A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity
Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using sever...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 69; no. 12; pp. 3601 - 3611 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large (<inline-formula><tex-math notation="LaTeX">\mathbf{N}\ = \ 385\ \text{subjects}</tex-math></inline-formula>). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT). Results: Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement (<inline-formula><tex-math notation="LaTeX">\mathbf{SN}{\mathbf{R}_{\mathbf{imp}}}</tex-math></inline-formula>) and lower mean squared error (<inline-formula><tex-math notation="LaTeX">\mathbf{MSE}</tex-math></inline-formula>) when compared with that of the three previous methods (averaged <inline-formula><tex-math notation="LaTeX">\boldsymbol{S\!N\!R}_\text{imp} = 35.25\,{\text{dB}}</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{M\!S\!E\ }} = 0.028</tex-math></inline-formula> on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68. Conclusion: The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails. Significance: Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data. |
---|---|
AbstractList | Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula Omitted]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT). Results: Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement ([Formula Omitted]) and lower mean squared error ([Formula Omitted]) when compared with that of the three previous methods (averaged [Formula Omitted], and [Formula Omitted] on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68. Conclusion: The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails. Significance: Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data. This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal.OBJECTIVEThis study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal.we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula: see text]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT).METHODSwe proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula: see text]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT).Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement ( SNRimp) and lower mean squared error ( MSE) when compared with that of the three previous methods (averaged [Formula: see text], and MSE = 0.028 on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68.RESULTSOur DCAE model showed significantly higher signal-to-noise-power-ratio improvement ( SNRimp) and lower mean squared error ( MSE) when compared with that of the three previous methods (averaged [Formula: see text], and MSE = 0.028 on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68.The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails.CONCLUSIONThe results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails.Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data.SIGNIFICANCEProposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data. Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large (<inline-formula><tex-math notation="LaTeX">\mathbf{N}\ = \ 385\ \text{subjects}</tex-math></inline-formula>). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT). Results: Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement (<inline-formula><tex-math notation="LaTeX">\mathbf{SN}{\mathbf{R}_{\mathbf{imp}}}</tex-math></inline-formula>) and lower mean squared error (<inline-formula><tex-math notation="LaTeX">\mathbf{MSE}</tex-math></inline-formula>) when compared with that of the three previous methods (averaged <inline-formula><tex-math notation="LaTeX">\boldsymbol{S\!N\!R}_\text{imp} = 35.25\,{\text{dB}}</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{M\!S\!E\ }} = 0.028</tex-math></inline-formula> on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68. Conclusion: The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails. Significance: Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data. This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using several publicly available datasets that were collected using a wide variety of stimuli to cause EDA reactions; the sample size was large ([Formula: see text]). We trained and validated our DCAE network using both Gaussian white noise (GWN) and realistic MA data records collected using a novel circuitry in our lab. We further evaluated and compared the performance of our DCAE model with the existing methods on two independent and unseen datasets called Chon lab motion artifact dataset II (CMAD II) and central nervous system oxygen toxicity dataset (CNS-OT). Our DCAE model showed significantly higher signal-to-noise-power-ratio improvement ( SNR ) and lower mean squared error ( MSE) when compared with that of the three previous methods (averaged [Formula: see text], and MSE = 0.028 on the MA-corrupted data). Moreover, the reconstructed EDAs from the CMAD II dataset had a mean correlation value of 0.78 (statistically significantly higher when compared with other methods) with the reference clean data from the motionless hand, whereas the raw MA-corrupted data had a correlation value of only 0.68. The results presented in the paper indicates that our DCAE can remove MAs with higher intensity where the existing methods fails. Proposed DCAE model can be used to recover a significant amount of otherwise discarded EDA data. |
Author | Posada-Quintero, Hugo F. Chon, Ki H. Hossain, Md-Billal |
Author_xml | – sequence: 1 givenname: Md-Billal orcidid: 0000-0002-2344-8321 surname: Hossain fullname: Hossain, Md-Billal organization: Department of Biomedical Engineering, University of Connecticut, USA – sequence: 2 givenname: Hugo F. orcidid: 0000-0003-4514-4772 surname: Posada-Quintero fullname: Posada-Quintero, Hugo F. organization: Department of Biomedical Engineering, University of Connecticut, USA – sequence: 3 givenname: Ki H. orcidid: 0000-0002-4422-4837 surname: Chon fullname: Chon, Ki H. email: ki.chon@uconn.edu organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35544485$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAQhoMoun78ABGk4MVL13w2zXFd1w9QBNFzTdMJRNpmTdOF_fe27urBg6dh4HlmmHkP0W7rW0DolOApIVhdvV4_LaYUUzplRHKB1Q6aECHylApGdtEEY5Kniip-gA677mNoec6zfXTAhOCc52KC3mfJDcAymft25es-Ot_qOpn10UNrfAUhsT58942OziRPfkSSWYjOahOTF2j8ajBcmyxqMDGMTjOOMNGtXFwfoz2r6w5OtvUIvd0uXuf36ePz3cN89pgaxlVMSyZKTCopSmZlRUpgQEuVaZxX0mbESG6UBWYBE2WZtjnLhCitggpXVWYEO0KXm7nL4D976GLRuM5AXesWfN8VNMuo4JTk2YBe_EE_fB-GuwdKMsUYJYoP1PmW6ssGqmIZXKPDuvj53QCQDWCC77oA9hchuBjzKcZ8ijGfYpvP4Mg_jnFRjy-NQbv6X_NsYzoA-N2kpKRKcPYFeCedGg |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_rasd_2023_102258 crossref_primary_10_1016_j_cmpb_2023_107859 crossref_primary_10_1063_5_0200395 crossref_primary_10_3390_ani13020229 crossref_primary_10_1088_1361_6579_ac92bd crossref_primary_10_1016_j_compbiomed_2024_108603 crossref_primary_10_1111_epi_18138 crossref_primary_10_1007_s11265_024_01935_6 crossref_primary_10_1038_s43856_024_00688_4 crossref_primary_10_3390_bios15020078 crossref_primary_10_1109_ACCESS_2024_3393515 crossref_primary_10_1016_j_ins_2023_01_096 crossref_primary_10_1016_j_eswa_2023_120581 |
Cites_doi | 10.5281/zenodo.4287271 10.3390/s20164611 10.1145/3191775 10.21437/Interspeech.2013-267 10.1109/TBME.2022.3158582 10.5281/zenodo.5573723 10.1109/EMBC48229.2022.9871635 10.1016/j.neucom.2014.08.092 10.5281/zenodo.291465 10.1155/2017/4108720 10.1145/1390156.1390294 10.1152/ajpregu.00180.2016 10.1109/TBME.2017.2758643 10.1109/JBHI.2019.2893222 10.1145/2968219.2968306 10.1145/3264913 10.5281/zenodo. 4115080 10.1109/ACCESS.2019.2912036 10.1016/j.bspc.2018.01.009 10.1109/EMBC46164.2021.9629513 10.3390/s20020479 10.5281/zenodo.3885797 10.5281/zenodo.291449 10.1109/TMM.2008.922849 10.5281/zenodo.291445 10.1038/s41598-019-49092-2 10.5281/zenodo.5650832 10.1109/TBME.2009.2038487 10.5281/zenodo.274963 10.1109/EMBC44109.2020.9175665 10.5281/zenodo.5573820 10.1145/2632048.2636065 10.1109/CVPR.2014.220 10.1016/j.neucom.2015.08.104 10.3389/fpsyg.2017.00557 10.5281/zenodo.291448 10.5281/zenodo.5573779 10.5281/zenodo.274992 10.1016/j.cmpb.2020.105856 10.1109/EMBC46164.2021.9630535 10.1109/EMBC.2015.7319814 10.1109/JBHI.2018.2885139 10.5281/zenodo.3611490 10.1007/978-1-4614-1126-0 10.1109/TBME.2020.2987168 10.1109/ICASSP.2014.6853900 10.1109/TBME.2020.2987759 10.1016/j.ijpsycho.2010.01.005 10.1002/aic.690370209 10.1016/j.bspc.2022.103483 10.1109/EMBC.2015.7318762 10.1007/978-3-642-24600-5_16 10.21437/Interspeech.2013-130 10.5281/zenodo.321641 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2022.3174509 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 3611 |
ExternalDocumentID | 35544485 10_1109_TBME_2022_3174509 9772954 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Office of Naval Research grantid: N00014-21-1-2255 funderid: 10.13039/100000006 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-b35b01d75b3f7d1be3e2b96a08d7f61c74c9fe3fe019f3af83655bf9ed0dd6c53 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 01:22:09 EDT 2025 Mon Jun 30 10:17:58 EDT 2025 Wed Feb 19 02:26:12 EST 2025 Thu Apr 24 23:12:39 EDT 2025 Tue Jul 01 03:28:37 EDT 2025 Wed Aug 27 02:29:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-b35b01d75b3f7d1be3e2b96a08d7f61c74c9fe3fe019f3af83655bf9ed0dd6c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4422-4837 0000-0003-4514-4772 0000-0002-2344-8321 |
PMID | 35544485 |
PQID | 2739332194 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TBME_2022_3174509 crossref_citationtrail_10_1109_TBME_2022_3174509 pubmed_primary_35544485 proquest_journals_2739332194 proquest_miscellaneous_2662542186 ieee_primary_9772954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref15 ref14 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 mao (ref35) 2016 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 camm (ref61) 1996 kingma (ref57) 2014 theis (ref24) 2017 ref23 ref26 ref25 ref20 ref21 paszke (ref58) 2019 posada-quitero (ref53) 0 ref28 ref27 ref29 oppenheim (ref59) 1975 ref60 vincent (ref22) 2010; 11 ref62 |
References_xml | – ident: ref39 doi: 10.5281/zenodo.4287271 – ident: ref31 doi: 10.3390/s20164611 – ident: ref7 doi: 10.1145/3191775 – ident: ref26 doi: 10.21437/Interspeech.2013-267 – ident: ref5 doi: 10.1109/TBME.2022.3158582 – ident: ref44 doi: 10.5281/zenodo.5573723 – ident: ref33 doi: 10.1109/EMBC48229.2022.9871635 – volume: 11 start-page: 3371 year: 2010 ident: ref22 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref28 doi: 10.1016/j.neucom.2014.08.092 – ident: ref37 doi: 10.5281/zenodo.291465 – ident: ref29 doi: 10.1155/2017/4108720 – year: 2014 ident: ref57 article-title: Adam: A method for stochastic optimization – ident: ref21 doi: 10.1145/1390156.1390294 – ident: ref60 doi: 10.1152/ajpregu.00180.2016 – ident: ref3 doi: 10.1109/TBME.2017.2758643 – ident: ref11 doi: 10.1109/JBHI.2019.2893222 – ident: ref9 doi: 10.1145/2968219.2968306 – ident: ref8 doi: 10.1145/3264913 – ident: ref45 doi: 10.5281/zenodo. 4115080 – ident: ref30 doi: 10.1109/ACCESS.2019.2912036 – year: 2016 ident: ref35 article-title: Image restoration using convolutional auto-encoders with symmetric skip connections – ident: ref15 doi: 10.1016/j.bspc.2018.01.009 – ident: ref13 doi: 10.1109/EMBC46164.2021.9629513 – ident: ref4 doi: 10.3390/s20020479 – ident: ref50 doi: 10.5281/zenodo.3885797 – ident: ref41 doi: 10.5281/zenodo.291449 – ident: ref36 doi: 10.1109/TMM.2008.922849 – ident: ref38 doi: 10.5281/zenodo.291445 – ident: ref2 doi: 10.1038/s41598-019-49092-2 – ident: ref48 doi: 10.5281/zenodo.5650832 – ident: ref19 doi: 10.1109/TBME.2009.2038487 – ident: ref40 doi: 10.5281/zenodo.274963 – ident: ref56 doi: 10.1109/EMBC44109.2020.9175665 – year: 2019 ident: ref58 article-title: PyTorch: An imperative style, high-performance deep learning library – ident: ref47 doi: 10.5281/zenodo.5573820 – start-page: 1043 year: 1996 ident: ref61 article-title: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology – ident: ref10 doi: 10.1145/2632048.2636065 – ident: ref34 doi: 10.1109/CVPR.2014.220 – ident: ref23 doi: 10.1016/j.neucom.2015.08.104 – ident: ref54 doi: 10.3389/fpsyg.2017.00557 – year: 1975 ident: ref59 publication-title: Digital Signal Processing – ident: ref49 doi: 10.5281/zenodo.291448 – ident: ref46 doi: 10.5281/zenodo.5573779 – ident: ref43 doi: 10.5281/zenodo.274992 – ident: ref55 doi: 10.1016/j.cmpb.2020.105856 – ident: ref16 doi: 10.1109/EMBC46164.2021.9630535 – ident: ref14 doi: 10.1109/EMBC.2015.7319814 – start-page: 1242 year: 0 ident: ref53 article-title: Time-varying spectral index of electrodermal activity to predict central nervous system oxygen toxicity symptoms in divers:Preliminary results publication-title: Proc 43rd Annu Int Conf IEEE Eng Med Biol Soc – ident: ref32 doi: 10.1109/JBHI.2018.2885139 – ident: ref51 doi: 10.5281/zenodo.3611490 – ident: ref6 doi: 10.1007/978-1-4614-1126-0 – ident: ref17 doi: 10.1109/TBME.2020.2987168 – ident: ref25 doi: 10.1109/ICASSP.2014.6853900 – ident: ref1 doi: 10.1109/TBME.2020.2987759 – ident: ref52 doi: 10.1016/j.ijpsycho.2010.01.005 – ident: ref20 doi: 10.1002/aic.690370209 – year: 2017 ident: ref24 article-title: Lossy image compression with compressive autoencoders – ident: ref62 doi: 10.1016/j.bspc.2022.103483 – ident: ref12 doi: 10.1109/EMBC.2015.7318762 – ident: ref18 doi: 10.1007/978-3-642-24600-5_16 – ident: ref27 doi: 10.21437/Interspeech.2013-130 – ident: ref42 doi: 10.5281/zenodo.321641 |
SSID | ssj0014846 |
Score | 2.482691 |
Snippet | Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal.... This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. we proposed a... This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal.OBJECTIVEThis... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3601 |
SubjectTerms | Algorithms autoencoder Biomedical monitoring Biomedical signal processing Central nervous system Circuits Convolutional neural networks Datasets Electrodermal activity Galvanic Skin Response Hyperoxia Motion Motion artifacts Neural Networks, Computer Noise reduction Signal-To-Noise Ratio Toxicity White noise |
Title | A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity |
URI | https://ieeexplore.ieee.org/document/9772954 https://www.ncbi.nlm.nih.gov/pubmed/35544485 https://www.proquest.com/docview/2739332194 https://www.proquest.com/docview/2662542186 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVTlUKDlsVCQkTghsnViO49jKVtVSOGAWqm3sLYnEgKSqk048OuZsbMRIEDcEvkZfePMjOcF8NKZ3FvUOnFY6kSzulOiLxK7Lo1MvSUexfcd9fv8_FK_uzJXW_B6joVBxOB8hkt-DLZ837uRr8qOKxYFjd6GbVLcYqzWbDHQZQzKkSkd4KzSkwUzldXxxZt6RZpglpGCWmhafQ92mc2SZmJ-YUehvsrfRc3Acs7uQr3ZbPQ0-bwcB7t033_L4_i_X3MP9ifZU5xEYrkPW9gdwJ2fMhIewG492doP4eOJeIt4LU777ttEnzx4HHrOfenxRpC8G95D1ldRh3pAYXaOlhAf8GtPZCw-dWIVa-145gI0hYsVKx7A5dnq4vQ8meoxJE7pakisMpbwK4xVbeFTiwozW-VrWfqizVNXaFe1qFoksbFV67ZUuTG2rdBL73Nn1EPY6foOH4NIUWOuC1lwIK2VyvqylZjp0hPlYFEuQG5gadyUrJxrZnxpgtIiq4ZBbRjUZgJ1Aa_mIdcxU8e_Oh8yIHPHCYsFHG2wb6azfNtknDRQ0Z-dml_MzXQK2bSy7rAfqU9OeqTm-l4LeBRpZp57Q2pP_rzmU9jjnUUXmSPYGW5GfEaCzmCfBwr_ATdA91k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVy4NEHXSgQJE6IbJ3YzuNYylYLND2grdRbWNsTCVGSqk049Nd3xslGgABxS-Rn9I0zM54XwGurE2dQqdBipkLF6k6GLg3NMtMicoZ4FN93FKfJ_Ex9PNfna_B2jIVBRO98hlN-9LZ819iOr8oOchYFtboDd4nv66iP1hptBirrw3JEREc4ztVgw4xEfrB4V8xIF4xjUlFTRetvwgYzWtJN9C8MyVdY-buw6ZnO8UMoVtvtfU2-TbvWTO3Nb5kc__d7HsGDQfoMDntyeQxrWG_B_Z9yEm7BRjFY27fhy2HwHvEyOGrqHwOF8uCubTj7pcOrgCRe_-7zvgaFrwjkZ-d4ieAzfm-IkIOvdTDrq-045gM0he1rVuzA2fFscTQPh4oMoZUqb0MjtSEEU21klbrIoMTY5MlSZC6tksimyuYVygpJcKzksspkorWpcnTCucRquQvrdVPjHgQRKkxUKlIOpTVCGpdVAmOVOaIdTLMJiBUspR3SlXPVjIvSqy0iLxnUkkEtB1An8GYcctnn6vhX520GZOw4YDGB_RX25XCar8uY0wZK-rdT86uxmc4hG1eWNTYd9UlIk1Rc4WsCT3qaGedekdrTP6_5Eu7NF8VJefLh9NMz2ORd9g4z-7DeXnX4nMSe1rzw1H4LQ7P6og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Convolutional+Autoencoder+for+Automatic+Motion+Artifact+Removal+in+Electrodermal+Activity&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Md-Billal+Hossain&rft.au=Posada-Quintero%2C+Hugo+F&rft.au=Chon%2C+Ki+H&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=69&rft.issue=12&rft.spage=3601&rft_id=info:doi/10.1109%2FTBME.2022.3174509&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |