_I3OltaiCZy49Rs2t3D7HS--XZmZwBOIhoopD7SEsgWLCq0sKJAUxwqyRJTD0SZiG6zFdQ79O7Zfy7Ad34XxqRV5jYxNdSqJ80Z-YWLvAKhPAzscv_DMl2jTHQ1b6ExUYv7ZPyFlG1weVvF_T113dp1-6puZV0FLOnRaGgJhqDIpIw8xbSdRIwKijDGlU11qBhTUjMeKOQdYSgQvoR2HK6VdELu6SQwXSLQ5C9Tz4tMqwhWu5kSvKzqJbog6LUi1OdRVDstWuqbO9wOtRwPiVvwGwdnzu2feGwKc7UNWMv8U1KZKNQmFJLuFqznvR9IZgq2oVxRb6NBmqJOepogGOKsLLEdn3pkTuGIqUOBI9J2qk0ixuR1bC6Ikcenhx3oLERsu7DU7XWTPSDCFZwzT_nc5ZR5HBWCc-27XNvCoQkvgp2LJpZZpXLTMOM9ntZYTqUZozRjI804KMLZdEp_UqZj3selXN5x9scO4pl-FeE834PZ638X25-_2DGs1NvNRty4bd0fwCq6W_4k2bcES8PPUXKILs1QHKV6ROBl0Yr7A6cCBIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1WsVt2DJyWYxybZnKRYS320Fmyht7CbzSIiabHpof_e2byqooKnsGSzh9nH901m9huA84B6El2fyBDoLRhUKGEEnqLYlBGLtR6I1BHdXt_rjuj92B0XdU5nZbZ7GZLM7zRolaYkvZpKdVVdfNOyJTqhihqWg26QtwpreBpbeqGP7FblcRUylMgJkEYi9pZhzZ-G-ApMS7b5LUCa4U5nB7YKwkha-Qzvwkqc1GG7LMZAir1Zh81PyoJ7cN2Sr_NZlkFOJoogVuEYRd45PtVc_yQjWiYCW2RotXtELMjLQt_fIoPnp30YdW6HN12jqJVgRA4NUkMwhHoWRYEjmTLjgFFBEZy5NKnyJWMyUox7Er0p3xcIykJZFlcysnzuqNhznQOoJZMkPgQibME5c6TLbU6Zw3G-OFeuzZUpLBrzBpilocKoEBLX9SzewkoCObNtiLYNtW1DrwEX1SfTXEXjr87N0vphsaFmoY1uJTI53zMbcFnOyPL1r4Md_av3GawP2p3w8a7_cAwbyI3cPDO3CbX0fR6fIP9IxWm2xj4Ar7nO9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adjustment+of+basal+insulin+infusion+rate+in+T1DM+by+hybrid+PSO&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Lou%2C+Zhijiang&rft.au=Liu%2C+Bo&rft.au=Xie%2C+Hongzhi&rft.au=Wang%2C+Youqing&rft.date=2015-07-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=19&rft.issue=7&rft.spage=1921&rft.epage=1937&rft_id=info:doi/10.1007%2Fs00500-014-1378-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_014_1378_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |