A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity

Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using sever...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 69; no. 12; pp. 3601 - 3611
Main Authors Hossain, Md-Billal, Posada-Quintero, Hugo F., Chon, Ki H.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large (<inline-formula><tex-math notation="LaTeX">\mathbf{N}\ = \ 385\ \text{subjects}</tex-math></inline-formula>). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT). Results: Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement (<inline-formula><tex-math notation="LaTeX">\mathbf{SN}{\mathbf{R}_{\mathbf{imp}}}</tex-math></inline-formula>) and lower mean squared error (<inline-formula><tex-math notation="LaTeX">\mathbf{MSE}</tex-math></inline-formula>) when compared with that of the three previous methods (averaged <inline-formula><tex-math notation="LaTeX">\boldsymbol{S\!N\!R}_\text{imp} = 35.25\,{\text{dB}}</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{M\!S\!E\ }} = 0.028</tex-math></inline-formula> on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68. Conclusion: The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails. Significance: Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data.
AbstractList Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula Omitted]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT). Results: Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement ([Formula Omitted]) and lower mean squared error ([Formula Omitted]) when compared with that of the three previous methods (averaged [Formula Omitted], and [Formula Omitted] on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68. Conclusion: The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails. Significance: Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data.
This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal.OBJECTIVEThis study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal.we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula: see text]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT).METHODSwe proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula: see text]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT).Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement ( SNRimp) and lower mean squared error ( MSE) when compared with that of the three previous methods (averaged [Formula: see text], and MSE = 0.028 on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68.RESULTSOur DCAE model showed significantly higher signal-to-noise-power-ratio improvement ( SNRimp) and lower mean squared error ( MSE) when compared with that of the three previous methods (averaged [Formula: see text], and MSE = 0.028 on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68.The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails.CONCLUSIONThe results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails.Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data.SIGNIFICANCEProposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data.
Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large (<inline-formula><tex-math notation="LaTeX">\mathbf{N}\ = \ 385\ \text{subjects}</tex-math></inline-formula>). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT). Results: Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement (<inline-formula><tex-math notation="LaTeX">\mathbf{SN}{\mathbf{R}_{\mathbf{imp}}}</tex-math></inline-formula>) and lower mean squared error (<inline-formula><tex-math notation="LaTeX">\mathbf{MSE}</tex-math></inline-formula>) when compared with that of the three previous methods (averaged <inline-formula><tex-math notation="LaTeX">\boldsymbol{S\!N\!R}_\text{imp} = 35.25\,{\text{dB}}</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{M\!S\!E\ }} = 0.028</tex-math></inline-formula> on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68. Conclusion: The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails. Significance: Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data.
This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula: see text]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT). Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement ( SNR ) and lower mean squared error ( MSE) when compared with that of the three previous methods (averaged [Formula: see text], and MSE = 0.028 on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68. The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails. Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data.
Author Posada-Quintero, Hugo F.
Chon, Ki H.
Hossain, Md-Billal
Author_xml – sequence: 1
  givenname: Md-Billal
  orcidid: 0000-0002-2344-8321
  surname: Hossain
  fullname: Hossain, Md-Billal
  organization: Department of Biomedical Engineering, University of Connecticut, USA
– sequence: 2
  givenname: Hugo F.
  orcidid: 0000-0003-4514-4772
  surname: Posada-Quintero
  fullname: Posada-Quintero, Hugo F.
  organization: Department of Biomedical Engineering, University of Connecticut, USA
– sequence: 3
  givenname: Ki H.
  orcidid: 0000-0002-4422-4837
  surname: Chon
  fullname: Chon, Ki H.
  email: ki.chon@uconn.edu
  organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35544485$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMoun78ABGk4MVL13w2zXFd1w9QBNFzTdMJRNpmTdOF_fe27urBg6dh4HlmmHkP0W7rW0DolOApIVhdvV4_LaYUUzplRHKB1Q6aECHylApGdtEEY5Kniip-gA677mNoec6zfXTAhOCc52KC3mfJDcAymft25es-Ot_qOpn10UNrfAUhsT58942OziRPfkSSWYjOahOTF2j8ajBcmyxqMDGMTjOOMNGtXFwfoz2r6w5OtvUIvd0uXuf36ePz3cN89pgaxlVMSyZKTCopSmZlRUpgQEuVaZxX0mbESG6UBWYBE2WZtjnLhCitggpXVWYEO0KXm7nL4D976GLRuM5AXesWfN8VNMuo4JTk2YBe_EE_fB-GuwdKMsUYJYoP1PmW6ssGqmIZXKPDuvj53QCQDWCC77oA9hchuBjzKcZ8ijGfYpvP4Mg_jnFRjy-NQbv6X_NsYzoA-N2kpKRKcPYFeCedGg
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_rasd_2023_102258
crossref_primary_10_1016_j_cmpb_2023_107859
crossref_primary_10_1063_5_0200395
crossref_primary_10_3390_ani13020229
crossref_primary_10_1088_1361_6579_ac92bd
crossref_primary_10_1016_j_compbiomed_2024_108603
crossref_primary_10_1111_epi_18138
crossref_primary_10_1007_s11265_024_01935_6
crossref_primary_10_1038_s43856_024_00688_4
crossref_primary_10_3390_bios15020078
crossref_primary_10_1109_ACCESS_2024_3393515
crossref_primary_10_1016_j_ins_2023_01_096
crossref_primary_10_1016_j_eswa_2023_120581
Cites_doi 10.5281/zenodo.4287271
10.3390/s20164611
10.1145/3191775
10.21437/Interspeech.2013-267
10.1109/TBME.2022.3158582
10.5281/zenodo.5573723
10.1109/EMBC48229.2022.9871635
10.1016/j.neucom.2014.08.092
10.5281/zenodo.291465
10.1155/2017/4108720
10.1145/1390156.1390294
10.1152/ajpregu.00180.2016
10.1109/TBME.2017.2758643
10.1109/JBHI.2019.2893222
10.1145/2968219.2968306
10.1145/3264913
10.5281/zenodo. 4115080
10.1109/ACCESS.2019.2912036
10.1016/j.bspc.2018.01.009
10.1109/EMBC46164.2021.9629513
10.3390/s20020479
10.5281/zenodo.3885797
10.5281/zenodo.291449
10.1109/TMM.2008.922849
10.5281/zenodo.291445
10.1038/s41598-019-49092-2
10.5281/zenodo.5650832
10.1109/TBME.2009.2038487
10.5281/zenodo.274963
10.1109/EMBC44109.2020.9175665
10.5281/zenodo.5573820
10.1145/2632048.2636065
10.1109/CVPR.2014.220
10.1016/j.neucom.2015.08.104
10.3389/fpsyg.2017.00557
10.5281/zenodo.291448
10.5281/zenodo.5573779
10.5281/zenodo.274992
10.1016/j.cmpb.2020.105856
10.1109/EMBC46164.2021.9630535
10.1109/EMBC.2015.7319814
10.1109/JBHI.2018.2885139
10.5281/zenodo.3611490
10.1007/978-1-4614-1126-0
10.1109/TBME.2020.2987168
10.1109/ICASSP.2014.6853900
10.1109/TBME.2020.2987759
10.1016/j.ijpsycho.2010.01.005
10.1002/aic.690370209
10.1016/j.bspc.2022.103483
10.1109/EMBC.2015.7318762
10.1007/978-3-642-24600-5_16
10.21437/Interspeech.2013-130
10.5281/zenodo.321641
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2022.3174509
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3611
ExternalDocumentID 35544485
10_1109_TBME_2022_3174509
9772954
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-21-1-2255
  funderid: 10.13039/100000006
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-b35b01d75b3f7d1be3e2b96a08d7f61c74c9fe3fe019f3af83655bf9ed0dd6c53
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 01:22:09 EDT 2025
Mon Jun 30 10:17:58 EDT 2025
Wed Feb 19 02:26:12 EST 2025
Thu Apr 24 23:12:39 EDT 2025
Tue Jul 01 03:28:37 EDT 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b35b01d75b3f7d1be3e2b96a08d7f61c74c9fe3fe019f3af83655bf9ed0dd6c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4422-4837
0000-0003-4514-4772
0000-0002-2344-8321
PMID 35544485
PQID 2739332194
PQPubID 85474
PageCount 11
ParticipantIDs crossref_primary_10_1109_TBME_2022_3174509
crossref_citationtrail_10_1109_TBME_2022_3174509
pubmed_primary_35544485
proquest_journals_2739332194
proquest_miscellaneous_2662542186
ieee_primary_9772954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
mao (ref35) 2016
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
camm (ref61) 1996
kingma (ref57) 2014
theis (ref24) 2017
ref23
ref26
ref25
ref20
ref21
paszke (ref58) 2019
posada-quitero (ref53) 0
ref28
ref27
ref29
oppenheim (ref59) 1975
ref60
vincent (ref22) 2010; 11
ref62
References_xml – ident: ref39
  doi: 10.5281/zenodo.4287271
– ident: ref31
  doi: 10.3390/s20164611
– ident: ref7
  doi: 10.1145/3191775
– ident: ref26
  doi: 10.21437/Interspeech.2013-267
– ident: ref5
  doi: 10.1109/TBME.2022.3158582
– ident: ref44
  doi: 10.5281/zenodo.5573723
– ident: ref33
  doi: 10.1109/EMBC48229.2022.9871635
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref22
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref28
  doi: 10.1016/j.neucom.2014.08.092
– ident: ref37
  doi: 10.5281/zenodo.291465
– ident: ref29
  doi: 10.1155/2017/4108720
– year: 2014
  ident: ref57
  article-title: Adam: A method for stochastic optimization
– ident: ref21
  doi: 10.1145/1390156.1390294
– ident: ref60
  doi: 10.1152/ajpregu.00180.2016
– ident: ref3
  doi: 10.1109/TBME.2017.2758643
– ident: ref11
  doi: 10.1109/JBHI.2019.2893222
– ident: ref9
  doi: 10.1145/2968219.2968306
– ident: ref8
  doi: 10.1145/3264913
– ident: ref45
  doi: 10.5281/zenodo. 4115080
– ident: ref30
  doi: 10.1109/ACCESS.2019.2912036
– year: 2016
  ident: ref35
  article-title: Image restoration using convolutional auto-encoders with symmetric skip connections
– ident: ref15
  doi: 10.1016/j.bspc.2018.01.009
– ident: ref13
  doi: 10.1109/EMBC46164.2021.9629513
– ident: ref4
  doi: 10.3390/s20020479
– ident: ref50
  doi: 10.5281/zenodo.3885797
– ident: ref41
  doi: 10.5281/zenodo.291449
– ident: ref36
  doi: 10.1109/TMM.2008.922849
– ident: ref38
  doi: 10.5281/zenodo.291445
– ident: ref2
  doi: 10.1038/s41598-019-49092-2
– ident: ref48
  doi: 10.5281/zenodo.5650832
– ident: ref19
  doi: 10.1109/TBME.2009.2038487
– ident: ref40
  doi: 10.5281/zenodo.274963
– ident: ref56
  doi: 10.1109/EMBC44109.2020.9175665
– year: 2019
  ident: ref58
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref47
  doi: 10.5281/zenodo.5573820
– start-page: 1043
  year: 1996
  ident: ref61
  article-title: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
– ident: ref10
  doi: 10.1145/2632048.2636065
– ident: ref34
  doi: 10.1109/CVPR.2014.220
– ident: ref23
  doi: 10.1016/j.neucom.2015.08.104
– ident: ref54
  doi: 10.3389/fpsyg.2017.00557
– year: 1975
  ident: ref59
  publication-title: Digital Signal Processing
– ident: ref49
  doi: 10.5281/zenodo.291448
– ident: ref46
  doi: 10.5281/zenodo.5573779
– ident: ref43
  doi: 10.5281/zenodo.274992
– ident: ref55
  doi: 10.1016/j.cmpb.2020.105856
– ident: ref16
  doi: 10.1109/EMBC46164.2021.9630535
– ident: ref14
  doi: 10.1109/EMBC.2015.7319814
– start-page: 1242
  year: 0
  ident: ref53
  article-title: Time-varying spectral index of electrodermal activity to predict central nervous system oxygen toxicity symptoms in divers:Preliminary results
  publication-title: Proc 43rd Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref32
  doi: 10.1109/JBHI.2018.2885139
– ident: ref51
  doi: 10.5281/zenodo.3611490
– ident: ref6
  doi: 10.1007/978-1-4614-1126-0
– ident: ref17
  doi: 10.1109/TBME.2020.2987168
– ident: ref25
  doi: 10.1109/ICASSP.2014.6853900
– ident: ref1
  doi: 10.1109/TBME.2020.2987759
– ident: ref52
  doi: 10.1016/j.ijpsycho.2010.01.005
– ident: ref20
  doi: 10.1002/aic.690370209
– year: 2017
  ident: ref24
  article-title: Lossy image compression with compressive autoencoders
– ident: ref62
  doi: 10.1016/j.bspc.2022.103483
– ident: ref12
  doi: 10.1109/EMBC.2015.7318762
– ident: ref18
  doi: 10.1007/978-3-642-24600-5_16
– ident: ref27
  doi: 10.21437/Interspeech.2013-130
– ident: ref42
  doi: 10.5281/zenodo.321641
SSID ssj0014846
Score 2.482691
Snippet Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal....
This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. we proposed a...
This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal.OBJECTIVEThis...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3601
SubjectTerms Algorithms
autoencoder
Biomedical monitoring
Biomedical signal processing
Central nervous system
Circuits
Convolutional neural networks
Datasets
Electrodermal activity
Galvanic Skin Response
Hyperoxia
Motion
Motion artifacts
Neural Networks, Computer
Noise reduction
Signal-To-Noise Ratio
Toxicity
White noise
Title A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity
URI https://ieeexplore.ieee.org/document/9772954
https://www.ncbi.nlm.nih.gov/pubmed/35544485
https://www.proquest.com/docview/2739332194
https://www.proquest.com/docview/2662542186
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVTlUKDlsVCQkTghsnViO49jKVtVSOGAWqm3sLYnEgKSqk048OuZsbMRIEDcEvkZfePMjOcF8NKZ3FvUOnFY6kSzulOiLxK7Lo1MvSUexfcd9fv8_FK_uzJXW_B6joVBxOB8hkt-DLZ837uRr8qOKxYFjd6GbVLcYqzWbDHQZQzKkSkd4KzSkwUzldXxxZt6RZpglpGCWmhafQ92mc2SZmJ-YUehvsrfRc3Acs7uQr3ZbPQ0-bwcB7t033_L4_i_X3MP9ifZU5xEYrkPW9gdwJ2fMhIewG492doP4eOJeIt4LU777ttEnzx4HHrOfenxRpC8G95D1ldRh3pAYXaOlhAf8GtPZCw-dWIVa-145gI0hYsVKx7A5dnq4vQ8meoxJE7pakisMpbwK4xVbeFTiwozW-VrWfqizVNXaFe1qFoksbFV67ZUuTG2rdBL73Nn1EPY6foOH4NIUWOuC1lwIK2VyvqylZjp0hPlYFEuQG5gadyUrJxrZnxpgtIiq4ZBbRjUZgJ1Aa_mIdcxU8e_Oh8yIHPHCYsFHG2wb6azfNtknDRQ0Z-dml_MzXQK2bSy7rAfqU9OeqTm-l4LeBRpZp57Q2pP_rzmU9jjnUUXmSPYGW5GfEaCzmCfBwr_ATdA91k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVy4NEHXSgQJE6IbJ3YzuNYylYLND2grdRbWNsTCVGSqk049Nd3xslGgABxS-Rn9I0zM54XwGurE2dQqdBipkLF6k6GLg3NMtMicoZ4FN93FKfJ_Ex9PNfna_B2jIVBRO98hlN-9LZ819iOr8oOchYFtboDd4nv66iP1hptBirrw3JEREc4ztVgw4xEfrB4V8xIF4xjUlFTRetvwgYzWtJN9C8MyVdY-buw6ZnO8UMoVtvtfU2-TbvWTO3Nb5kc__d7HsGDQfoMDntyeQxrWG_B_Z9yEm7BRjFY27fhy2HwHvEyOGrqHwOF8uCubTj7pcOrgCRe_-7zvgaFrwjkZ-d4ieAzfm-IkIOvdTDrq-045gM0he1rVuzA2fFscTQPh4oMoZUqb0MjtSEEU21klbrIoMTY5MlSZC6tksimyuYVygpJcKzksspkorWpcnTCucRquQvrdVPjHgQRKkxUKlIOpTVCGpdVAmOVOaIdTLMJiBUspR3SlXPVjIvSqy0iLxnUkkEtB1An8GYcctnn6vhX520GZOw4YDGB_RX25XCar8uY0wZK-rdT86uxmc4hG1eWNTYd9UlIk1Rc4WsCT3qaGedekdrTP6_5Eu7NF8VJefLh9NMz2ORd9g4z-7DeXnX4nMSe1rzw1H4LQ7P6og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Convolutional+Autoencoder+for+Automatic+Motion+Artifact+Removal+in+Electrodermal+Activity&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Md-Billal+Hossain&rft.au=Posada-Quintero%2C+Hugo+F&rft.au=Chon%2C+Ki+H&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=69&rft.issue=12&rft.spage=3601&rft_id=info:doi/10.1109%2FTBME.2022.3174509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon