Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks
Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learnin...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 63; no. 3; pp. 664 - 675 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. Results: The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Conclusion: Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Significance: Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset. |
---|---|
AbstractList | This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system.GOALThis paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system.An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device.METHODSAn adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device.The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats.RESULTSThe results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats.Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner.CONCLUSIONBesides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner.Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset.SIGNIFICANCEDue to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset. This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset. Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. Results: The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Conclusion: Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Significance: Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset. |
Author | Kiranyaz, Serkan Ince, Turker Gabbouj, Moncef |
Author_xml | – sequence: 1 givenname: Serkan surname: Kiranyaz fullname: Kiranyaz, Serkan email: mkiranyaz@qu.edu.qa organization: Electrical Engineering Department, College of Engineering, Doha, Qatar – sequence: 2 givenname: Turker surname: Ince fullname: Ince, Turker organization: the Electrical & Electronics Engineering Department, Izmir University of Economics, İzmir, Turkey – sequence: 3 givenname: Moncef surname: Gabbouj fullname: Gabbouj, Moncef organization: Tampere University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26285054$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9PGzEQxa0qVQmUD1BVqlbiwmWD_67tY9kGqBSgCul5NXG8ktPNOti7VHx7vEmaA4eeRjP-vfHovVM0an1rEfpC8IQQrK8W1_fTCcVETCgvlFD6AxoTIVROBSMjNMaYqFxTzU_QaYzr1HLFi0_ohBZUCSz4GM3nFpp84TY2-wWds22XP22tcbUz2bS8zcoGYhy69OjbbPmakfxHVvr2xTf9MIIme7B92JXurw9_4mf0sYYm2vNDPUO_b6aL8i6fPd7-LL_PcsO47nIwUigBWBa8AKOxZobJFWBTSIP5sjZAQRNdEJGO5bWqASymBDMNQqxqzM7Q5X7vNvjn3sau2rhobNNAa30fKyKTJwWVSif04h269n1Itw-UkpRzJkiivh2ofrmxq2ob3AbCa_XPrQSQPWCCjzHY-ogQXA2JVEMi1ZBIdUgkaeQ7jXHdzswugGv-q_y6Vzpr7fEnSTFVTLI3kBmVtQ |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1007_s00521_022_06973_4 crossref_primary_10_1016_j_isci_2024_109307 crossref_primary_10_1016_j_smhl_2024_100538 crossref_primary_10_1016_j_cmpb_2019_05_004 crossref_primary_10_3390_s19071731 crossref_primary_10_1097_RTI_0000000000000385 crossref_primary_10_1109_TNSM_2022_3203246 crossref_primary_10_1109_TBCAS_2019_2954479 crossref_primary_10_1109_ACCESS_2020_3027472 crossref_primary_10_1371_journal_pone_0260764 crossref_primary_10_1016_j_artmed_2021_102181 crossref_primary_10_1155_2017_4108720 crossref_primary_10_1016_j_cmpb_2020_105479 crossref_primary_10_1016_j_eswa_2021_115936 crossref_primary_10_3390_s23208573 crossref_primary_10_3390_s24237768 crossref_primary_10_1109_JTEHM_2020_2999725 crossref_primary_10_1080_17434440_2022_2115887 crossref_primary_10_1109_ACCESS_2019_2919995 crossref_primary_10_1007_s00415_023_11662_w crossref_primary_10_1155_2017_8617315 crossref_primary_10_1007_s12652_022_03868_z crossref_primary_10_1007_s42979_024_02951_w crossref_primary_10_1007_s13204_022_02368_y crossref_primary_10_1016_j_bspc_2023_105506 crossref_primary_10_1016_j_artmed_2022_102236 crossref_primary_10_1109_ACCESS_2023_3342917 crossref_primary_10_1016_j_neunet_2018_01_009 crossref_primary_10_1109_ACCESS_2019_2927134 crossref_primary_10_1007_s00170_019_04090_6 crossref_primary_10_3346_jkms_2020_35_e399 crossref_primary_10_1109_LSENS_2019_2942145 crossref_primary_10_1109_TIM_2022_3186355 crossref_primary_10_1007_s00607_023_01243_0 crossref_primary_10_3390_f15010086 crossref_primary_10_1016_j_ymssp_2022_108867 crossref_primary_10_1051_itmconf_20192703001 crossref_primary_10_1016_j_optlastec_2024_111295 crossref_primary_10_1007_s42979_023_01891_1 crossref_primary_10_3390_life12010119 crossref_primary_10_1109_ACCESS_2019_2950383 crossref_primary_10_1109_JSEN_2019_2921862 crossref_primary_10_1016_j_jelekin_2018_07_005 crossref_primary_10_1109_ACCESS_2019_2941436 crossref_primary_10_1007_s00034_022_02091_7 crossref_primary_10_1007_s42979_021_00694_6 crossref_primary_10_1109_ACCESS_2019_2928017 crossref_primary_10_2139_ssrn_3989552 crossref_primary_10_1016_j_bspc_2022_104188 crossref_primary_10_1016_j_knosys_2019_105036 crossref_primary_10_1007_s10479_023_05326_1 crossref_primary_10_1109_ACCESS_2021_3136793 crossref_primary_10_1016_j_neucom_2018_03_010 crossref_primary_10_1109_TBCAS_2018_2848477 crossref_primary_10_1109_TCSI_2022_3209574 crossref_primary_10_1142_S0219519421400133 crossref_primary_10_1088_1742_6596_1207_1_012003 crossref_primary_10_1109_JBHI_2021_3090421 crossref_primary_10_3390_e24050688 crossref_primary_10_1109_JSEN_2024_3382720 crossref_primary_10_1016_j_bspc_2020_101997 crossref_primary_10_1002_cem_2977 crossref_primary_10_1007_s10822_023_00533_1 crossref_primary_10_1007_s12205_024_1994_3 crossref_primary_10_12677_JISP_2020_93020 crossref_primary_10_46670_JSST_2021_30_1_20 crossref_primary_10_1016_j_artmed_2020_101856 crossref_primary_10_1109_TIM_2019_2910342 crossref_primary_10_1016_j_bspc_2022_104105 crossref_primary_10_1109_ACCESS_2024_3392965 crossref_primary_10_1016_j_seta_2022_102919 crossref_primary_10_1007_s00216_020_02497_9 crossref_primary_10_1007_s00521_020_05171_4 crossref_primary_10_1007_s12145_024_01239_0 crossref_primary_10_1016_j_procs_2020_04_056 crossref_primary_10_32604_cmes_2023_029015 crossref_primary_10_1016_j_jelectrocard_2019_08_008 crossref_primary_10_1109_LSENS_2020_3008595 crossref_primary_10_3390_app142311202 crossref_primary_10_1038_s41598_019_56927_5 crossref_primary_10_1109_ACCESS_2019_2900719 crossref_primary_10_52547_jsdp_18_2_163 crossref_primary_10_1016_j_jhydrol_2024_131863 crossref_primary_10_3390_s19112558 crossref_primary_10_1007_s42417_022_00501_3 crossref_primary_10_1109_TBCAS_2019_2930215 crossref_primary_10_1109_JSEN_2017_2772031 crossref_primary_10_1109_ACCESS_2022_3178710 crossref_primary_10_1541_ieejeiss_142_543 crossref_primary_10_1016_j_neucom_2017_09_069 crossref_primary_10_3390_rs15194857 crossref_primary_10_1016_j_measurement_2021_110040 crossref_primary_10_1016_j_irbm_2019_12_001 crossref_primary_10_1007_s11042_020_09938_8 crossref_primary_10_3389_fnins_2021_761127 crossref_primary_10_1007_s42452_020_3058_8 crossref_primary_10_1109_TBCAS_2023_3292469 crossref_primary_10_1007_s11265_021_01676_w crossref_primary_10_3390_s19010122 crossref_primary_10_1007_s10489_021_02309_2 crossref_primary_10_1016_j_knosys_2021_107187 crossref_primary_10_3390_app14167377 crossref_primary_10_1109_JSEN_2018_2877055 crossref_primary_10_1109_TPAMI_2023_3342828 crossref_primary_10_1007_s11280_019_00776_9 crossref_primary_10_1016_j_asoc_2022_109552 crossref_primary_10_1016_j_jksuci_2023_101763 crossref_primary_10_3390_app112110420 crossref_primary_10_1587_transinf_2017EDP7285 crossref_primary_10_20965_jrm_2022_p0339 crossref_primary_10_1515_bmt_2016_0156 crossref_primary_10_1186_s12911_021_01546_2 crossref_primary_10_1007_s11042_022_14302_z crossref_primary_10_1016_j_ins_2022_07_074 crossref_primary_10_1021_acs_energyfuels_4c05402 crossref_primary_10_1109_ACCESS_2021_3055280 crossref_primary_10_1016_j_inpa_2022_07_004 crossref_primary_10_1016_j_neucom_2020_08_050 crossref_primary_10_1016_j_bspc_2022_104388 crossref_primary_10_1515_eqc_2023_0001 crossref_primary_10_1109_JBHI_2023_3325540 crossref_primary_10_1098_rsif_2017_0821 crossref_primary_10_1109_ACCESS_2021_3092435 crossref_primary_10_18359_rcin_4156 crossref_primary_10_1145_3689947 crossref_primary_10_1016_j_inffus_2019_06_024 crossref_primary_10_1002_adma_201905522 crossref_primary_10_1016_j_inffus_2019_06_021 crossref_primary_10_3390_mi14061155 crossref_primary_10_1088_2515_7647_ad5776 crossref_primary_10_3390_app9040702 crossref_primary_10_1016_j_bspc_2019_101700 crossref_primary_10_3390_s25051400 crossref_primary_10_1109_TIM_2021_3109396 crossref_primary_10_3390_s24144627 crossref_primary_10_1016_j_bspc_2020_101952 crossref_primary_10_1016_j_knosys_2022_109021 crossref_primary_10_3390_s20144017 crossref_primary_10_1016_j_compbiomed_2020_103800 crossref_primary_10_1016_j_cmpb_2020_105640 crossref_primary_10_1016_j_neucom_2018_06_068 crossref_primary_10_1109_TCDS_2022_3153676 crossref_primary_10_1109_TBCAS_2022_3189364 crossref_primary_10_1016_j_cmpb_2020_105639 crossref_primary_10_1016_j_cmpb_2021_105931 crossref_primary_10_1038_s41598_021_94363_6 crossref_primary_10_1016_j_artmed_2024_102865 crossref_primary_10_1109_TFUZZ_2024_3388023 crossref_primary_10_1007_s11042_023_17997_w crossref_primary_10_2196_17037 crossref_primary_10_1007_s12083_019_00733_3 crossref_primary_10_1007_s00202_019_00808_7 crossref_primary_10_3233_JIFS_191135 crossref_primary_10_1007_s11227_019_03062_7 crossref_primary_10_3390_s24072235 crossref_primary_10_1007_s10489_023_05200_4 crossref_primary_10_1109_ACCESS_2019_2920900 crossref_primary_10_1109_ACCESS_2020_2987930 crossref_primary_10_1109_JBHI_2019_2911367 crossref_primary_10_1109_TNSRE_2023_3272887 crossref_primary_10_1038_s41598_022_17124_z crossref_primary_10_1016_j_hrthm_2020_02_015 crossref_primary_10_1109_JBHI_2018_2871510 crossref_primary_10_1007_s11440_023_01935_z crossref_primary_10_1016_j_bbe_2019_06_001 crossref_primary_10_3390_s20102875 crossref_primary_10_1109_TKDE_2021_3140058 crossref_primary_10_1007_s11760_022_02315_y crossref_primary_10_1142_S1469026816500218 crossref_primary_10_1016_j_asoc_2019_105778 crossref_primary_10_1007_s00500_023_07861_2 crossref_primary_10_1088_1361_6579_ac3e88 crossref_primary_10_1109_ACCESS_2019_2960116 crossref_primary_10_1007_s13042_021_01389_3 crossref_primary_10_1109_TBME_2020_3024970 crossref_primary_10_1109_ACCESS_2021_3113055 crossref_primary_10_1016_j_eswa_2022_119162 crossref_primary_10_1007_s41060_020_00239_9 crossref_primary_10_1109_TBME_2020_3041571 crossref_primary_10_1016_j_bspc_2022_103493 crossref_primary_10_1109_ACCESS_2022_3192390 crossref_primary_10_1109_ACCESS_2021_3088783 crossref_primary_10_1109_JSEN_2019_2944157 crossref_primary_10_1007_s00521_021_06575_6 crossref_primary_10_4103_jmss_jmss_12_22 crossref_primary_10_1016_j_compbiomed_2024_109271 crossref_primary_10_1016_j_bspc_2024_106097 crossref_primary_10_1088_1361_6579_ab17f0 crossref_primary_10_2139_ssrn_4132904 crossref_primary_10_1145_3476987 crossref_primary_10_1007_s13369_022_06731_7 crossref_primary_10_1109_TGRS_2023_3348931 crossref_primary_10_3389_fcvm_2022_857019 crossref_primary_10_1109_JSEN_2020_3028738 crossref_primary_10_1016_j_measurement_2022_110749 crossref_primary_10_1016_j_compbiomed_2022_105345 crossref_primary_10_1016_j_bspc_2022_103654 crossref_primary_10_3390_math9182261 crossref_primary_10_1016_j_eswa_2023_122449 crossref_primary_10_1109_JIOT_2023_3327738 crossref_primary_10_7717_peerj_cs_825 crossref_primary_10_1016_j_compbiomed_2018_06_028 crossref_primary_10_5369_JSST_2019_29_1_19 crossref_primary_10_1109_JBHI_2020_2980979 crossref_primary_10_1049_ntw2_12018 crossref_primary_10_1109_ACCESS_2016_2608777 crossref_primary_10_1049_gtd2_12073 crossref_primary_10_1109_ACCESS_2020_3040486 crossref_primary_10_1109_TBME_2016_2539421 crossref_primary_10_1016_j_apt_2024_104337 crossref_primary_10_1016_j_cogsys_2018_12_007 crossref_primary_10_1002_rcs_2379 crossref_primary_10_1109_ACCESS_2021_3069827 crossref_primary_10_1038_s41598_023_49739_1 crossref_primary_10_1109_TFUZZ_2024_3416217 crossref_primary_10_1007_s13369_021_05782_6 crossref_primary_10_1016_j_measurement_2021_110686 crossref_primary_10_1177_14759217221098569 crossref_primary_10_1016_j_artmed_2021_102139 crossref_primary_10_1007_s10840_022_01245_6 crossref_primary_10_1109_JSEN_2021_3059028 crossref_primary_10_1007_s13246_021_01071_6 crossref_primary_10_1109_TBCAS_2020_2974154 crossref_primary_10_1007_s12206_023_1013_5 crossref_primary_10_1265_jjh_21004 crossref_primary_10_1016_j_artmed_2021_102130 crossref_primary_10_3390_app14219936 crossref_primary_10_1007_s11760_022_02300_5 crossref_primary_10_1093_eurjcn_zvac053 crossref_primary_10_3390_s25061864 crossref_primary_10_3390_s21030951 crossref_primary_10_1142_S0218001424510169 crossref_primary_10_1016_j_inffus_2020_11_008 crossref_primary_10_1016_j_ifacol_2019_11_418 crossref_primary_10_1016_j_compbiomed_2018_06_002 crossref_primary_10_1109_RBME_2018_2885714 crossref_primary_10_1016_j_cmpb_2019_06_021 crossref_primary_10_1109_TBME_2016_2607020 crossref_primary_10_1088_1361_6579_ad0ab7 crossref_primary_10_1016_j_eswa_2023_120484 crossref_primary_10_1109_TII_2019_2909730 crossref_primary_10_1016_j_physc_2023_1354430 crossref_primary_10_3390_s21051887 crossref_primary_10_1155_2018_9128054 crossref_primary_10_1111_mice_13195 crossref_primary_10_1016_j_bspc_2022_103690 crossref_primary_10_1088_1361_6579_ab15a2 crossref_primary_10_1109_TBME_2022_3187874 crossref_primary_10_3390_a17020078 crossref_primary_10_3390_s22134960 crossref_primary_10_1016_j_artmed_2024_102809 crossref_primary_10_1016_j_eswa_2023_120019 crossref_primary_10_3390_bioengineering9040152 crossref_primary_10_1016_j_cmpb_2020_105607 crossref_primary_10_1109_TCSI_2023_3294181 crossref_primary_10_1016_j_ins_2017_04_012 crossref_primary_10_3390_buildings12111916 crossref_primary_10_35784_iapgos_6045 crossref_primary_10_7240_jeps_578024 crossref_primary_10_1016_j_asoc_2022_109147 crossref_primary_10_1007_s00521_020_05393_6 crossref_primary_10_1109_ACCESS_2019_2943197 crossref_primary_10_1016_j_engappai_2022_105799 crossref_primary_10_3390_s22072467 crossref_primary_10_1111_resp_13564 crossref_primary_10_2196_16113 crossref_primary_10_1007_s13239_021_00599_8 crossref_primary_10_1016_j_bspc_2021_103221 crossref_primary_10_1016_j_cmpb_2021_106057 crossref_primary_10_1007_s11042_022_14233_9 crossref_primary_10_1109_ACCESS_2021_3098986 crossref_primary_10_3390_app13084964 crossref_primary_10_1016_j_bspc_2024_106348 crossref_primary_10_1155_2021_6649970 crossref_primary_10_1109_TCYB_2020_3013251 crossref_primary_10_1109_ACCESS_2020_3009149 crossref_primary_10_1109_ACCESS_2024_3516495 crossref_primary_10_1109_ACCESS_2019_2938617 crossref_primary_10_1109_TIM_2025_3547110 crossref_primary_10_1109_ACCESS_2019_2939947 crossref_primary_10_1109_ACCESS_2021_3095248 crossref_primary_10_1016_j_compbiomed_2022_106465 crossref_primary_10_1109_JSEN_2023_3300752 crossref_primary_10_1109_JSSC_2022_3215670 crossref_primary_10_1111_mice_12517 crossref_primary_10_1007_s12652_019_01195_4 crossref_primary_10_1109_ACCESS_2019_2927726 crossref_primary_10_25046_aj090302 crossref_primary_10_1093_postmj_qgad095 crossref_primary_10_1016_j_cogsys_2018_07_004 crossref_primary_10_1109_ACCESS_2020_3026968 crossref_primary_10_1016_j_bspc_2020_102068 crossref_primary_10_1109_ACCESS_2025_3544493 crossref_primary_10_3390_s21196407 crossref_primary_10_1038_s41524_022_00808_5 crossref_primary_10_1109_JIOT_2021_3132017 crossref_primary_10_1002_hcs2_31 crossref_primary_10_1109_ACCESS_2024_3494254 crossref_primary_10_1111_jocs_15417 crossref_primary_10_1016_j_eswa_2023_121497 crossref_primary_10_3390_make3010011 crossref_primary_10_1007_s11831_018_9257_4 crossref_primary_10_1109_ACCESS_2020_3016938 crossref_primary_10_1109_ACCESS_2024_3514093 crossref_primary_10_1007_s12652_021_03492_3 crossref_primary_10_1109_ACCESS_2018_2878865 crossref_primary_10_1109_ACCESS_2022_3183968 crossref_primary_10_1016_j_bspc_2021_103228 crossref_primary_10_1109_TCAD_2022_3162182 crossref_primary_10_1007_s00432_018_02834_7 crossref_primary_10_1109_ACCESS_2023_3265305 crossref_primary_10_2196_29434 crossref_primary_10_1109_TIM_2022_3214265 crossref_primary_10_1007_s42600_022_00198_z crossref_primary_10_1016_j_irbm_2021_04_002 crossref_primary_10_1038_s41746_020_0276_9 crossref_primary_10_2118_219448_PA crossref_primary_10_1145_3598301 crossref_primary_10_1016_j_bspc_2024_107468 crossref_primary_10_3390_informatics7040049 crossref_primary_10_1007_s41060_021_00265_1 crossref_primary_10_1016_j_bspc_2020_102054 crossref_primary_10_1109_ACCESS_2020_2974712 crossref_primary_10_1155_2022_7401175 crossref_primary_10_1109_JBHI_2024_3456028 crossref_primary_10_1002_adfm_202316673 crossref_primary_10_1016_j_bspc_2019_04_003 crossref_primary_10_1016_j_isatra_2023_02_028 crossref_primary_10_1109_ACCESS_2017_2777003 crossref_primary_10_2514_1_J063222 crossref_primary_10_1007_s10921_023_01021_0 crossref_primary_10_1177_14759217211023934 crossref_primary_10_3390_s22165983 crossref_primary_10_1016_j_knosys_2023_110298 crossref_primary_10_1088_1361_6579_aad9ee crossref_primary_10_1109_TBME_2021_3061405 crossref_primary_10_1007_s40998_023_00633_6 crossref_primary_10_1109_ACCESS_2019_2893927 crossref_primary_10_1016_j_cvdhj_2020_04_001 crossref_primary_10_1016_j_eswa_2018_08_011 crossref_primary_10_1515_bmt_2019_0306 crossref_primary_10_3389_fnins_2024_1402646 crossref_primary_10_3390_s23020854 crossref_primary_10_1016_j_compchemeng_2021_107547 crossref_primary_10_1155_2021_9913127 crossref_primary_10_1007_s11356_021_17177_z crossref_primary_10_1088_1361_6501_ac51a3 crossref_primary_10_1007_s00202_021_01309_2 crossref_primary_10_1088_1742_6596_1544_1_012109 crossref_primary_10_1080_10255842_2023_2301414 crossref_primary_10_1109_LSENS_2024_3450176 crossref_primary_10_3390_app10020483 crossref_primary_10_1007_s10916_019_1511_2 crossref_primary_10_3390_s22062230 crossref_primary_10_1155_2022_2449956 crossref_primary_10_1016_j_bspc_2025_107516 crossref_primary_10_1088_1742_6596_1717_1_012040 crossref_primary_10_1109_ACCESS_2021_3119630 crossref_primary_10_3390_bioengineering10070796 crossref_primary_10_1016_j_bspc_2021_103424 crossref_primary_10_1016_j_cmpb_2021_106284 crossref_primary_10_1016_j_engappai_2024_109455 crossref_primary_10_1016_j_bbe_2022_03_006 crossref_primary_10_1016_j_knosys_2021_107508 crossref_primary_10_3389_fphys_2017_01096 crossref_primary_10_1038_s41598_022_21663_w crossref_primary_10_1145_3550322 crossref_primary_10_20535_2523_4455_2018_23_3_125236 crossref_primary_10_1109_LSP_2021_3114119 crossref_primary_10_3390_s23084027 crossref_primary_10_1109_LSENS_2024_3355710 crossref_primary_10_1007_s00521_023_08534_9 crossref_primary_10_1007_s40846_024_00872_w crossref_primary_10_1007_s11063_022_10949_9 crossref_primary_10_1109_TIE_2017_2764861 crossref_primary_10_1016_j_bspc_2024_106968 crossref_primary_10_1038_s41598_019_57025_2 crossref_primary_10_32604_cmc_2022_029227 crossref_primary_10_1016_j_ymssp_2024_111412 crossref_primary_10_1249_MSS_0000000000002705 crossref_primary_10_3390_math11030562 crossref_primary_10_3390_s24134376 crossref_primary_10_1109_ACCESS_2019_2890865 crossref_primary_10_1088_1361_6560_abcde8 crossref_primary_10_1016_j_chaos_2021_111446 crossref_primary_10_1007_s11265_018_1378_3 crossref_primary_10_3390_en16176172 crossref_primary_10_1109_ACCESS_2017_2766523 crossref_primary_10_1007_s40846_018_0389_7 crossref_primary_10_1016_j_eswa_2020_113411 crossref_primary_10_1016_j_artmed_2018_04_003 crossref_primary_10_1016_j_eswa_2022_118410 crossref_primary_10_1109_TBCAS_2021_3113665 crossref_primary_10_1109_RBME_2020_2993591 crossref_primary_10_3390_s19183851 crossref_primary_10_1016_j_neucom_2018_03_074 crossref_primary_10_1038_s41467_024_53517_6 crossref_primary_10_3390_s20092710 crossref_primary_10_1016_j_bspc_2020_102262 crossref_primary_10_1007_s40799_020_00421_5 crossref_primary_10_1016_j_sbsr_2021_100398 crossref_primary_10_1016_j_micpro_2022_104724 crossref_primary_10_1109_ACCESS_2020_3018704 crossref_primary_10_1061_JCCEE5_CPENG_5939 crossref_primary_10_1109_ACCESS_2023_3243547 crossref_primary_10_1016_j_autcon_2022_104271 crossref_primary_10_1109_TNSE_2021_3063174 crossref_primary_10_1007_s13349_020_00434_z crossref_primary_10_1371_journal_pone_0216756 crossref_primary_10_1007_s41870_022_01071_z crossref_primary_10_1109_ACCESS_2019_2955555 crossref_primary_10_1016_j_knosys_2017_06_003 crossref_primary_10_32604_cmc_2023_040329 crossref_primary_10_14801_jkiit_2021_19_10_99 crossref_primary_10_3390_s20113069 crossref_primary_10_3390_s22239347 crossref_primary_10_1038_s41598_024_53142_9 crossref_primary_10_1109_TAFFC_2022_3179478 crossref_primary_10_1016_j_neuri_2022_100087 crossref_primary_10_1016_j_bspc_2019_101597 crossref_primary_10_1016_j_cmpb_2021_106483 crossref_primary_10_1007_s40012_019_00255_6 crossref_primary_10_1109_JSEN_2020_3034742 crossref_primary_10_3390_healthcare11071000 crossref_primary_10_3390_s24113426 crossref_primary_10_1088_1741_4326_ab6c7a crossref_primary_10_1016_j_ins_2023_119230 crossref_primary_10_1007_s11668_022_01469_8 crossref_primary_10_3390_electronics10172052 crossref_primary_10_1080_19475705_2021_1968043 crossref_primary_10_3390_pr8010073 crossref_primary_10_1016_j_neunet_2023_03_004 crossref_primary_10_1109_JSEN_2024_3514094 crossref_primary_10_3389_fphys_2020_569050 crossref_primary_10_1016_j_asoc_2024_112024 crossref_primary_10_1109_ACCESS_2022_3181727 crossref_primary_10_1016_j_bspc_2020_102200 crossref_primary_10_1109_TETC_2022_3143154 crossref_primary_10_1109_JIOT_2019_2907580 crossref_primary_10_1142_S0219519421400583 crossref_primary_10_4018_IJSI_315659 crossref_primary_10_1109_ACCESS_2020_3001284 crossref_primary_10_1109_LSENS_2023_3315554 crossref_primary_10_3390_computers13050109 crossref_primary_10_3390_app142311167 crossref_primary_10_1109_JBHI_2022_3221464 crossref_primary_10_1109_ACCESS_2021_3097614 crossref_primary_10_1134_S1560090421060117 crossref_primary_10_1016_j_eswa_2021_114809 crossref_primary_10_1016_j_patrec_2020_04_022 crossref_primary_10_3390_diagnostics12092149 crossref_primary_10_3389_fnins_2021_611300 crossref_primary_10_1109_JBHI_2019_2919732 crossref_primary_10_1177_20552076241287356 crossref_primary_10_1007_s00521_021_06426_4 crossref_primary_10_1587_transcom_2020SEP0002 crossref_primary_10_1088_1361_6579_ab87b4 crossref_primary_10_1016_j_ins_2021_06_009 crossref_primary_10_1109_ACCESS_2019_2954294 crossref_primary_10_3389_fcvm_2022_983543 crossref_primary_10_1109_ACCESS_2018_2886825 crossref_primary_10_1109_JSEN_2017_2780178 crossref_primary_10_1109_ACCESS_2022_3179407 crossref_primary_10_1016_j_eswa_2018_07_030 crossref_primary_10_1155_2022_2323625 crossref_primary_10_3390_s18041005 crossref_primary_10_1038_s41598_020_78184_7 crossref_primary_10_1007_s11831_025_10251_6 crossref_primary_10_1016_j_engappai_2023_106062 crossref_primary_10_1109_ACCESS_2019_2948857 crossref_primary_10_1108_DTA_05_2020_0108 crossref_primary_10_1016_j_enconman_2019_06_062 crossref_primary_10_1016_j_promfg_2021_10_017 crossref_primary_10_1016_j_future_2020_02_068 crossref_primary_10_1155_2021_6665357 crossref_primary_10_1016_j_engappai_2023_107599 crossref_primary_10_3390_electronics9060951 crossref_primary_10_1016_j_jelectrocard_2021_04_016 crossref_primary_10_1109_ACCESS_2020_2964298 crossref_primary_10_1109_TBCAS_2021_3137646 crossref_primary_10_1117_1_JMI_10_6_066003 crossref_primary_10_1016_j_ins_2020_10_014 crossref_primary_10_1109_JBHI_2017_2771768 crossref_primary_10_1016_j_scitotenv_2024_172822 crossref_primary_10_1142_S0129065724500047 crossref_primary_10_1016_j_ipej_2024_06_003 crossref_primary_10_1109_JBHI_2019_2942938 crossref_primary_10_1155_2022_2205460 crossref_primary_10_1016_j_bbe_2020_02_004 crossref_primary_10_1016_j_ahjo_2022_100129 crossref_primary_10_1016_j_patcog_2018_11_019 crossref_primary_10_1016_j_ijmedinf_2017_10_008 crossref_primary_10_1080_00207543_2020_1733701 crossref_primary_10_3389_fphy_2019_00103 crossref_primary_10_3390_app13010017 crossref_primary_10_3390_s21175936 crossref_primary_10_3389_fphys_2023_1113524 crossref_primary_10_1088_1361_6579_ac826e crossref_primary_10_1038_s41598_017_09544_z crossref_primary_10_1155_2021_6624829 crossref_primary_10_1109_TBCAS_2023_3296529 crossref_primary_10_1109_ACCESS_2020_3036078 crossref_primary_10_1142_S0219519420500463 crossref_primary_10_1016_j_engappai_2022_104904 crossref_primary_10_1109_ACCESS_2020_2990607 crossref_primary_10_3390_s21186263 crossref_primary_10_1016_j_neucom_2020_01_019 crossref_primary_10_1007_s00521_018_3576_0 crossref_primary_10_1109_JSEN_2018_2871203 crossref_primary_10_1109_LSP_2019_2957924 crossref_primary_10_1016_j_eswa_2019_112821 crossref_primary_10_1016_j_jvcir_2020_103018 crossref_primary_10_1109_TIM_2024_3481575 crossref_primary_10_1016_j_egyr_2024_08_008 crossref_primary_10_3389_fncom_2020_564015 crossref_primary_10_1109_ACCESS_2023_3287094 crossref_primary_10_1109_TBCAS_2019_2948920 crossref_primary_10_1016_j_measurement_2022_111984 crossref_primary_10_3390_app14010342 crossref_primary_10_1016_j_eswa_2022_119221 crossref_primary_10_1016_j_procs_2022_09_177 crossref_primary_10_1016_j_jfca_2025_107355 crossref_primary_10_1109_TBCAS_2022_3196165 crossref_primary_10_1016_j_irbm_2020_07_002 crossref_primary_10_1109_TIM_2025_3540129 crossref_primary_10_1016_j_cmpb_2021_106518 crossref_primary_10_32604_cmc_2024_050931 crossref_primary_10_1109_JSEN_2019_2910853 crossref_primary_10_1016_j_jpdc_2018_08_010 crossref_primary_10_1109_JBHI_2020_3035191 crossref_primary_10_3390_s21186043 crossref_primary_10_1038_s41598_023_48751_9 crossref_primary_10_1109_ACCESS_2024_3364115 crossref_primary_10_1007_s11042_021_10945_6 crossref_primary_10_1166_jmihi_2021_3684 crossref_primary_10_1080_08839514_2021_2018183 crossref_primary_10_1109_ACCESS_2020_2998788 crossref_primary_10_1016_j_jacc_2018_03_521 crossref_primary_10_1049_iet_gtd_2020_0773 crossref_primary_10_1109_ACCESS_2019_2916141 crossref_primary_10_1109_TCAD_2018_2871819 crossref_primary_10_1063_5_0046582 crossref_primary_10_1016_j_cmpb_2018_11_005 crossref_primary_10_3390_bios12050299 crossref_primary_10_3390_s22020671 crossref_primary_10_1155_2022_3561147 crossref_primary_10_1109_TPWRD_2019_2922480 crossref_primary_10_1007_s11042_023_17410_6 crossref_primary_10_1016_j_bspc_2023_104756 crossref_primary_10_1016_j_cmpbup_2023_100097 crossref_primary_10_1088_1402_4896_ad155d crossref_primary_10_1016_j_eja_2024_127485 crossref_primary_10_1007_s13246_021_01072_5 crossref_primary_10_1016_j_eswa_2024_125482 crossref_primary_10_1016_j_ins_2018_06_062 crossref_primary_10_3390_s20216318 crossref_primary_10_3390_app8091590 crossref_primary_10_1109_TIE_2021_3118387 crossref_primary_10_1016_j_asoc_2023_110919 crossref_primary_10_1016_j_jhazmat_2024_135032 crossref_primary_10_1016_j_bspc_2020_101874 crossref_primary_10_1111_exsy_12765 crossref_primary_10_1155_2021_7167891 crossref_primary_10_3390_app11031125 crossref_primary_10_1016_j_cmpb_2025_108606 crossref_primary_10_1016_j_ins_2022_01_030 crossref_primary_10_4108_eetpht_10_6421 crossref_primary_10_1016_j_eswa_2023_122960 crossref_primary_10_1145_3297711 crossref_primary_10_1109_TBME_2018_2854899 crossref_primary_10_1016_j_neucom_2021_03_111 crossref_primary_10_1109_ACCESS_2020_3014495 crossref_primary_10_1016_j_bspc_2023_105677 crossref_primary_10_1016_j_eja_2020_126204 crossref_primary_10_1016_j_eswa_2020_113571 crossref_primary_10_1109_JSEN_2021_3137992 crossref_primary_10_1016_j_eswa_2022_118178 crossref_primary_10_1007_s11760_024_03686_0 crossref_primary_10_1109_ACCESS_2020_2975258 crossref_primary_10_1016_j_ymssp_2020_107077 crossref_primary_10_1016_j_jclepro_2024_142381 crossref_primary_10_1007_s11042_023_17095_x crossref_primary_10_1088_1361_6579_ac10aa crossref_primary_10_1109_TAI_2022_3159505 crossref_primary_10_1016_j_mejo_2022_105492 crossref_primary_10_1016_j_procs_2020_03_340 crossref_primary_10_1088_1742_6596_2265_3_032088 crossref_primary_10_1016_j_bspc_2023_105424 crossref_primary_10_1109_TAES_2022_3182303 crossref_primary_10_1049_iet_rsn_2018_5453 crossref_primary_10_3390_electronics11121889 crossref_primary_10_1109_RBME_2018_2810957 crossref_primary_10_1109_TBME_2019_2926104 crossref_primary_10_1016_j_conbuildmat_2024_139056 crossref_primary_10_1049_iet_its_2020_0105 crossref_primary_10_1109_TIM_2022_3146623 crossref_primary_10_3390_s24248124 crossref_primary_10_1002_mop_33314 crossref_primary_10_1115_1_4041962 crossref_primary_10_1155_2021_3801675 crossref_primary_10_3390_app10134612 crossref_primary_10_1007_s12652_021_03456_7 crossref_primary_10_1177_14759217221137931 crossref_primary_10_1016_j_compbiomed_2019_103448 crossref_primary_10_1007_s11069_022_05325_8 crossref_primary_10_1016_j_saa_2022_122221 crossref_primary_10_1002_ima_22940 crossref_primary_10_1088_1361_6579_ac58de crossref_primary_10_1007_s11831_023_09916_x crossref_primary_10_1007_s12652_020_02110_y crossref_primary_10_1049_htl_2020_0033 crossref_primary_10_1109_JBHI_2016_2631247 crossref_primary_10_3349_ymj_2022_63_S93 crossref_primary_10_1007_s42484_024_00207_7 crossref_primary_10_1016_j_artmed_2020_101963 crossref_primary_10_1109_TPWRD_2019_2901594 crossref_primary_10_1016_j_engstruct_2022_114172 crossref_primary_10_1039_D0CC07882D crossref_primary_10_3390_s18072021 crossref_primary_10_3389_fphys_2022_982537 crossref_primary_10_1142_S0129065721500544 crossref_primary_10_1515_jee_2017_0064 crossref_primary_10_1016_j_cmpb_2023_107784 crossref_primary_10_1007_s00034_023_02550_9 crossref_primary_10_3390_biomedicines11041138 crossref_primary_10_1109_JBHI_2021_3061114 crossref_primary_10_1587_elex_14_20170984 crossref_primary_10_1016_j_bspc_2019_101819 crossref_primary_10_1016_j_asoc_2024_111643 crossref_primary_10_3390_math10152786 crossref_primary_10_1007_s13755_023_00237_8 crossref_primary_10_1142_S0218001420580136 crossref_primary_10_1038_s41598_019_51269_8 crossref_primary_10_1088_2632_2153_abcf89 crossref_primary_10_1109_ACCESS_2018_2869943 crossref_primary_10_1109_JIOT_2020_3019732 crossref_primary_10_3389_fphys_2023_1118360 crossref_primary_10_1016_j_jprocont_2020_01_004 crossref_primary_10_1177_14680874211030878 crossref_primary_10_1016_j_mejo_2021_105188 crossref_primary_10_1007_s11042_018_6005_6 crossref_primary_10_3390_app122412957 crossref_primary_10_1152_ajpheart_00149_2024 crossref_primary_10_3233_NRE_192996 crossref_primary_10_1177_14759217211065009 crossref_primary_10_3233_JIFS_211718 crossref_primary_10_1016_j_bspc_2022_104206 crossref_primary_10_1007_s40747_021_00371_4 crossref_primary_10_1109_TNNLS_2022_3158867 crossref_primary_10_1515_labmed_2022_0078 crossref_primary_10_1016_j_icheatmasstransfer_2024_107616 crossref_primary_10_3390_fi14090252 crossref_primary_10_1007_s00034_022_02120_5 crossref_primary_10_3390_app14167227 crossref_primary_10_1109_LSENS_2024_3523427 crossref_primary_10_3390_s18093149 crossref_primary_10_1109_ACCESS_2021_3076683 crossref_primary_10_1016_j_bbe_2022_02_006 crossref_primary_10_1007_s40031_024_01167_z crossref_primary_10_1016_j_ijsolstr_2022_111521 crossref_primary_10_1016_j_jelectrocard_2019_11_046 crossref_primary_10_3390_s20226592 crossref_primary_10_3390_s19204408 crossref_primary_10_1111_anec_13056 crossref_primary_10_1109_TCBB_2019_2912955 crossref_primary_10_3346_jkms_2019_34_e64 crossref_primary_10_1038_s41598_022_16334_9 crossref_primary_10_1080_2150704X_2020_1809735 crossref_primary_10_1002_VIW_20230096 crossref_primary_10_1587_elex_18_20210104 crossref_primary_10_1016_j_conbuildmat_2022_127129 crossref_primary_10_1016_j_aej_2020_07_052 crossref_primary_10_1109_TII_2021_3115119 crossref_primary_10_1038_s41598_018_29690_2 crossref_primary_10_1109_TC_2021_3135752 crossref_primary_10_1142_S0219519419400086 crossref_primary_10_1016_j_eij_2024_100573 crossref_primary_10_1109_TCSII_2021_3091198 crossref_primary_10_1016_j_jsv_2016_10_043 crossref_primary_10_1109_TBME_2021_3088218 crossref_primary_10_1109_TIM_2021_3072144 crossref_primary_10_1007_s11042_021_11523_6 crossref_primary_10_1016_j_jvs_2021_02_050 crossref_primary_10_3390_s24247896 crossref_primary_10_3389_fphys_2021_672875 crossref_primary_10_1088_1361_6579_ac6e55 crossref_primary_10_1088_2057_1976_acbd53 crossref_primary_10_1159_000512985 crossref_primary_10_1007_s00521_021_06487_5 crossref_primary_10_3390_bioengineering5020035 crossref_primary_10_1038_s41598_024_60592_8 crossref_primary_10_1007_s40996_023_01287_4 crossref_primary_10_1016_j_asoc_2022_109481 crossref_primary_10_1016_j_bea_2022_100066 crossref_primary_10_1016_j_ndteint_2024_103089 crossref_primary_10_1002_dac_4685 crossref_primary_10_1016_j_cmpb_2018_04_005 crossref_primary_10_3390_rs13122375 crossref_primary_10_3233_THC_228022 crossref_primary_10_1587_transinf_2018EDL8046 crossref_primary_10_1016_j_cmpb_2020_105740 crossref_primary_10_1109_TNET_2021_3112480 crossref_primary_10_1002_mp_16534 crossref_primary_10_3390_jimaging7020026 crossref_primary_10_1016_j_measurement_2022_111978 crossref_primary_10_1016_j_bspc_2023_104725 crossref_primary_10_1109_TBCAS_2019_2953001 crossref_primary_10_1007_s12652_020_02003_0 crossref_primary_10_1111_anec_13028 crossref_primary_10_1109_TITS_2020_2995722 crossref_primary_10_1007_s11042_024_20073_6 crossref_primary_10_1016_j_eswax_2019_100003 crossref_primary_10_1155_2021_6691177 crossref_primary_10_1109_TAES_2022_3160134 crossref_primary_10_1109_TG_2018_2849942 crossref_primary_10_3389_fcvm_2024_1401143 crossref_primary_10_1007_s00034_024_02941_6 crossref_primary_10_1109_ACCESS_2018_2877587 crossref_primary_10_3390_rs12101685 crossref_primary_10_1109_JBHI_2021_3060433 crossref_primary_10_1016_j_knosys_2022_109151 crossref_primary_10_1016_j_eswa_2017_09_022 crossref_primary_10_1109_JBHI_2022_3171918 crossref_primary_10_1007_s11042_024_20084_3 crossref_primary_10_1109_ACCESS_2020_2964749 crossref_primary_10_1016_j_bios_2019_111336 crossref_primary_10_3390_s21217414 crossref_primary_10_3390_sym12111827 crossref_primary_10_3389_fnins_2023_1093865 crossref_primary_10_1016_j_bspc_2024_106693 crossref_primary_10_3390_s20051461 crossref_primary_10_1007_s11831_022_09823_7 crossref_primary_10_3389_fbioe_2023_1261022 crossref_primary_10_1016_j_cmpb_2018_07_015 crossref_primary_10_1016_j_cmpb_2022_107300 crossref_primary_10_1016_j_bspc_2024_106211 crossref_primary_10_1088_1361_6579_aac7b7 crossref_primary_10_1109_ACCESS_2019_2937875 crossref_primary_10_1007_s11235_023_01017_1 crossref_primary_10_3390_s21248169 crossref_primary_10_1038_s41598_023_38532_9 crossref_primary_10_1080_08839514_2018_1501910 crossref_primary_10_1371_journal_pone_0253200 crossref_primary_10_1007_s12652_020_02259_6 crossref_primary_10_1007_s12204_021_2371_8 crossref_primary_10_1109_TBME_2021_3090051 crossref_primary_10_1016_j_jelectrocard_2019_12_009 crossref_primary_10_1007_s13042_017_0677_5 crossref_primary_10_1109_ACCESS_2020_3009266 crossref_primary_10_1016_j_compbiomed_2020_103753 crossref_primary_10_1088_1361_6579_ac6aa2 crossref_primary_10_1016_j_compbiomed_2020_103999 crossref_primary_10_32604_csse_2023_031943 crossref_primary_10_1016_j_eswa_2021_115131 crossref_primary_10_3390_app9081526 crossref_primary_10_1016_j_bspc_2021_103328 crossref_primary_10_1016_j_eswa_2022_118933 crossref_primary_10_1007_s00500_022_07122_8 crossref_primary_10_1007_s13246_025_01525_1 crossref_primary_10_3390_mi12111282 crossref_primary_10_1109_TBME_2017_2756869 crossref_primary_10_1007_s11276_023_03566_4 crossref_primary_10_1186_s12911_021_01571_1 crossref_primary_10_1016_j_bspc_2023_105060 crossref_primary_10_1051_itmconf_20246401023 crossref_primary_10_1109_TCBB_2022_3140785 crossref_primary_10_1016_j_uclim_2023_101770 crossref_primary_10_1007_s13369_020_04546_y crossref_primary_10_1364_OE_481339 crossref_primary_10_3390_s24217033 crossref_primary_10_1016_j_compbiomed_2023_107503 crossref_primary_10_1007_s12065_020_00540_3 crossref_primary_10_1016_j_cmpb_2021_106191 crossref_primary_10_1016_j_cmpb_2019_02_005 crossref_primary_10_1088_1757_899X_1069_1_012034 crossref_primary_10_1109_JBHI_2023_3308856 crossref_primary_10_1109_TIE_2018_2833045 crossref_primary_10_3390_s20247307 crossref_primary_10_1109_JBHI_2020_2981526 crossref_primary_10_1016_j_jbi_2022_104009 crossref_primary_10_1145_3447394 crossref_primary_10_1016_j_ymssp_2020_107327 crossref_primary_10_1016_j_patrec_2018_03_028 crossref_primary_10_1109_TIE_2016_2582729 crossref_primary_10_3390_s21248197 crossref_primary_10_32604_iasc_2023_023817 crossref_primary_10_1016_j_bspc_2022_103649 crossref_primary_10_1007_s10489_022_04303_8 crossref_primary_10_3390_pr11020595 crossref_primary_10_3390_s24154978 crossref_primary_10_1080_10255842_2023_2265009 crossref_primary_10_1016_j_ins_2024_120239 crossref_primary_10_2139_ssrn_4176688 crossref_primary_10_1016_j_medengphy_2023_103964 crossref_primary_10_1088_1361_6579_ac7938 crossref_primary_10_1016_j_knosys_2019_105402 crossref_primary_10_1002_smr_2434 crossref_primary_10_1016_j_cmpb_2021_106379 crossref_primary_10_1016_j_bbe_2020_08_001 crossref_primary_10_3233_THC_218045 crossref_primary_10_1109_ACCESS_2018_2833841 crossref_primary_10_1016_j_infrared_2019_103075 crossref_primary_10_1016_j_bspc_2020_102170 crossref_primary_10_1007_s11042_021_11083_9 crossref_primary_10_15829_1560_4071_2020_3999 crossref_primary_10_3390_bios8040101 crossref_primary_10_3390_hearts5040037 crossref_primary_10_3390_app11156711 crossref_primary_10_1016_j_bspc_2021_102674 crossref_primary_10_7717_peerj_7731 crossref_primary_10_3390_s21113760 crossref_primary_10_1109_ACCESS_2020_3032251 crossref_primary_10_3390_math11143217 crossref_primary_10_1016_j_measurement_2023_113239 crossref_primary_10_1109_TIM_2023_3280510 crossref_primary_10_1038_s43856_024_00464_4 crossref_primary_10_3390_healthcare8040437 crossref_primary_10_3390_e21030305 crossref_primary_10_1007_s42979_024_03604_8 crossref_primary_10_14500_aro_11444 crossref_primary_10_1109_ACCESS_2022_3225651 crossref_primary_10_1109_JBHI_2017_2757510 crossref_primary_10_3390_s22010153 crossref_primary_10_1080_0951192X_2021_1901316 crossref_primary_10_1109_JBHI_2023_3286585 crossref_primary_10_1186_s13634_024_01187_3 crossref_primary_10_3390_s21155135 crossref_primary_10_1016_j_eswa_2023_120095 crossref_primary_10_54287_gujsa_1128006 crossref_primary_10_3390_electronics13020326 crossref_primary_10_1109_ACCESS_2023_3236242 crossref_primary_10_1016_j_bspc_2021_102461 crossref_primary_10_3390_app14188500 crossref_primary_10_1016_j_eswa_2021_116233 crossref_primary_10_1371_journal_pone_0317900 crossref_primary_10_1093_jigpal_jzae102 crossref_primary_10_1109_ACCESS_2019_2956179 crossref_primary_10_1109_TBME_2024_3408279 crossref_primary_10_1007_s42600_021_00176_x crossref_primary_10_1007_s00521_025_11092_x crossref_primary_10_1109_TIM_2022_3227606 crossref_primary_10_1109_TSM_2022_3216032 crossref_primary_10_1109_JBHI_2021_3138986 crossref_primary_10_1016_j_matpr_2020_07_088 crossref_primary_10_1016_j_ymssp_2020_107398 crossref_primary_10_1142_S0219519419500040 crossref_primary_10_1016_j_neucom_2020_07_045 crossref_primary_10_1177_1475921718804132 crossref_primary_10_1038_s41598_021_95947_y crossref_primary_10_3390_bioengineering9070268 crossref_primary_10_1007_s11042_023_17619_5 crossref_primary_10_1039_C9LC00597H crossref_primary_10_1016_j_artmed_2023_102489 crossref_primary_10_1177_14759217241239041 crossref_primary_10_3390_s24227207 crossref_primary_10_1016_j_eswa_2019_06_012 crossref_primary_10_3390_app10093304 crossref_primary_10_1177_1748006X21992886 crossref_primary_10_1016_j_bspc_2020_102142 crossref_primary_10_1007_s11036_019_01321_8 crossref_primary_10_3390_ma16041614 crossref_primary_10_1007_s11277_023_10607_w crossref_primary_10_1016_j_neucom_2021_04_104 crossref_primary_10_1371_journal_pone_0302639 crossref_primary_10_1016_j_comcom_2021_08_002 crossref_primary_10_1109_JBHI_2021_3098662 crossref_primary_10_1007_s13349_023_00690_9 crossref_primary_10_1016_j_bea_2023_100089 crossref_primary_10_1039_C9RA00805E crossref_primary_10_1016_j_bspc_2018_05_013 crossref_primary_10_1016_j_saa_2022_121560 crossref_primary_10_1016_j_bspc_2023_105463 crossref_primary_10_47164_ijngc_v14i2_1153 crossref_primary_10_1007_s10999_023_09692_3 crossref_primary_10_1016_j_isci_2022_105434 crossref_primary_10_1016_j_ymssp_2020_107181 crossref_primary_10_1109_TBCAS_2022_3152623 crossref_primary_10_1007_s00521_020_04961_0 crossref_primary_10_1109_TII_2021_3076513 crossref_primary_10_3390_bioengineering10020196 crossref_primary_10_1109_ACCESS_2019_2912519 crossref_primary_10_1109_JBHI_2017_2703115 crossref_primary_10_1109_TBCAS_2024_3435718 crossref_primary_10_4108_eetsis_v10i3_3219 crossref_primary_10_1109_ACCESS_2020_3038422 crossref_primary_10_1109_ACCESS_2020_2968744 crossref_primary_10_1109_ACCESS_2017_2743525 crossref_primary_10_1109_LSENS_2020_3006756 crossref_primary_10_1016_j_bspc_2023_105448 crossref_primary_10_1016_j_procir_2019_04_145 crossref_primary_10_1016_j_neucom_2020_07_056 crossref_primary_10_1021_acsomega_2c07609 crossref_primary_10_1016_j_saa_2018_10_028 crossref_primary_10_3233_JIFS_212373 crossref_primary_10_3390_jsan13050052 crossref_primary_10_1109_JTEHM_2021_3064675 crossref_primary_10_1007_s10916_018_0963_0 crossref_primary_10_1016_j_compbiomed_2019_103394 crossref_primary_10_1007_s42979_024_03245_x crossref_primary_10_1109_TIM_2022_3224535 crossref_primary_10_1016_j_eswa_2021_116040 crossref_primary_10_1177_01423312241252459 crossref_primary_10_1007_s11517_020_02292_9 crossref_primary_10_1109_ACCESS_2022_3177595 crossref_primary_10_1088_1361_665X_ad610c crossref_primary_10_1007_s00500_022_07729_x crossref_primary_10_1109_ACCESS_2018_2807700 crossref_primary_10_1016_j_eswa_2022_117499 crossref_primary_10_1016_j_bspc_2021_102843 crossref_primary_10_3390_e22060595 crossref_primary_10_1587_transinf_2019EDP7282 crossref_primary_10_1016_j_jsv_2018_03_008 crossref_primary_10_1016_j_ymssp_2021_108738 crossref_primary_10_1155_2021_5862017 crossref_primary_10_1007_s11042_020_09035_w crossref_primary_10_1016_j_bspc_2024_106668 crossref_primary_10_1016_j_bspc_2024_106422 crossref_primary_10_1364_OE_433917 crossref_primary_10_1007_s11265_019_01461_w crossref_primary_10_1016_j_fub_2024_100003 crossref_primary_10_1007_s12021_018_9397_6 crossref_primary_10_1016_j_inffus_2019_08_004 crossref_primary_10_1016_j_asoc_2020_107065 crossref_primary_10_3390_s23208525 crossref_primary_10_1371_journal_pone_0295653 crossref_primary_10_1016_j_eswa_2025_126824 crossref_primary_10_1016_j_neucom_2021_12_001 crossref_primary_10_1049_iet_its_2018_5290 crossref_primary_10_1109_JSEN_2022_3183136 crossref_primary_10_1109_ACCESS_2023_3312685 crossref_primary_10_1109_JIOT_2019_2961132 crossref_primary_10_1109_TBME_2021_3135622 crossref_primary_10_1038_s41591_018_0306_1 crossref_primary_10_1109_JBHI_2024_3481505 crossref_primary_10_1007_s00530_020_00713_1 crossref_primary_10_1371_journal_pone_0284791 crossref_primary_10_1109_ACCESS_2019_2933473 crossref_primary_10_3233_JIFS_201281 crossref_primary_10_1007_s11760_022_02155_w crossref_primary_10_1155_2018_7354081 crossref_primary_10_3390_electronics9010121 crossref_primary_10_1007_s10462_021_09999_7 |
Cites_doi | 10.1109/10.623058 10.1109/51.932724 10.1113/jphysiol.1959.sp006308 10.1109/10.362922 10.1109/10.740882 10.1109/TBME.2009.2013934 10.1109/TBME.1985.325532 10.1109/IEMBS.1989.96577 10.1109/10.58593 10.1109/TBME.2011.2113395 10.1109/TBME.2004.824138 10.1109/TNN.2007.900239 10.1109/TBME.2006.880879 10.1109/10.918594 10.1109/10.740880 10.1109/TBME.2012.2202662 10.1162/NECO_a_00052 10.1109/TBME.2004.827359 10.1109/TBME.2006.883802 10.1016/S0022-0736(87)80096-1 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2015.2468589 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 675 |
ExternalDocumentID | 4047692621 26285054 10_1109_TBME_2015_2468589 7202837 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-ac7585a07646ac9093c37da0c67c04bfca2a9196156284f8faae021039a55df03 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 09:07:10 EDT 2025 Mon Jun 30 08:25:54 EDT 2025 Thu Apr 03 07:00:07 EDT 2025 Thu Apr 24 22:55:42 EDT 2025 Tue Jul 01 03:28:27 EDT 2025 Wed Aug 27 02:53:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | real-time heart monitoring Convolutional neural networks (CNNs) patient-specific ECG classification |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-ac7585a07646ac9093c37da0c67c04bfca2a9196156284f8faae021039a55df03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26285054 |
PQID | 1787244351 |
PQPubID | 85474 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TBME_2015_2468589 crossref_citationtrail_10_1109_TBME_2015_2468589 ieee_primary_7202837 proquest_journals_1787244351 proquest_miscellaneous_1768562789 pubmed_primary_26285054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-March 2016-3-00 2016-Mar 20160301 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-March |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 hu (ref9) 1994; 26 ref11 ref2 ref1 ref16 ref18 hu (ref10) 1997; 44 (ref13) 1987 scherer (ref25) 0 ref24 ref23 kiranyaz (ref17) 2013 ref20 ref27 talmon (ref6) 1983 ref8 ref7 ref4 ref3 ref5 li (ref19) 1995; 42 krizhevsky (ref26) 0 wiesel (ref21) 1959; 148 mark (ref22) 0 |
References_xml | – volume: 44 start-page: 891 year: 1997 ident: ref10 article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.623058 – year: 2013 ident: ref17 publication-title: Multi-dimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition – ident: ref27 doi: 10.1109/51.932724 – year: 1987 ident: ref13 publication-title: Recommended Practice for Testing and Reporting Performance Results of Ventricular Arrhythmia Detection Algorithms – volume: 148 start-page: 574 year: 1959 ident: ref21 article-title: Receptive fields of single neurones in the cat's striate cortex publication-title: J Physiol doi: 10.1113/jphysiol.1959.sp006308 – volume: 42 start-page: 21 year: 1995 ident: ref19 article-title: Detection of ECG characteristic points using wavelet transforms publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.362922 – ident: ref4 doi: 10.1109/10.740882 – ident: ref16 doi: 10.1109/TBME.2009.2013934 – volume: 26 start-page: 66 year: 1994 ident: ref9 article-title: Applications of artificial neural networks for ECG signal detection and classification publication-title: J Electrocardiol – ident: ref23 doi: 10.1109/TBME.1985.325532 – ident: ref11 doi: 10.1109/IEMBS.1989.96577 – ident: ref7 doi: 10.1109/10.58593 – ident: ref20 doi: 10.1109/TBME.2011.2113395 – year: 0 ident: ref22 article-title: MIT-BIH Arrhythmia Database Directory – year: 1983 ident: ref6 publication-title: Pattern Recognition of the ECG – ident: ref8 doi: 10.1109/TBME.2004.824138 – start-page: 1106 year: 0 ident: ref26 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst Conf – ident: ref15 doi: 10.1109/TNN.2007.900239 – ident: ref3 doi: 10.1109/TBME.2006.880879 – ident: ref1 doi: 10.1109/10.918594 – ident: ref2 doi: 10.1109/10.740880 – ident: ref18 doi: 10.1109/TBME.2012.2202662 – ident: ref24 doi: 10.1162/NECO_a_00052 – ident: ref14 doi: 10.1109/TBME.2004.827359 – ident: ref12 doi: 10.1109/TBME.2006.883802 – ident: ref5 doi: 10.1016/S0022-0736(87)80096-1 – start-page: 92 year: 0 ident: ref25 article-title: Evaluation of pooling operations in convolutional architectures for object recognition publication-title: Proc Int Conf Artif Neural Netw |
SSID | ssj0014846 |
Score | 2.6709647 |
Snippet | Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive... This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. An adaptive implementation of 1-D... This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system.GOALThis paper presents a fast and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 664 |
SubjectTerms | Algorithms Classification Convolutional Neural Networks Databases, Factual Electrocardiography Electrocardiography - methods Feature extraction Humans Kernel Monitoring Neural networks Neural Networks (Computer) Neurons Patient-specific ECG classification Precision Medicine real-time heart monitoring Signal Processing, Computer-Assisted Training |
Title | Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/7202837 https://www.ncbi.nlm.nih.gov/pubmed/26285054 https://www.proquest.com/docview/1787244351 https://www.proquest.com/docview/1768562789 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9wwDLaABwQPMGBAgaEi8YTWI2nTpHlkt2No0iGEQOKtStNUQqDeNO6Q2K-fneYqhraJp7Zq2qS1Xdu1_RngmFulG-5Mgo4XOii6qBJdNAINOdLQplbcUKHw-FJe3Irvd_ndAnzua2Gccz75zA1o18fy64md0a-yU5WSNlSLsIiOW1er1UcMRNEV5TCOApxqESKYnOnTmy_jESVx5YNUENw6IYWmVDrIcvGHOvL9Vf5tanqVc74O4_liu0yTh8FsWg3srzc4ju99mg-wFmzP-Kxjlg1YcO0mrL5CJNyE5XGItW_B9TXakAmViMRXHfhq4pvVN_c2Hg2_xb6dJh152sbVS8yTr_Fw0j4HbsapCPrDb3yu-dNHuD0f3QwvktCBIbGZ0NPEWHInDFNSSGM105nNVG2YlcoyUTXWpEajDKMTiGquKRpjHDmRmTZ5Xjcs24aldtK6XYh5XtfGiIb5QKaSFTKJTJ2SLneVUUUEbE6I0gZ4cuqS8Vh6N4XpkshYEhnLQMYITvpLfnTYHP8bvEUk6AeGtx_BwZzaZZDep5LjVwzNniznERz1p1HuKJhiWjeZ0Ri8raQ64gh2Oi7p7z1nrr2_z7kPK7gy2WWyHcDS9OfMfULTZlodep7-DUfx728 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGkPh44GMbozCgSDwhekvafDSPcNw4YJ3QdJP2VqVpKiGmHmJ3SPDXY6e5ChAgntqqaZPWdm3X9s8Az7jTpuPeZuh4oYNiyiYzZSfQkCMNbVvNLRUKVydqfibencvzLXgx1sJ470PymZ_Qbojlt0u3pl9lhzonbaivwFXU-5IP1VpjzECUQ1kO4yjCuRExhsmZOVy8qmaUxiUnuSDAdcIKzal4kEnxi0IKHVb-bmwGpXN0G6rNcodck0-T9aqZuO-_ITn-7_PcgVvR-kxfDuxyF7Z8vwM3f8Ik3IFrVYy278LpKVqRGRWJpB8G-NUstKvvPrp0Nn2ThoaadBSomzbfUp69TqfL_mvkZ5yKwD_CJmSbX-7B2dFsMZ1nsQdD5gphVpl15FBYppVQ1hlmClfo1jKntGOi6ZzNrUEpRjcQFV1XdtZ6ciMLY6VsO1bcg-1-2fv7kHLZttaKjoVQplYNsonKvVZe-sbqMgG2IUTtIkA59cm4qIOjwkxNZKyJjHUkYwLPx0s-D-gc_xq8SyQYB8a3n8DBhtp1lN_LmuN3DA2fQvIEno6nUfIonGJ7v1zTGLytokriBPYHLhnvvWGuB3-e8wlcny-q4_r47cn7h3ADV6mGvLYD2F59WftHaOismseBv38A7znyuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Patient-Specific+ECG+Classification+by+1-D+Convolutional+Neural+Networks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kiranyaz%2C+Serkan&rft.au=Ince%2C+Turker&rft.au=Gabbouj%2C+Moncef&rft.date=2016-03-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=63&rft.issue=3&rft.spage=664&rft.epage=675&rft_id=info:doi/10.1109%2FTBME.2015.2468589&rft_id=info%3Apmid%2F26285054&rft.externalDocID=7202837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |