Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks

Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learnin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 63; no. 3; pp. 664 - 675
Main Authors Kiranyaz, Serkan, Ince, Turker, Gabbouj, Moncef
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. Results: The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Conclusion: Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Significance: Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset.
AbstractList This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system.GOALThis paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system.An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device.METHODSAn adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device.The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats.RESULTSThe results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats.Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner.CONCLUSIONBesides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner.Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset.SIGNIFICANCEDue to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset.
This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset.
Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. Results: The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Conclusion: Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Significance: Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset.
Author Kiranyaz, Serkan
Ince, Turker
Gabbouj, Moncef
Author_xml – sequence: 1
  givenname: Serkan
  surname: Kiranyaz
  fullname: Kiranyaz, Serkan
  email: mkiranyaz@qu.edu.qa
  organization: Electrical Engineering Department, College of Engineering, Doha, Qatar
– sequence: 2
  givenname: Turker
  surname: Ince
  fullname: Ince, Turker
  organization: the Electrical & Electronics Engineering Department, Izmir University of Economics, İzmir, Turkey
– sequence: 3
  givenname: Moncef
  surname: Gabbouj
  fullname: Gabbouj, Moncef
  organization: Tampere University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26285054$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PGzEQxa0qVQmUD1BVqlbiwmWD_67tY9kGqBSgCul5NXG8ktPNOti7VHx7vEmaA4eeRjP-vfHovVM0an1rEfpC8IQQrK8W1_fTCcVETCgvlFD6AxoTIVROBSMjNMaYqFxTzU_QaYzr1HLFi0_ohBZUCSz4GM3nFpp84TY2-wWds22XP22tcbUz2bS8zcoGYhy69OjbbPmakfxHVvr2xTf9MIIme7B92JXurw9_4mf0sYYm2vNDPUO_b6aL8i6fPd7-LL_PcsO47nIwUigBWBa8AKOxZobJFWBTSIP5sjZAQRNdEJGO5bWqASymBDMNQqxqzM7Q5X7vNvjn3sau2rhobNNAa30fKyKTJwWVSif04h269n1Itw-UkpRzJkiivh2ofrmxq2ob3AbCa_XPrQSQPWCCjzHY-ogQXA2JVEMi1ZBIdUgkaeQ7jXHdzswugGv-q_y6Vzpr7fEnSTFVTLI3kBmVtQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s00521_022_06973_4
crossref_primary_10_1016_j_isci_2024_109307
crossref_primary_10_1016_j_smhl_2024_100538
crossref_primary_10_1016_j_cmpb_2019_05_004
crossref_primary_10_3390_s19071731
crossref_primary_10_1097_RTI_0000000000000385
crossref_primary_10_1109_TNSM_2022_3203246
crossref_primary_10_1109_TBCAS_2019_2954479
crossref_primary_10_1109_ACCESS_2020_3027472
crossref_primary_10_1371_journal_pone_0260764
crossref_primary_10_1016_j_artmed_2021_102181
crossref_primary_10_1155_2017_4108720
crossref_primary_10_1016_j_cmpb_2020_105479
crossref_primary_10_1016_j_eswa_2021_115936
crossref_primary_10_3390_s23208573
crossref_primary_10_3390_s24237768
crossref_primary_10_1109_JTEHM_2020_2999725
crossref_primary_10_1080_17434440_2022_2115887
crossref_primary_10_1109_ACCESS_2019_2919995
crossref_primary_10_1007_s00415_023_11662_w
crossref_primary_10_1155_2017_8617315
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_1007_s42979_024_02951_w
crossref_primary_10_1007_s13204_022_02368_y
crossref_primary_10_1016_j_bspc_2023_105506
crossref_primary_10_1016_j_artmed_2022_102236
crossref_primary_10_1109_ACCESS_2023_3342917
crossref_primary_10_1016_j_neunet_2018_01_009
crossref_primary_10_1109_ACCESS_2019_2927134
crossref_primary_10_1007_s00170_019_04090_6
crossref_primary_10_3346_jkms_2020_35_e399
crossref_primary_10_1109_LSENS_2019_2942145
crossref_primary_10_1109_TIM_2022_3186355
crossref_primary_10_1007_s00607_023_01243_0
crossref_primary_10_3390_f15010086
crossref_primary_10_1016_j_ymssp_2022_108867
crossref_primary_10_1051_itmconf_20192703001
crossref_primary_10_1016_j_optlastec_2024_111295
crossref_primary_10_1007_s42979_023_01891_1
crossref_primary_10_3390_life12010119
crossref_primary_10_1109_ACCESS_2019_2950383
crossref_primary_10_1109_JSEN_2019_2921862
crossref_primary_10_1016_j_jelekin_2018_07_005
crossref_primary_10_1109_ACCESS_2019_2941436
crossref_primary_10_1007_s00034_022_02091_7
crossref_primary_10_1007_s42979_021_00694_6
crossref_primary_10_1109_ACCESS_2019_2928017
crossref_primary_10_2139_ssrn_3989552
crossref_primary_10_1016_j_bspc_2022_104188
crossref_primary_10_1016_j_knosys_2019_105036
crossref_primary_10_1007_s10479_023_05326_1
crossref_primary_10_1109_ACCESS_2021_3136793
crossref_primary_10_1016_j_neucom_2018_03_010
crossref_primary_10_1109_TBCAS_2018_2848477
crossref_primary_10_1109_TCSI_2022_3209574
crossref_primary_10_1142_S0219519421400133
crossref_primary_10_1088_1742_6596_1207_1_012003
crossref_primary_10_1109_JBHI_2021_3090421
crossref_primary_10_3390_e24050688
crossref_primary_10_1109_JSEN_2024_3382720
crossref_primary_10_1016_j_bspc_2020_101997
crossref_primary_10_1002_cem_2977
crossref_primary_10_1007_s10822_023_00533_1
crossref_primary_10_1007_s12205_024_1994_3
crossref_primary_10_12677_JISP_2020_93020
crossref_primary_10_46670_JSST_2021_30_1_20
crossref_primary_10_1016_j_artmed_2020_101856
crossref_primary_10_1109_TIM_2019_2910342
crossref_primary_10_1016_j_bspc_2022_104105
crossref_primary_10_1109_ACCESS_2024_3392965
crossref_primary_10_1016_j_seta_2022_102919
crossref_primary_10_1007_s00216_020_02497_9
crossref_primary_10_1007_s00521_020_05171_4
crossref_primary_10_1007_s12145_024_01239_0
crossref_primary_10_1016_j_procs_2020_04_056
crossref_primary_10_32604_cmes_2023_029015
crossref_primary_10_1016_j_jelectrocard_2019_08_008
crossref_primary_10_1109_LSENS_2020_3008595
crossref_primary_10_3390_app142311202
crossref_primary_10_1038_s41598_019_56927_5
crossref_primary_10_1109_ACCESS_2019_2900719
crossref_primary_10_52547_jsdp_18_2_163
crossref_primary_10_1016_j_jhydrol_2024_131863
crossref_primary_10_3390_s19112558
crossref_primary_10_1007_s42417_022_00501_3
crossref_primary_10_1109_TBCAS_2019_2930215
crossref_primary_10_1109_JSEN_2017_2772031
crossref_primary_10_1109_ACCESS_2022_3178710
crossref_primary_10_1541_ieejeiss_142_543
crossref_primary_10_1016_j_neucom_2017_09_069
crossref_primary_10_3390_rs15194857
crossref_primary_10_1016_j_measurement_2021_110040
crossref_primary_10_1016_j_irbm_2019_12_001
crossref_primary_10_1007_s11042_020_09938_8
crossref_primary_10_3389_fnins_2021_761127
crossref_primary_10_1007_s42452_020_3058_8
crossref_primary_10_1109_TBCAS_2023_3292469
crossref_primary_10_1007_s11265_021_01676_w
crossref_primary_10_3390_s19010122
crossref_primary_10_1007_s10489_021_02309_2
crossref_primary_10_1016_j_knosys_2021_107187
crossref_primary_10_3390_app14167377
crossref_primary_10_1109_JSEN_2018_2877055
crossref_primary_10_1109_TPAMI_2023_3342828
crossref_primary_10_1007_s11280_019_00776_9
crossref_primary_10_1016_j_asoc_2022_109552
crossref_primary_10_1016_j_jksuci_2023_101763
crossref_primary_10_3390_app112110420
crossref_primary_10_1587_transinf_2017EDP7285
crossref_primary_10_20965_jrm_2022_p0339
crossref_primary_10_1515_bmt_2016_0156
crossref_primary_10_1186_s12911_021_01546_2
crossref_primary_10_1007_s11042_022_14302_z
crossref_primary_10_1016_j_ins_2022_07_074
crossref_primary_10_1021_acs_energyfuels_4c05402
crossref_primary_10_1109_ACCESS_2021_3055280
crossref_primary_10_1016_j_inpa_2022_07_004
crossref_primary_10_1016_j_neucom_2020_08_050
crossref_primary_10_1016_j_bspc_2022_104388
crossref_primary_10_1515_eqc_2023_0001
crossref_primary_10_1109_JBHI_2023_3325540
crossref_primary_10_1098_rsif_2017_0821
crossref_primary_10_1109_ACCESS_2021_3092435
crossref_primary_10_18359_rcin_4156
crossref_primary_10_1145_3689947
crossref_primary_10_1016_j_inffus_2019_06_024
crossref_primary_10_1002_adma_201905522
crossref_primary_10_1016_j_inffus_2019_06_021
crossref_primary_10_3390_mi14061155
crossref_primary_10_1088_2515_7647_ad5776
crossref_primary_10_3390_app9040702
crossref_primary_10_1016_j_bspc_2019_101700
crossref_primary_10_3390_s25051400
crossref_primary_10_1109_TIM_2021_3109396
crossref_primary_10_3390_s24144627
crossref_primary_10_1016_j_bspc_2020_101952
crossref_primary_10_1016_j_knosys_2022_109021
crossref_primary_10_3390_s20144017
crossref_primary_10_1016_j_compbiomed_2020_103800
crossref_primary_10_1016_j_cmpb_2020_105640
crossref_primary_10_1016_j_neucom_2018_06_068
crossref_primary_10_1109_TCDS_2022_3153676
crossref_primary_10_1109_TBCAS_2022_3189364
crossref_primary_10_1016_j_cmpb_2020_105639
crossref_primary_10_1016_j_cmpb_2021_105931
crossref_primary_10_1038_s41598_021_94363_6
crossref_primary_10_1016_j_artmed_2024_102865
crossref_primary_10_1109_TFUZZ_2024_3388023
crossref_primary_10_1007_s11042_023_17997_w
crossref_primary_10_2196_17037
crossref_primary_10_1007_s12083_019_00733_3
crossref_primary_10_1007_s00202_019_00808_7
crossref_primary_10_3233_JIFS_191135
crossref_primary_10_1007_s11227_019_03062_7
crossref_primary_10_3390_s24072235
crossref_primary_10_1007_s10489_023_05200_4
crossref_primary_10_1109_ACCESS_2019_2920900
crossref_primary_10_1109_ACCESS_2020_2987930
crossref_primary_10_1109_JBHI_2019_2911367
crossref_primary_10_1109_TNSRE_2023_3272887
crossref_primary_10_1038_s41598_022_17124_z
crossref_primary_10_1016_j_hrthm_2020_02_015
crossref_primary_10_1109_JBHI_2018_2871510
crossref_primary_10_1007_s11440_023_01935_z
crossref_primary_10_1016_j_bbe_2019_06_001
crossref_primary_10_3390_s20102875
crossref_primary_10_1109_TKDE_2021_3140058
crossref_primary_10_1007_s11760_022_02315_y
crossref_primary_10_1142_S1469026816500218
crossref_primary_10_1016_j_asoc_2019_105778
crossref_primary_10_1007_s00500_023_07861_2
crossref_primary_10_1088_1361_6579_ac3e88
crossref_primary_10_1109_ACCESS_2019_2960116
crossref_primary_10_1007_s13042_021_01389_3
crossref_primary_10_1109_TBME_2020_3024970
crossref_primary_10_1109_ACCESS_2021_3113055
crossref_primary_10_1016_j_eswa_2022_119162
crossref_primary_10_1007_s41060_020_00239_9
crossref_primary_10_1109_TBME_2020_3041571
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1109_ACCESS_2022_3192390
crossref_primary_10_1109_ACCESS_2021_3088783
crossref_primary_10_1109_JSEN_2019_2944157
crossref_primary_10_1007_s00521_021_06575_6
crossref_primary_10_4103_jmss_jmss_12_22
crossref_primary_10_1016_j_compbiomed_2024_109271
crossref_primary_10_1016_j_bspc_2024_106097
crossref_primary_10_1088_1361_6579_ab17f0
crossref_primary_10_2139_ssrn_4132904
crossref_primary_10_1145_3476987
crossref_primary_10_1007_s13369_022_06731_7
crossref_primary_10_1109_TGRS_2023_3348931
crossref_primary_10_3389_fcvm_2022_857019
crossref_primary_10_1109_JSEN_2020_3028738
crossref_primary_10_1016_j_measurement_2022_110749
crossref_primary_10_1016_j_compbiomed_2022_105345
crossref_primary_10_1016_j_bspc_2022_103654
crossref_primary_10_3390_math9182261
crossref_primary_10_1016_j_eswa_2023_122449
crossref_primary_10_1109_JIOT_2023_3327738
crossref_primary_10_7717_peerj_cs_825
crossref_primary_10_1016_j_compbiomed_2018_06_028
crossref_primary_10_5369_JSST_2019_29_1_19
crossref_primary_10_1109_JBHI_2020_2980979
crossref_primary_10_1049_ntw2_12018
crossref_primary_10_1109_ACCESS_2016_2608777
crossref_primary_10_1049_gtd2_12073
crossref_primary_10_1109_ACCESS_2020_3040486
crossref_primary_10_1109_TBME_2016_2539421
crossref_primary_10_1016_j_apt_2024_104337
crossref_primary_10_1016_j_cogsys_2018_12_007
crossref_primary_10_1002_rcs_2379
crossref_primary_10_1109_ACCESS_2021_3069827
crossref_primary_10_1038_s41598_023_49739_1
crossref_primary_10_1109_TFUZZ_2024_3416217
crossref_primary_10_1007_s13369_021_05782_6
crossref_primary_10_1016_j_measurement_2021_110686
crossref_primary_10_1177_14759217221098569
crossref_primary_10_1016_j_artmed_2021_102139
crossref_primary_10_1007_s10840_022_01245_6
crossref_primary_10_1109_JSEN_2021_3059028
crossref_primary_10_1007_s13246_021_01071_6
crossref_primary_10_1109_TBCAS_2020_2974154
crossref_primary_10_1007_s12206_023_1013_5
crossref_primary_10_1265_jjh_21004
crossref_primary_10_1016_j_artmed_2021_102130
crossref_primary_10_3390_app14219936
crossref_primary_10_1007_s11760_022_02300_5
crossref_primary_10_1093_eurjcn_zvac053
crossref_primary_10_3390_s25061864
crossref_primary_10_3390_s21030951
crossref_primary_10_1142_S0218001424510169
crossref_primary_10_1016_j_inffus_2020_11_008
crossref_primary_10_1016_j_ifacol_2019_11_418
crossref_primary_10_1016_j_compbiomed_2018_06_002
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_1016_j_cmpb_2019_06_021
crossref_primary_10_1109_TBME_2016_2607020
crossref_primary_10_1088_1361_6579_ad0ab7
crossref_primary_10_1016_j_eswa_2023_120484
crossref_primary_10_1109_TII_2019_2909730
crossref_primary_10_1016_j_physc_2023_1354430
crossref_primary_10_3390_s21051887
crossref_primary_10_1155_2018_9128054
crossref_primary_10_1111_mice_13195
crossref_primary_10_1016_j_bspc_2022_103690
crossref_primary_10_1088_1361_6579_ab15a2
crossref_primary_10_1109_TBME_2022_3187874
crossref_primary_10_3390_a17020078
crossref_primary_10_3390_s22134960
crossref_primary_10_1016_j_artmed_2024_102809
crossref_primary_10_1016_j_eswa_2023_120019
crossref_primary_10_3390_bioengineering9040152
crossref_primary_10_1016_j_cmpb_2020_105607
crossref_primary_10_1109_TCSI_2023_3294181
crossref_primary_10_1016_j_ins_2017_04_012
crossref_primary_10_3390_buildings12111916
crossref_primary_10_35784_iapgos_6045
crossref_primary_10_7240_jeps_578024
crossref_primary_10_1016_j_asoc_2022_109147
crossref_primary_10_1007_s00521_020_05393_6
crossref_primary_10_1109_ACCESS_2019_2943197
crossref_primary_10_1016_j_engappai_2022_105799
crossref_primary_10_3390_s22072467
crossref_primary_10_1111_resp_13564
crossref_primary_10_2196_16113
crossref_primary_10_1007_s13239_021_00599_8
crossref_primary_10_1016_j_bspc_2021_103221
crossref_primary_10_1016_j_cmpb_2021_106057
crossref_primary_10_1007_s11042_022_14233_9
crossref_primary_10_1109_ACCESS_2021_3098986
crossref_primary_10_3390_app13084964
crossref_primary_10_1016_j_bspc_2024_106348
crossref_primary_10_1155_2021_6649970
crossref_primary_10_1109_TCYB_2020_3013251
crossref_primary_10_1109_ACCESS_2020_3009149
crossref_primary_10_1109_ACCESS_2024_3516495
crossref_primary_10_1109_ACCESS_2019_2938617
crossref_primary_10_1109_TIM_2025_3547110
crossref_primary_10_1109_ACCESS_2019_2939947
crossref_primary_10_1109_ACCESS_2021_3095248
crossref_primary_10_1016_j_compbiomed_2022_106465
crossref_primary_10_1109_JSEN_2023_3300752
crossref_primary_10_1109_JSSC_2022_3215670
crossref_primary_10_1111_mice_12517
crossref_primary_10_1007_s12652_019_01195_4
crossref_primary_10_1109_ACCESS_2019_2927726
crossref_primary_10_25046_aj090302
crossref_primary_10_1093_postmj_qgad095
crossref_primary_10_1016_j_cogsys_2018_07_004
crossref_primary_10_1109_ACCESS_2020_3026968
crossref_primary_10_1016_j_bspc_2020_102068
crossref_primary_10_1109_ACCESS_2025_3544493
crossref_primary_10_3390_s21196407
crossref_primary_10_1038_s41524_022_00808_5
crossref_primary_10_1109_JIOT_2021_3132017
crossref_primary_10_1002_hcs2_31
crossref_primary_10_1109_ACCESS_2024_3494254
crossref_primary_10_1111_jocs_15417
crossref_primary_10_1016_j_eswa_2023_121497
crossref_primary_10_3390_make3010011
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_1109_ACCESS_2020_3016938
crossref_primary_10_1109_ACCESS_2024_3514093
crossref_primary_10_1007_s12652_021_03492_3
crossref_primary_10_1109_ACCESS_2018_2878865
crossref_primary_10_1109_ACCESS_2022_3183968
crossref_primary_10_1016_j_bspc_2021_103228
crossref_primary_10_1109_TCAD_2022_3162182
crossref_primary_10_1007_s00432_018_02834_7
crossref_primary_10_1109_ACCESS_2023_3265305
crossref_primary_10_2196_29434
crossref_primary_10_1109_TIM_2022_3214265
crossref_primary_10_1007_s42600_022_00198_z
crossref_primary_10_1016_j_irbm_2021_04_002
crossref_primary_10_1038_s41746_020_0276_9
crossref_primary_10_2118_219448_PA
crossref_primary_10_1145_3598301
crossref_primary_10_1016_j_bspc_2024_107468
crossref_primary_10_3390_informatics7040049
crossref_primary_10_1007_s41060_021_00265_1
crossref_primary_10_1016_j_bspc_2020_102054
crossref_primary_10_1109_ACCESS_2020_2974712
crossref_primary_10_1155_2022_7401175
crossref_primary_10_1109_JBHI_2024_3456028
crossref_primary_10_1002_adfm_202316673
crossref_primary_10_1016_j_bspc_2019_04_003
crossref_primary_10_1016_j_isatra_2023_02_028
crossref_primary_10_1109_ACCESS_2017_2777003
crossref_primary_10_2514_1_J063222
crossref_primary_10_1007_s10921_023_01021_0
crossref_primary_10_1177_14759217211023934
crossref_primary_10_3390_s22165983
crossref_primary_10_1016_j_knosys_2023_110298
crossref_primary_10_1088_1361_6579_aad9ee
crossref_primary_10_1109_TBME_2021_3061405
crossref_primary_10_1007_s40998_023_00633_6
crossref_primary_10_1109_ACCESS_2019_2893927
crossref_primary_10_1016_j_cvdhj_2020_04_001
crossref_primary_10_1016_j_eswa_2018_08_011
crossref_primary_10_1515_bmt_2019_0306
crossref_primary_10_3389_fnins_2024_1402646
crossref_primary_10_3390_s23020854
crossref_primary_10_1016_j_compchemeng_2021_107547
crossref_primary_10_1155_2021_9913127
crossref_primary_10_1007_s11356_021_17177_z
crossref_primary_10_1088_1361_6501_ac51a3
crossref_primary_10_1007_s00202_021_01309_2
crossref_primary_10_1088_1742_6596_1544_1_012109
crossref_primary_10_1080_10255842_2023_2301414
crossref_primary_10_1109_LSENS_2024_3450176
crossref_primary_10_3390_app10020483
crossref_primary_10_1007_s10916_019_1511_2
crossref_primary_10_3390_s22062230
crossref_primary_10_1155_2022_2449956
crossref_primary_10_1016_j_bspc_2025_107516
crossref_primary_10_1088_1742_6596_1717_1_012040
crossref_primary_10_1109_ACCESS_2021_3119630
crossref_primary_10_3390_bioengineering10070796
crossref_primary_10_1016_j_bspc_2021_103424
crossref_primary_10_1016_j_cmpb_2021_106284
crossref_primary_10_1016_j_engappai_2024_109455
crossref_primary_10_1016_j_bbe_2022_03_006
crossref_primary_10_1016_j_knosys_2021_107508
crossref_primary_10_3389_fphys_2017_01096
crossref_primary_10_1038_s41598_022_21663_w
crossref_primary_10_1145_3550322
crossref_primary_10_20535_2523_4455_2018_23_3_125236
crossref_primary_10_1109_LSP_2021_3114119
crossref_primary_10_3390_s23084027
crossref_primary_10_1109_LSENS_2024_3355710
crossref_primary_10_1007_s00521_023_08534_9
crossref_primary_10_1007_s40846_024_00872_w
crossref_primary_10_1007_s11063_022_10949_9
crossref_primary_10_1109_TIE_2017_2764861
crossref_primary_10_1016_j_bspc_2024_106968
crossref_primary_10_1038_s41598_019_57025_2
crossref_primary_10_32604_cmc_2022_029227
crossref_primary_10_1016_j_ymssp_2024_111412
crossref_primary_10_1249_MSS_0000000000002705
crossref_primary_10_3390_math11030562
crossref_primary_10_3390_s24134376
crossref_primary_10_1109_ACCESS_2019_2890865
crossref_primary_10_1088_1361_6560_abcde8
crossref_primary_10_1016_j_chaos_2021_111446
crossref_primary_10_1007_s11265_018_1378_3
crossref_primary_10_3390_en16176172
crossref_primary_10_1109_ACCESS_2017_2766523
crossref_primary_10_1007_s40846_018_0389_7
crossref_primary_10_1016_j_eswa_2020_113411
crossref_primary_10_1016_j_artmed_2018_04_003
crossref_primary_10_1016_j_eswa_2022_118410
crossref_primary_10_1109_TBCAS_2021_3113665
crossref_primary_10_1109_RBME_2020_2993591
crossref_primary_10_3390_s19183851
crossref_primary_10_1016_j_neucom_2018_03_074
crossref_primary_10_1038_s41467_024_53517_6
crossref_primary_10_3390_s20092710
crossref_primary_10_1016_j_bspc_2020_102262
crossref_primary_10_1007_s40799_020_00421_5
crossref_primary_10_1016_j_sbsr_2021_100398
crossref_primary_10_1016_j_micpro_2022_104724
crossref_primary_10_1109_ACCESS_2020_3018704
crossref_primary_10_1061_JCCEE5_CPENG_5939
crossref_primary_10_1109_ACCESS_2023_3243547
crossref_primary_10_1016_j_autcon_2022_104271
crossref_primary_10_1109_TNSE_2021_3063174
crossref_primary_10_1007_s13349_020_00434_z
crossref_primary_10_1371_journal_pone_0216756
crossref_primary_10_1007_s41870_022_01071_z
crossref_primary_10_1109_ACCESS_2019_2955555
crossref_primary_10_1016_j_knosys_2017_06_003
crossref_primary_10_32604_cmc_2023_040329
crossref_primary_10_14801_jkiit_2021_19_10_99
crossref_primary_10_3390_s20113069
crossref_primary_10_3390_s22239347
crossref_primary_10_1038_s41598_024_53142_9
crossref_primary_10_1109_TAFFC_2022_3179478
crossref_primary_10_1016_j_neuri_2022_100087
crossref_primary_10_1016_j_bspc_2019_101597
crossref_primary_10_1016_j_cmpb_2021_106483
crossref_primary_10_1007_s40012_019_00255_6
crossref_primary_10_1109_JSEN_2020_3034742
crossref_primary_10_3390_healthcare11071000
crossref_primary_10_3390_s24113426
crossref_primary_10_1088_1741_4326_ab6c7a
crossref_primary_10_1016_j_ins_2023_119230
crossref_primary_10_1007_s11668_022_01469_8
crossref_primary_10_3390_electronics10172052
crossref_primary_10_1080_19475705_2021_1968043
crossref_primary_10_3390_pr8010073
crossref_primary_10_1016_j_neunet_2023_03_004
crossref_primary_10_1109_JSEN_2024_3514094
crossref_primary_10_3389_fphys_2020_569050
crossref_primary_10_1016_j_asoc_2024_112024
crossref_primary_10_1109_ACCESS_2022_3181727
crossref_primary_10_1016_j_bspc_2020_102200
crossref_primary_10_1109_TETC_2022_3143154
crossref_primary_10_1109_JIOT_2019_2907580
crossref_primary_10_1142_S0219519421400583
crossref_primary_10_4018_IJSI_315659
crossref_primary_10_1109_ACCESS_2020_3001284
crossref_primary_10_1109_LSENS_2023_3315554
crossref_primary_10_3390_computers13050109
crossref_primary_10_3390_app142311167
crossref_primary_10_1109_JBHI_2022_3221464
crossref_primary_10_1109_ACCESS_2021_3097614
crossref_primary_10_1134_S1560090421060117
crossref_primary_10_1016_j_eswa_2021_114809
crossref_primary_10_1016_j_patrec_2020_04_022
crossref_primary_10_3390_diagnostics12092149
crossref_primary_10_3389_fnins_2021_611300
crossref_primary_10_1109_JBHI_2019_2919732
crossref_primary_10_1177_20552076241287356
crossref_primary_10_1007_s00521_021_06426_4
crossref_primary_10_1587_transcom_2020SEP0002
crossref_primary_10_1088_1361_6579_ab87b4
crossref_primary_10_1016_j_ins_2021_06_009
crossref_primary_10_1109_ACCESS_2019_2954294
crossref_primary_10_3389_fcvm_2022_983543
crossref_primary_10_1109_ACCESS_2018_2886825
crossref_primary_10_1109_JSEN_2017_2780178
crossref_primary_10_1109_ACCESS_2022_3179407
crossref_primary_10_1016_j_eswa_2018_07_030
crossref_primary_10_1155_2022_2323625
crossref_primary_10_3390_s18041005
crossref_primary_10_1038_s41598_020_78184_7
crossref_primary_10_1007_s11831_025_10251_6
crossref_primary_10_1016_j_engappai_2023_106062
crossref_primary_10_1109_ACCESS_2019_2948857
crossref_primary_10_1108_DTA_05_2020_0108
crossref_primary_10_1016_j_enconman_2019_06_062
crossref_primary_10_1016_j_promfg_2021_10_017
crossref_primary_10_1016_j_future_2020_02_068
crossref_primary_10_1155_2021_6665357
crossref_primary_10_1016_j_engappai_2023_107599
crossref_primary_10_3390_electronics9060951
crossref_primary_10_1016_j_jelectrocard_2021_04_016
crossref_primary_10_1109_ACCESS_2020_2964298
crossref_primary_10_1109_TBCAS_2021_3137646
crossref_primary_10_1117_1_JMI_10_6_066003
crossref_primary_10_1016_j_ins_2020_10_014
crossref_primary_10_1109_JBHI_2017_2771768
crossref_primary_10_1016_j_scitotenv_2024_172822
crossref_primary_10_1142_S0129065724500047
crossref_primary_10_1016_j_ipej_2024_06_003
crossref_primary_10_1109_JBHI_2019_2942938
crossref_primary_10_1155_2022_2205460
crossref_primary_10_1016_j_bbe_2020_02_004
crossref_primary_10_1016_j_ahjo_2022_100129
crossref_primary_10_1016_j_patcog_2018_11_019
crossref_primary_10_1016_j_ijmedinf_2017_10_008
crossref_primary_10_1080_00207543_2020_1733701
crossref_primary_10_3389_fphy_2019_00103
crossref_primary_10_3390_app13010017
crossref_primary_10_3390_s21175936
crossref_primary_10_3389_fphys_2023_1113524
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_1038_s41598_017_09544_z
crossref_primary_10_1155_2021_6624829
crossref_primary_10_1109_TBCAS_2023_3296529
crossref_primary_10_1109_ACCESS_2020_3036078
crossref_primary_10_1142_S0219519420500463
crossref_primary_10_1016_j_engappai_2022_104904
crossref_primary_10_1109_ACCESS_2020_2990607
crossref_primary_10_3390_s21186263
crossref_primary_10_1016_j_neucom_2020_01_019
crossref_primary_10_1007_s00521_018_3576_0
crossref_primary_10_1109_JSEN_2018_2871203
crossref_primary_10_1109_LSP_2019_2957924
crossref_primary_10_1016_j_eswa_2019_112821
crossref_primary_10_1016_j_jvcir_2020_103018
crossref_primary_10_1109_TIM_2024_3481575
crossref_primary_10_1016_j_egyr_2024_08_008
crossref_primary_10_3389_fncom_2020_564015
crossref_primary_10_1109_ACCESS_2023_3287094
crossref_primary_10_1109_TBCAS_2019_2948920
crossref_primary_10_1016_j_measurement_2022_111984
crossref_primary_10_3390_app14010342
crossref_primary_10_1016_j_eswa_2022_119221
crossref_primary_10_1016_j_procs_2022_09_177
crossref_primary_10_1016_j_jfca_2025_107355
crossref_primary_10_1109_TBCAS_2022_3196165
crossref_primary_10_1016_j_irbm_2020_07_002
crossref_primary_10_1109_TIM_2025_3540129
crossref_primary_10_1016_j_cmpb_2021_106518
crossref_primary_10_32604_cmc_2024_050931
crossref_primary_10_1109_JSEN_2019_2910853
crossref_primary_10_1016_j_jpdc_2018_08_010
crossref_primary_10_1109_JBHI_2020_3035191
crossref_primary_10_3390_s21186043
crossref_primary_10_1038_s41598_023_48751_9
crossref_primary_10_1109_ACCESS_2024_3364115
crossref_primary_10_1007_s11042_021_10945_6
crossref_primary_10_1166_jmihi_2021_3684
crossref_primary_10_1080_08839514_2021_2018183
crossref_primary_10_1109_ACCESS_2020_2998788
crossref_primary_10_1016_j_jacc_2018_03_521
crossref_primary_10_1049_iet_gtd_2020_0773
crossref_primary_10_1109_ACCESS_2019_2916141
crossref_primary_10_1109_TCAD_2018_2871819
crossref_primary_10_1063_5_0046582
crossref_primary_10_1016_j_cmpb_2018_11_005
crossref_primary_10_3390_bios12050299
crossref_primary_10_3390_s22020671
crossref_primary_10_1155_2022_3561147
crossref_primary_10_1109_TPWRD_2019_2922480
crossref_primary_10_1007_s11042_023_17410_6
crossref_primary_10_1016_j_bspc_2023_104756
crossref_primary_10_1016_j_cmpbup_2023_100097
crossref_primary_10_1088_1402_4896_ad155d
crossref_primary_10_1016_j_eja_2024_127485
crossref_primary_10_1007_s13246_021_01072_5
crossref_primary_10_1016_j_eswa_2024_125482
crossref_primary_10_1016_j_ins_2018_06_062
crossref_primary_10_3390_s20216318
crossref_primary_10_3390_app8091590
crossref_primary_10_1109_TIE_2021_3118387
crossref_primary_10_1016_j_asoc_2023_110919
crossref_primary_10_1016_j_jhazmat_2024_135032
crossref_primary_10_1016_j_bspc_2020_101874
crossref_primary_10_1111_exsy_12765
crossref_primary_10_1155_2021_7167891
crossref_primary_10_3390_app11031125
crossref_primary_10_1016_j_cmpb_2025_108606
crossref_primary_10_1016_j_ins_2022_01_030
crossref_primary_10_4108_eetpht_10_6421
crossref_primary_10_1016_j_eswa_2023_122960
crossref_primary_10_1145_3297711
crossref_primary_10_1109_TBME_2018_2854899
crossref_primary_10_1016_j_neucom_2021_03_111
crossref_primary_10_1109_ACCESS_2020_3014495
crossref_primary_10_1016_j_bspc_2023_105677
crossref_primary_10_1016_j_eja_2020_126204
crossref_primary_10_1016_j_eswa_2020_113571
crossref_primary_10_1109_JSEN_2021_3137992
crossref_primary_10_1016_j_eswa_2022_118178
crossref_primary_10_1007_s11760_024_03686_0
crossref_primary_10_1109_ACCESS_2020_2975258
crossref_primary_10_1016_j_ymssp_2020_107077
crossref_primary_10_1016_j_jclepro_2024_142381
crossref_primary_10_1007_s11042_023_17095_x
crossref_primary_10_1088_1361_6579_ac10aa
crossref_primary_10_1109_TAI_2022_3159505
crossref_primary_10_1016_j_mejo_2022_105492
crossref_primary_10_1016_j_procs_2020_03_340
crossref_primary_10_1088_1742_6596_2265_3_032088
crossref_primary_10_1016_j_bspc_2023_105424
crossref_primary_10_1109_TAES_2022_3182303
crossref_primary_10_1049_iet_rsn_2018_5453
crossref_primary_10_3390_electronics11121889
crossref_primary_10_1109_RBME_2018_2810957
crossref_primary_10_1109_TBME_2019_2926104
crossref_primary_10_1016_j_conbuildmat_2024_139056
crossref_primary_10_1049_iet_its_2020_0105
crossref_primary_10_1109_TIM_2022_3146623
crossref_primary_10_3390_s24248124
crossref_primary_10_1002_mop_33314
crossref_primary_10_1115_1_4041962
crossref_primary_10_1155_2021_3801675
crossref_primary_10_3390_app10134612
crossref_primary_10_1007_s12652_021_03456_7
crossref_primary_10_1177_14759217221137931
crossref_primary_10_1016_j_compbiomed_2019_103448
crossref_primary_10_1007_s11069_022_05325_8
crossref_primary_10_1016_j_saa_2022_122221
crossref_primary_10_1002_ima_22940
crossref_primary_10_1088_1361_6579_ac58de
crossref_primary_10_1007_s11831_023_09916_x
crossref_primary_10_1007_s12652_020_02110_y
crossref_primary_10_1049_htl_2020_0033
crossref_primary_10_1109_JBHI_2016_2631247
crossref_primary_10_3349_ymj_2022_63_S93
crossref_primary_10_1007_s42484_024_00207_7
crossref_primary_10_1016_j_artmed_2020_101963
crossref_primary_10_1109_TPWRD_2019_2901594
crossref_primary_10_1016_j_engstruct_2022_114172
crossref_primary_10_1039_D0CC07882D
crossref_primary_10_3390_s18072021
crossref_primary_10_3389_fphys_2022_982537
crossref_primary_10_1142_S0129065721500544
crossref_primary_10_1515_jee_2017_0064
crossref_primary_10_1016_j_cmpb_2023_107784
crossref_primary_10_1007_s00034_023_02550_9
crossref_primary_10_3390_biomedicines11041138
crossref_primary_10_1109_JBHI_2021_3061114
crossref_primary_10_1587_elex_14_20170984
crossref_primary_10_1016_j_bspc_2019_101819
crossref_primary_10_1016_j_asoc_2024_111643
crossref_primary_10_3390_math10152786
crossref_primary_10_1007_s13755_023_00237_8
crossref_primary_10_1142_S0218001420580136
crossref_primary_10_1038_s41598_019_51269_8
crossref_primary_10_1088_2632_2153_abcf89
crossref_primary_10_1109_ACCESS_2018_2869943
crossref_primary_10_1109_JIOT_2020_3019732
crossref_primary_10_3389_fphys_2023_1118360
crossref_primary_10_1016_j_jprocont_2020_01_004
crossref_primary_10_1177_14680874211030878
crossref_primary_10_1016_j_mejo_2021_105188
crossref_primary_10_1007_s11042_018_6005_6
crossref_primary_10_3390_app122412957
crossref_primary_10_1152_ajpheart_00149_2024
crossref_primary_10_3233_NRE_192996
crossref_primary_10_1177_14759217211065009
crossref_primary_10_3233_JIFS_211718
crossref_primary_10_1016_j_bspc_2022_104206
crossref_primary_10_1007_s40747_021_00371_4
crossref_primary_10_1109_TNNLS_2022_3158867
crossref_primary_10_1515_labmed_2022_0078
crossref_primary_10_1016_j_icheatmasstransfer_2024_107616
crossref_primary_10_3390_fi14090252
crossref_primary_10_1007_s00034_022_02120_5
crossref_primary_10_3390_app14167227
crossref_primary_10_1109_LSENS_2024_3523427
crossref_primary_10_3390_s18093149
crossref_primary_10_1109_ACCESS_2021_3076683
crossref_primary_10_1016_j_bbe_2022_02_006
crossref_primary_10_1007_s40031_024_01167_z
crossref_primary_10_1016_j_ijsolstr_2022_111521
crossref_primary_10_1016_j_jelectrocard_2019_11_046
crossref_primary_10_3390_s20226592
crossref_primary_10_3390_s19204408
crossref_primary_10_1111_anec_13056
crossref_primary_10_1109_TCBB_2019_2912955
crossref_primary_10_3346_jkms_2019_34_e64
crossref_primary_10_1038_s41598_022_16334_9
crossref_primary_10_1080_2150704X_2020_1809735
crossref_primary_10_1002_VIW_20230096
crossref_primary_10_1587_elex_18_20210104
crossref_primary_10_1016_j_conbuildmat_2022_127129
crossref_primary_10_1016_j_aej_2020_07_052
crossref_primary_10_1109_TII_2021_3115119
crossref_primary_10_1038_s41598_018_29690_2
crossref_primary_10_1109_TC_2021_3135752
crossref_primary_10_1142_S0219519419400086
crossref_primary_10_1016_j_eij_2024_100573
crossref_primary_10_1109_TCSII_2021_3091198
crossref_primary_10_1016_j_jsv_2016_10_043
crossref_primary_10_1109_TBME_2021_3088218
crossref_primary_10_1109_TIM_2021_3072144
crossref_primary_10_1007_s11042_021_11523_6
crossref_primary_10_1016_j_jvs_2021_02_050
crossref_primary_10_3390_s24247896
crossref_primary_10_3389_fphys_2021_672875
crossref_primary_10_1088_1361_6579_ac6e55
crossref_primary_10_1088_2057_1976_acbd53
crossref_primary_10_1159_000512985
crossref_primary_10_1007_s00521_021_06487_5
crossref_primary_10_3390_bioengineering5020035
crossref_primary_10_1038_s41598_024_60592_8
crossref_primary_10_1007_s40996_023_01287_4
crossref_primary_10_1016_j_asoc_2022_109481
crossref_primary_10_1016_j_bea_2022_100066
crossref_primary_10_1016_j_ndteint_2024_103089
crossref_primary_10_1002_dac_4685
crossref_primary_10_1016_j_cmpb_2018_04_005
crossref_primary_10_3390_rs13122375
crossref_primary_10_3233_THC_228022
crossref_primary_10_1587_transinf_2018EDL8046
crossref_primary_10_1016_j_cmpb_2020_105740
crossref_primary_10_1109_TNET_2021_3112480
crossref_primary_10_1002_mp_16534
crossref_primary_10_3390_jimaging7020026
crossref_primary_10_1016_j_measurement_2022_111978
crossref_primary_10_1016_j_bspc_2023_104725
crossref_primary_10_1109_TBCAS_2019_2953001
crossref_primary_10_1007_s12652_020_02003_0
crossref_primary_10_1111_anec_13028
crossref_primary_10_1109_TITS_2020_2995722
crossref_primary_10_1007_s11042_024_20073_6
crossref_primary_10_1016_j_eswax_2019_100003
crossref_primary_10_1155_2021_6691177
crossref_primary_10_1109_TAES_2022_3160134
crossref_primary_10_1109_TG_2018_2849942
crossref_primary_10_3389_fcvm_2024_1401143
crossref_primary_10_1007_s00034_024_02941_6
crossref_primary_10_1109_ACCESS_2018_2877587
crossref_primary_10_3390_rs12101685
crossref_primary_10_1109_JBHI_2021_3060433
crossref_primary_10_1016_j_knosys_2022_109151
crossref_primary_10_1016_j_eswa_2017_09_022
crossref_primary_10_1109_JBHI_2022_3171918
crossref_primary_10_1007_s11042_024_20084_3
crossref_primary_10_1109_ACCESS_2020_2964749
crossref_primary_10_1016_j_bios_2019_111336
crossref_primary_10_3390_s21217414
crossref_primary_10_3390_sym12111827
crossref_primary_10_3389_fnins_2023_1093865
crossref_primary_10_1016_j_bspc_2024_106693
crossref_primary_10_3390_s20051461
crossref_primary_10_1007_s11831_022_09823_7
crossref_primary_10_3389_fbioe_2023_1261022
crossref_primary_10_1016_j_cmpb_2018_07_015
crossref_primary_10_1016_j_cmpb_2022_107300
crossref_primary_10_1016_j_bspc_2024_106211
crossref_primary_10_1088_1361_6579_aac7b7
crossref_primary_10_1109_ACCESS_2019_2937875
crossref_primary_10_1007_s11235_023_01017_1
crossref_primary_10_3390_s21248169
crossref_primary_10_1038_s41598_023_38532_9
crossref_primary_10_1080_08839514_2018_1501910
crossref_primary_10_1371_journal_pone_0253200
crossref_primary_10_1007_s12652_020_02259_6
crossref_primary_10_1007_s12204_021_2371_8
crossref_primary_10_1109_TBME_2021_3090051
crossref_primary_10_1016_j_jelectrocard_2019_12_009
crossref_primary_10_1007_s13042_017_0677_5
crossref_primary_10_1109_ACCESS_2020_3009266
crossref_primary_10_1016_j_compbiomed_2020_103753
crossref_primary_10_1088_1361_6579_ac6aa2
crossref_primary_10_1016_j_compbiomed_2020_103999
crossref_primary_10_32604_csse_2023_031943
crossref_primary_10_1016_j_eswa_2021_115131
crossref_primary_10_3390_app9081526
crossref_primary_10_1016_j_bspc_2021_103328
crossref_primary_10_1016_j_eswa_2022_118933
crossref_primary_10_1007_s00500_022_07122_8
crossref_primary_10_1007_s13246_025_01525_1
crossref_primary_10_3390_mi12111282
crossref_primary_10_1109_TBME_2017_2756869
crossref_primary_10_1007_s11276_023_03566_4
crossref_primary_10_1186_s12911_021_01571_1
crossref_primary_10_1016_j_bspc_2023_105060
crossref_primary_10_1051_itmconf_20246401023
crossref_primary_10_1109_TCBB_2022_3140785
crossref_primary_10_1016_j_uclim_2023_101770
crossref_primary_10_1007_s13369_020_04546_y
crossref_primary_10_1364_OE_481339
crossref_primary_10_3390_s24217033
crossref_primary_10_1016_j_compbiomed_2023_107503
crossref_primary_10_1007_s12065_020_00540_3
crossref_primary_10_1016_j_cmpb_2021_106191
crossref_primary_10_1016_j_cmpb_2019_02_005
crossref_primary_10_1088_1757_899X_1069_1_012034
crossref_primary_10_1109_JBHI_2023_3308856
crossref_primary_10_1109_TIE_2018_2833045
crossref_primary_10_3390_s20247307
crossref_primary_10_1109_JBHI_2020_2981526
crossref_primary_10_1016_j_jbi_2022_104009
crossref_primary_10_1145_3447394
crossref_primary_10_1016_j_ymssp_2020_107327
crossref_primary_10_1016_j_patrec_2018_03_028
crossref_primary_10_1109_TIE_2016_2582729
crossref_primary_10_3390_s21248197
crossref_primary_10_32604_iasc_2023_023817
crossref_primary_10_1016_j_bspc_2022_103649
crossref_primary_10_1007_s10489_022_04303_8
crossref_primary_10_3390_pr11020595
crossref_primary_10_3390_s24154978
crossref_primary_10_1080_10255842_2023_2265009
crossref_primary_10_1016_j_ins_2024_120239
crossref_primary_10_2139_ssrn_4176688
crossref_primary_10_1016_j_medengphy_2023_103964
crossref_primary_10_1088_1361_6579_ac7938
crossref_primary_10_1016_j_knosys_2019_105402
crossref_primary_10_1002_smr_2434
crossref_primary_10_1016_j_cmpb_2021_106379
crossref_primary_10_1016_j_bbe_2020_08_001
crossref_primary_10_3233_THC_218045
crossref_primary_10_1109_ACCESS_2018_2833841
crossref_primary_10_1016_j_infrared_2019_103075
crossref_primary_10_1016_j_bspc_2020_102170
crossref_primary_10_1007_s11042_021_11083_9
crossref_primary_10_15829_1560_4071_2020_3999
crossref_primary_10_3390_bios8040101
crossref_primary_10_3390_hearts5040037
crossref_primary_10_3390_app11156711
crossref_primary_10_1016_j_bspc_2021_102674
crossref_primary_10_7717_peerj_7731
crossref_primary_10_3390_s21113760
crossref_primary_10_1109_ACCESS_2020_3032251
crossref_primary_10_3390_math11143217
crossref_primary_10_1016_j_measurement_2023_113239
crossref_primary_10_1109_TIM_2023_3280510
crossref_primary_10_1038_s43856_024_00464_4
crossref_primary_10_3390_healthcare8040437
crossref_primary_10_3390_e21030305
crossref_primary_10_1007_s42979_024_03604_8
crossref_primary_10_14500_aro_11444
crossref_primary_10_1109_ACCESS_2022_3225651
crossref_primary_10_1109_JBHI_2017_2757510
crossref_primary_10_3390_s22010153
crossref_primary_10_1080_0951192X_2021_1901316
crossref_primary_10_1109_JBHI_2023_3286585
crossref_primary_10_1186_s13634_024_01187_3
crossref_primary_10_3390_s21155135
crossref_primary_10_1016_j_eswa_2023_120095
crossref_primary_10_54287_gujsa_1128006
crossref_primary_10_3390_electronics13020326
crossref_primary_10_1109_ACCESS_2023_3236242
crossref_primary_10_1016_j_bspc_2021_102461
crossref_primary_10_3390_app14188500
crossref_primary_10_1016_j_eswa_2021_116233
crossref_primary_10_1371_journal_pone_0317900
crossref_primary_10_1093_jigpal_jzae102
crossref_primary_10_1109_ACCESS_2019_2956179
crossref_primary_10_1109_TBME_2024_3408279
crossref_primary_10_1007_s42600_021_00176_x
crossref_primary_10_1007_s00521_025_11092_x
crossref_primary_10_1109_TIM_2022_3227606
crossref_primary_10_1109_TSM_2022_3216032
crossref_primary_10_1109_JBHI_2021_3138986
crossref_primary_10_1016_j_matpr_2020_07_088
crossref_primary_10_1016_j_ymssp_2020_107398
crossref_primary_10_1142_S0219519419500040
crossref_primary_10_1016_j_neucom_2020_07_045
crossref_primary_10_1177_1475921718804132
crossref_primary_10_1038_s41598_021_95947_y
crossref_primary_10_3390_bioengineering9070268
crossref_primary_10_1007_s11042_023_17619_5
crossref_primary_10_1039_C9LC00597H
crossref_primary_10_1016_j_artmed_2023_102489
crossref_primary_10_1177_14759217241239041
crossref_primary_10_3390_s24227207
crossref_primary_10_1016_j_eswa_2019_06_012
crossref_primary_10_3390_app10093304
crossref_primary_10_1177_1748006X21992886
crossref_primary_10_1016_j_bspc_2020_102142
crossref_primary_10_1007_s11036_019_01321_8
crossref_primary_10_3390_ma16041614
crossref_primary_10_1007_s11277_023_10607_w
crossref_primary_10_1016_j_neucom_2021_04_104
crossref_primary_10_1371_journal_pone_0302639
crossref_primary_10_1016_j_comcom_2021_08_002
crossref_primary_10_1109_JBHI_2021_3098662
crossref_primary_10_1007_s13349_023_00690_9
crossref_primary_10_1016_j_bea_2023_100089
crossref_primary_10_1039_C9RA00805E
crossref_primary_10_1016_j_bspc_2018_05_013
crossref_primary_10_1016_j_saa_2022_121560
crossref_primary_10_1016_j_bspc_2023_105463
crossref_primary_10_47164_ijngc_v14i2_1153
crossref_primary_10_1007_s10999_023_09692_3
crossref_primary_10_1016_j_isci_2022_105434
crossref_primary_10_1016_j_ymssp_2020_107181
crossref_primary_10_1109_TBCAS_2022_3152623
crossref_primary_10_1007_s00521_020_04961_0
crossref_primary_10_1109_TII_2021_3076513
crossref_primary_10_3390_bioengineering10020196
crossref_primary_10_1109_ACCESS_2019_2912519
crossref_primary_10_1109_JBHI_2017_2703115
crossref_primary_10_1109_TBCAS_2024_3435718
crossref_primary_10_4108_eetsis_v10i3_3219
crossref_primary_10_1109_ACCESS_2020_3038422
crossref_primary_10_1109_ACCESS_2020_2968744
crossref_primary_10_1109_ACCESS_2017_2743525
crossref_primary_10_1109_LSENS_2020_3006756
crossref_primary_10_1016_j_bspc_2023_105448
crossref_primary_10_1016_j_procir_2019_04_145
crossref_primary_10_1016_j_neucom_2020_07_056
crossref_primary_10_1021_acsomega_2c07609
crossref_primary_10_1016_j_saa_2018_10_028
crossref_primary_10_3233_JIFS_212373
crossref_primary_10_3390_jsan13050052
crossref_primary_10_1109_JTEHM_2021_3064675
crossref_primary_10_1007_s10916_018_0963_0
crossref_primary_10_1016_j_compbiomed_2019_103394
crossref_primary_10_1007_s42979_024_03245_x
crossref_primary_10_1109_TIM_2022_3224535
crossref_primary_10_1016_j_eswa_2021_116040
crossref_primary_10_1177_01423312241252459
crossref_primary_10_1007_s11517_020_02292_9
crossref_primary_10_1109_ACCESS_2022_3177595
crossref_primary_10_1088_1361_665X_ad610c
crossref_primary_10_1007_s00500_022_07729_x
crossref_primary_10_1109_ACCESS_2018_2807700
crossref_primary_10_1016_j_eswa_2022_117499
crossref_primary_10_1016_j_bspc_2021_102843
crossref_primary_10_3390_e22060595
crossref_primary_10_1587_transinf_2019EDP7282
crossref_primary_10_1016_j_jsv_2018_03_008
crossref_primary_10_1016_j_ymssp_2021_108738
crossref_primary_10_1155_2021_5862017
crossref_primary_10_1007_s11042_020_09035_w
crossref_primary_10_1016_j_bspc_2024_106668
crossref_primary_10_1016_j_bspc_2024_106422
crossref_primary_10_1364_OE_433917
crossref_primary_10_1007_s11265_019_01461_w
crossref_primary_10_1016_j_fub_2024_100003
crossref_primary_10_1007_s12021_018_9397_6
crossref_primary_10_1016_j_inffus_2019_08_004
crossref_primary_10_1016_j_asoc_2020_107065
crossref_primary_10_3390_s23208525
crossref_primary_10_1371_journal_pone_0295653
crossref_primary_10_1016_j_eswa_2025_126824
crossref_primary_10_1016_j_neucom_2021_12_001
crossref_primary_10_1049_iet_its_2018_5290
crossref_primary_10_1109_JSEN_2022_3183136
crossref_primary_10_1109_ACCESS_2023_3312685
crossref_primary_10_1109_JIOT_2019_2961132
crossref_primary_10_1109_TBME_2021_3135622
crossref_primary_10_1038_s41591_018_0306_1
crossref_primary_10_1109_JBHI_2024_3481505
crossref_primary_10_1007_s00530_020_00713_1
crossref_primary_10_1371_journal_pone_0284791
crossref_primary_10_1109_ACCESS_2019_2933473
crossref_primary_10_3233_JIFS_201281
crossref_primary_10_1007_s11760_022_02155_w
crossref_primary_10_1155_2018_7354081
crossref_primary_10_3390_electronics9010121
crossref_primary_10_1007_s10462_021_09999_7
Cites_doi 10.1109/10.623058
10.1109/51.932724
10.1113/jphysiol.1959.sp006308
10.1109/10.362922
10.1109/10.740882
10.1109/TBME.2009.2013934
10.1109/TBME.1985.325532
10.1109/IEMBS.1989.96577
10.1109/10.58593
10.1109/TBME.2011.2113395
10.1109/TBME.2004.824138
10.1109/TNN.2007.900239
10.1109/TBME.2006.880879
10.1109/10.918594
10.1109/10.740880
10.1109/TBME.2012.2202662
10.1162/NECO_a_00052
10.1109/TBME.2004.827359
10.1109/TBME.2006.883802
10.1016/S0022-0736(87)80096-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2015.2468589
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 675
ExternalDocumentID 4047692621
26285054
10_1109_TBME_2015_2468589
7202837
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-ac7585a07646ac9093c37da0c67c04bfca2a9196156284f8faae021039a55df03
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 09:07:10 EDT 2025
Mon Jun 30 08:25:54 EDT 2025
Thu Apr 03 07:00:07 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Tue Jul 01 03:28:27 EDT 2025
Wed Aug 27 02:53:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords real-time heart monitoring
Convolutional neural networks (CNNs)
patient-specific ECG classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-ac7585a07646ac9093c37da0c67c04bfca2a9196156284f8faae021039a55df03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26285054
PQID 1787244351
PQPubID 85474
PageCount 12
ParticipantIDs crossref_primary_10_1109_TBME_2015_2468589
crossref_citationtrail_10_1109_TBME_2015_2468589
ieee_primary_7202837
proquest_journals_1787244351
proquest_miscellaneous_1768562789
pubmed_primary_26285054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-March
2016-3-00
2016-Mar
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
hu (ref9) 1994; 26
ref11
ref2
ref1
ref16
ref18
hu (ref10) 1997; 44
(ref13) 1987
scherer (ref25) 0
ref24
ref23
kiranyaz (ref17) 2013
ref20
ref27
talmon (ref6) 1983
ref8
ref7
ref4
ref3
ref5
li (ref19) 1995; 42
krizhevsky (ref26) 0
wiesel (ref21) 1959; 148
mark (ref22) 0
References_xml – volume: 44
  start-page: 891
  year: 1997
  ident: ref10
  article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.623058
– year: 2013
  ident: ref17
  publication-title: Multi-dimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition
– ident: ref27
  doi: 10.1109/51.932724
– year: 1987
  ident: ref13
  publication-title: Recommended Practice for Testing and Reporting Performance Results of Ventricular Arrhythmia Detection Algorithms
– volume: 148
  start-page: 574
  year: 1959
  ident: ref21
  article-title: Receptive fields of single neurones in the cat's striate cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 42
  start-page: 21
  year: 1995
  ident: ref19
  article-title: Detection of ECG characteristic points using wavelet transforms
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.362922
– ident: ref4
  doi: 10.1109/10.740882
– ident: ref16
  doi: 10.1109/TBME.2009.2013934
– volume: 26
  start-page: 66
  year: 1994
  ident: ref9
  article-title: Applications of artificial neural networks for ECG signal detection and classification
  publication-title: J Electrocardiol
– ident: ref23
  doi: 10.1109/TBME.1985.325532
– ident: ref11
  doi: 10.1109/IEMBS.1989.96577
– ident: ref7
  doi: 10.1109/10.58593
– ident: ref20
  doi: 10.1109/TBME.2011.2113395
– year: 0
  ident: ref22
  article-title: MIT-BIH Arrhythmia Database Directory
– year: 1983
  ident: ref6
  publication-title: Pattern Recognition of the ECG
– ident: ref8
  doi: 10.1109/TBME.2004.824138
– start-page: 1106
  year: 0
  ident: ref26
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst Conf
– ident: ref15
  doi: 10.1109/TNN.2007.900239
– ident: ref3
  doi: 10.1109/TBME.2006.880879
– ident: ref1
  doi: 10.1109/10.918594
– ident: ref2
  doi: 10.1109/10.740880
– ident: ref18
  doi: 10.1109/TBME.2012.2202662
– ident: ref24
  doi: 10.1162/NECO_a_00052
– ident: ref14
  doi: 10.1109/TBME.2004.827359
– ident: ref12
  doi: 10.1109/TBME.2006.883802
– ident: ref5
  doi: 10.1016/S0022-0736(87)80096-1
– start-page: 92
  year: 0
  ident: ref25
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
  publication-title: Proc Int Conf Artif Neural Netw
SSID ssj0014846
Score 2.6709647
Snippet Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive...
This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. An adaptive implementation of 1-D...
This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system.GOALThis paper presents a fast and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 664
SubjectTerms Algorithms
Classification
Convolutional Neural Networks
Databases, Factual
Electrocardiography
Electrocardiography - methods
Feature extraction
Humans
Kernel
Monitoring
Neural networks
Neural Networks (Computer)
Neurons
Patient-specific ECG classification
Precision Medicine
real-time heart monitoring
Signal Processing, Computer-Assisted
Training
Title Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/7202837
https://www.ncbi.nlm.nih.gov/pubmed/26285054
https://www.proquest.com/docview/1787244351
https://www.proquest.com/docview/1768562789
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9wwDLaABwQPMGBAgaEi8YTWI2nTpHlkt2No0iGEQOKtStNUQqDeNO6Q2K-fneYqhraJp7Zq2qS1Xdu1_RngmFulG-5Mgo4XOii6qBJdNAINOdLQplbcUKHw-FJe3Irvd_ndAnzua2Gccz75zA1o18fy64md0a-yU5WSNlSLsIiOW1er1UcMRNEV5TCOApxqESKYnOnTmy_jESVx5YNUENw6IYWmVDrIcvGHOvL9Vf5tanqVc74O4_liu0yTh8FsWg3srzc4ju99mg-wFmzP-Kxjlg1YcO0mrL5CJNyE5XGItW_B9TXakAmViMRXHfhq4pvVN_c2Hg2_xb6dJh152sbVS8yTr_Fw0j4HbsapCPrDb3yu-dNHuD0f3QwvktCBIbGZ0NPEWHInDFNSSGM105nNVG2YlcoyUTXWpEajDKMTiGquKRpjHDmRmTZ5Xjcs24aldtK6XYh5XtfGiIb5QKaSFTKJTJ2SLneVUUUEbE6I0gZ4cuqS8Vh6N4XpkshYEhnLQMYITvpLfnTYHP8bvEUk6AeGtx_BwZzaZZDep5LjVwzNniznERz1p1HuKJhiWjeZ0Ri8raQ64gh2Oi7p7z1nrr2_z7kPK7gy2WWyHcDS9OfMfULTZlodep7-DUfx728
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGkPh44GMbozCgSDwhekvafDSPcNw4YJ3QdJP2VqVpKiGmHmJ3SPDXY6e5ChAgntqqaZPWdm3X9s8Az7jTpuPeZuh4oYNiyiYzZSfQkCMNbVvNLRUKVydqfibencvzLXgx1sJ470PymZ_Qbojlt0u3pl9lhzonbaivwFXU-5IP1VpjzECUQ1kO4yjCuRExhsmZOVy8qmaUxiUnuSDAdcIKzal4kEnxi0IKHVb-bmwGpXN0G6rNcodck0-T9aqZuO-_ITn-7_PcgVvR-kxfDuxyF7Z8vwM3f8Ik3IFrVYy278LpKVqRGRWJpB8G-NUstKvvPrp0Nn2ThoaadBSomzbfUp69TqfL_mvkZ5yKwD_CJmSbX-7B2dFsMZ1nsQdD5gphVpl15FBYppVQ1hlmClfo1jKntGOi6ZzNrUEpRjcQFV1XdtZ6ciMLY6VsO1bcg-1-2fv7kHLZttaKjoVQplYNsonKvVZe-sbqMgG2IUTtIkA59cm4qIOjwkxNZKyJjHUkYwLPx0s-D-gc_xq8SyQYB8a3n8DBhtp1lN_LmuN3DA2fQvIEno6nUfIonGJ7v1zTGLytokriBPYHLhnvvWGuB3-e8wlcny-q4_r47cn7h3ADV6mGvLYD2F59WftHaOismseBv38A7znyuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Patient-Specific+ECG+Classification+by+1-D+Convolutional+Neural+Networks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kiranyaz%2C+Serkan&rft.au=Ince%2C+Turker&rft.au=Gabbouj%2C+Moncef&rft.date=2016-03-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=63&rft.issue=3&rft.spage=664&rft.epage=675&rft_id=info:doi/10.1109%2FTBME.2015.2468589&rft_id=info%3Apmid%2F26285054&rft.externalDocID=7202837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon