Current and Emerging Diagnostic Imaging-Based Techniques for Assessment of Osteoporosis and Fracture Risk
Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead t...
Saved in:
Published in | IEEE reviews in biomedical engineering Vol. 12; pp. 254 - 268 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead to high morbidity and socio-economic burden. Therefore, there is a need for early diagnosis of osteoporosis and prediction of fragility fracture risk. In this review, state of the art and recent advances in imaging techniques for diagnosis of osteoporosis and fracture risk assessment have been explored. Segmentation methods used to segment the regions of interest and texture analysis methods used for classification of healthy and osteoporotic subjects are also presented. Furthermore, challenges posed by the current diagnostic tools have been studied and feasible solutions to circumvent the limitations are discussed. Early diagnosis of osteoporosis and prediction of fracture risk require the development of highly precise and accurate low-cost diagnostic techniques that would help the elderly population in low economies. |
---|---|
AbstractList | Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead to high morbidity and socio-economic burden. Therefore, there is a need for early diagnosis of osteoporosis and prediction of fragility fracture risk. In this review, state of the art and recent advances in imaging techniques for diagnosis of osteoporosis and fracture risk assessment have been explored. Segmentation methods used to segment the regions of interest and texture analysis methods used for classification of healthy and osteoporotic subjects are also presented. Furthermore, challenges posed by the current diagnostic tools have been studied and feasible solutions to circumvent the limitations are discussed. Early diagnosis of osteoporosis and prediction of fracture risk require the development of highly precise and accurate low-cost diagnostic techniques that would help the elderly population in low economies. Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead to high morbidity and socio-economic burden. Therefore, there is a need for early diagnosis of osteoporosis and prediction of fragility fracture risk. In this review, state of the art and recent advances in imaging techniques for diagnosis of osteoporosis and fracture risk assessment have been explored. Segmentation methods used to segment the regions of interest and texture analysis methods used for classification of healthy and osteoporotic subjects are also presented. Furthermore, challenges posed by the current diagnostic tools have been studied and feasible solutions to circumvent the limitations are discussed. Early diagnosis of osteoporosis and prediction of fracture risk require the development of highly precise and accurate low-cost diagnostic techniques that would help the elderly population in low economies.Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead to high morbidity and socio-economic burden. Therefore, there is a need for early diagnosis of osteoporosis and prediction of fragility fracture risk. In this review, state of the art and recent advances in imaging techniques for diagnosis of osteoporosis and fracture risk assessment have been explored. Segmentation methods used to segment the regions of interest and texture analysis methods used for classification of healthy and osteoporotic subjects are also presented. Furthermore, challenges posed by the current diagnostic tools have been studied and feasible solutions to circumvent the limitations are discussed. Early diagnosis of osteoporosis and prediction of fracture risk require the development of highly precise and accurate low-cost diagnostic techniques that would help the elderly population in low economies. |
Author | Kocher, Michel S., Sumam David Areeckal, Anu Shaju |
Author_xml | – sequence: 1 givenname: Anu Shaju orcidid: 0000-0003-2939-822X surname: Areeckal fullname: Areeckal, Anu Shaju email: anu_shaju_ec13f06@nitk.edu.in organization: Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, India – sequence: 2 givenname: Michel surname: Kocher fullname: Kocher, Michel email: michel.kocher@heig-vd.ch organization: Department des Technologies Industrielles, Haute Ecole d'Ingenierie et de Gestion du Canton de Vaud (HEIG-VD), Yverdon-les-Bains, Switzerland – sequence: 3 givenname: Sumam David surname: S. fullname: S., Sumam David email: sumam@ieee.org organization: Dept. of Electron. & Commun. Eng., Nat. Inst. of Technol. Karnataka, Surathkal, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994405$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1UREvpD0BIyBIXLln8mdjHdtlCpaJKVTlbjjNZXDb2YjsH_j0Ou_TQA3OZkfW8M-N5X6OTEAMg9JaSFaVEf7q_-rZZMULViinJWkZeoDOqBW0oVfpkqXnX8Bqn6CLnR1JDio4q8gqdMq21EESeIb-eU4JQsA0D3kyQtj5s8WdvtyHm4h2-mezy1FzZDAN-APcj-F8zZDzGhC9zhpynRR9HfJcLxH1MMfv8t991sq7MCfC9zz_foJej3WW4OOZz9P1687D-2tzefblZX942jgtdGmuZVP0wggKntATRut5JywR3o9WMjZ3sKQjZEzWq0XaDHQYOtl5EdL2UPT9HHw999ykuixYz-exgt7MB4pwNI63iXLctqeiHZ-hjnFOo2xlGlZCdIkRV6v2RmvsJBrNPfrLpt_l3xArQA-Dq13OC8QmhxCxemcUrs3hljl5VTfdM43yxxcdQkvW7_yrfHZQeAJ4mKUFY5fkfsXGhPw |
CODEN | IRBECO |
CitedBy_id | crossref_primary_10_1002_jmri_27403 crossref_primary_10_1016_j_bone_2022_116653 crossref_primary_10_1007_s11082_023_06031_w crossref_primary_10_1007_s13369_021_05339_7 crossref_primary_10_1016_j_ijbiomac_2024_133821 crossref_primary_10_1007_s12596_023_01517_y crossref_primary_10_2174_1573405620666230608091911 crossref_primary_10_1007_s40520_019_01294_4 crossref_primary_10_1016_j_bspc_2024_106335 crossref_primary_10_1088_1742_6596_2571_1_012017 crossref_primary_10_1016_j_acra_2021_06_010 crossref_primary_10_1166_jbt_2022_2880 crossref_primary_10_3389_fnut_2024_1365587 crossref_primary_10_1007_s11517_020_02171_3 crossref_primary_10_1016_j_acra_2024_11_065 crossref_primary_10_1186_s12891_024_07526_7 crossref_primary_10_1007_s00521_024_10158_6 crossref_primary_10_1002_jccs_202400207 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2022043413 crossref_primary_10_3389_fbioe_2023_1054991 crossref_primary_10_1007_s00500_021_06519_1 |
Cites_doi | 10.5455/medarh.2018.72.46-50 10.1002/jbmr.2836 10.1371/journal.pone.0176685 10.1210/jc.2013-4507 10.1109/EMBC.2013.6610347 10.1109/34.927467 10.1117/12.878055 10.1136/bmj.e3427 10.1359/jbmr.080229 10.1359/jbmr.070315 10.1007/s00330-017-4904-y 10.1016/S0146-664X(75)80008-6 10.1259/dmfr.20160076 10.1002/jbmr.3002 10.21236/ADA083283 10.1016/j.compbiomed.2017.10.011 10.1016/j.imavis.2003.09.002 10.1016/j.jocd.2017.02.003 10.1177/230949900501300105 10.1359/jbmr.2000.15.4.691 10.1177/0954411914548700 10.1016/j.jot.2015.08.006 10.1210/jc.2016-3177 10.1016/j.jbiomech.2010.10.010 10.1007/s00198-017-4328-1 10.1016/j.bone.2007.11.001 10.1007/s00223-015-9952-1 10.1186/1471-2342-5-4 10.1007/s001980070088 10.1007/s00198-002-1358-z 10.1002/jmri.20807 10.1109/IEMBS.2008.4649193 10.1136/ard.2007.083618 10.1134/S1054661815020108 10.1093/ageing/afv108.02 10.1016/j.micron.2005.07.007 10.1109/BIBMW.2011.6112540 10.1118/1.1319375 10.1109/SITIS.2017.38 10.1097/01.rli.0000244343.27431.26 10.1016/j.bspc.2016.10.009 10.1359/jbmr.2001.16.4.697 10.1007/s00198-004-1829-5 10.1016/S8756-3282(02)00919-5 10.1097/00006254-200204000-00018 10.1016/j.bone.2005.06.024 10.1177/1759720X15621227 10.1007/s00198-016-3894-y 10.1007/s00198-007-0532-8 10.1007/s00198-004-1702-6 10.1007/s10044-012-0288-4 10.1002/jbmr.2998 10.1007/s10067-015-2943-9 10.1006/cviu.1995.1004 10.7763/IJCTE.2013.V5.760 10.1007/s40520-016-0562-1 10.23919/ICCAS.2017.8204241 10.2106/00004623-197052030-00005 10.1016/j.ecl.2016.09.005 10.1016/S0300-595X(73)80038-6 10.1007/s001980170072 10.1109/EMBC.2016.7590879 10.1016/0165-1684(94)90060-4 10.1590/1806-9282.62.04.368 10.1109/ISBI.2012.6235853 10.1118/1.3622600 10.1001/jama.297.4.387 10.1016/j.bone.2007.11.018 10.1007/s11657-013-0136-1 10.1002/mp.12632 10.1359/JBMR.040109 10.1109/ISBI.2008.4541215 10.1016/j.media.2006.11.001 10.3390/nu9060616 10.1007/s00198-009-1085-9 10.1007/s11548-016-1438-8 10.1166/jmihi.2016.1812 10.1002/jbmr.2766 10.1016/j.compbiomed.2017.06.016 10.1007/s007740170035 10.1109/ISBI.2014.6868111 10.1148/radiol.12110462 10.1007/BF00133570 10.1007/s00198-006-0297-5 10.1587/transinf.E94.D.363 10.1259/dmfr.20170006 10.1007/s00586-015-4035-6 10.1359/jbmr.2000.15.12.2309 10.1109/ICIT.2018.8352401 10.1007/s00198-005-2008-z 10.1007/s00198-006-0306-8 10.1136/bmj.i6755 10.7763/LNSE.2013.V1.44 10.1007/s001980170026 10.1109/TMI.2017.2708988 10.1109/SPCOM.2016.7746608 10.1016/S0009-9260(60)80012-8 10.1007/s001980070027 10.1109/TBME.2013.2256908 10.1109/CDC.1971.271084 10.1016/j.ejrad.2009.04.074 10.1302/0301-620X.65B2.6826630 10.1259/bjr.20101115 10.5405/jmbe.1294 10.1385/JCD:8:4:386 10.1109/ISBI.2017.7950498 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/RBME.2018.2852620 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1941-1189 |
EndPage | 268 |
ExternalDocumentID | 29994405 10_1109_RBME_2018_2852620 8402109 |
Genre | orig-research Journal Article Review |
GroupedDBID | --- 0R~ 23N 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACPRK AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-aa258bdfe8ec895e46cbc5a243cfa922f75b1e45b08f8fa7dadd3ea10947b55b3 |
IEDL.DBID | RIE |
ISSN | 1937-3333 1941-1189 |
IngestDate | Thu Jul 10 20:48:06 EDT 2025 Mon Jun 30 16:41:18 EDT 2025 Thu Apr 03 07:00:49 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 00:53:41 EDT 2025 Wed Aug 27 02:44:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-aa258bdfe8ec895e46cbc5a243cfa922f75b1e45b08f8fa7dadd3ea10947b55b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2939-822X |
PMID | 29994405 |
PQID | 2184578008 |
PQPubID | 85512 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2068339660 proquest_journals_2184578008 crossref_primary_10_1109_RBME_2018_2852620 ieee_primary_8402109 pubmed_primary_29994405 crossref_citationtrail_10_1109_RBME_2018_2852620 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE reviews in biomedical engineering |
PublicationTitleAbbrev | RBME |
PublicationTitleAlternate | IEEE Rev Biomed Eng |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 veenland (ref65) 1999 (ref109) 0 (ref1) 2013 ref51 ref50 (ref49) 0 (ref14) 2018; 13 ref46 ref48 ref47 ref42 ref41 ref44 ref43 (ref6) 0 (ref101) 0 aw (ref106) 2015; 44 ref8 harrar (ref60) 2015; 9 ref7 ref9 ref4 ref3 ref5 ref40 ref35 ref37 ref30 ref33 deniz (ref45) 2017 ref32 ref39 ref38 (ref100) 0 (ref99) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref97 ref96 ref124 ref11 ref125 ref10 ref17 raheja (ref31) 2008 ref16 ref19 (ref102) 0 ref18 ref93 ref92 ref95 ref91 ref90 ref89 ref86 kovalovs (ref36) 2013; 14 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref107 ref75 ref104 ref74 ref105 ref77 paul (ref94) 2017 ref76 ref103 ref2 ref71 ref111 ref70 ref112 ref72 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref114 (ref73) 0 fourati (ref34) 2011; 3 (ref98) 0 ref122 ref123 ref62 ref120 ref61 ref121 (ref110) 0 |
References_xml | – ident: ref97 doi: 10.5455/medarh.2018.72.46-50 – ident: ref113 doi: 10.1002/jbmr.2836 – ident: ref116 doi: 10.1371/journal.pone.0176685 – ident: ref103 doi: 10.1210/jc.2013-4507 – ident: ref40 doi: 10.1109/EMBC.2013.6610347 – ident: ref42 doi: 10.1109/34.927467 – ident: ref29 doi: 10.1117/12.878055 – ident: ref105 doi: 10.1136/bmj.e3427 – ident: ref125 doi: 10.1359/jbmr.080229 – year: 0 ident: ref73 – ident: ref2 doi: 10.1359/jbmr.070315 – volume: 3 start-page: 71 year: 2011 ident: ref34 article-title: Trabecular bone image segmentation using iterative watershed and multi resolution analysis publication-title: International Journal of Bio- Science and Bio- Technology – ident: ref16 doi: 10.1007/s00330-017-4904-y – ident: ref64 doi: 10.1016/S0146-664X(75)80008-6 – year: 2013 ident: ref1 article-title: Asia-Pacific regional audit on epidemiology, costs and burden of osteoporosis in 2013 – year: 2017 ident: ref94 article-title: Make your bone great again: A study on osteoporosis classification – ident: ref89 doi: 10.1259/dmfr.20160076 – ident: ref111 doi: 10.1002/jbmr.3002 – ident: ref66 doi: 10.21236/ADA083283 – ident: ref87 doi: 10.1016/j.compbiomed.2017.10.011 – ident: ref39 doi: 10.1016/j.imavis.2003.09.002 – year: 2017 ident: ref45 article-title: Segmentation of the proximal femur from MR images using deep convolutional neural networks – ident: ref17 doi: 10.1016/j.jocd.2017.02.003 – ident: ref51 doi: 10.1177/230949900501300105 – ident: ref61 doi: 10.1359/jbmr.2000.15.4.691 – ident: ref74 doi: 10.1177/0954411914548700 – ident: ref13 doi: 10.1016/j.jot.2015.08.006 – ident: ref18 doi: 10.1210/jc.2016-3177 – ident: ref20 doi: 10.1016/j.jbiomech.2010.10.010 – ident: ref46 doi: 10.1007/s00198-017-4328-1 – ident: ref11 doi: 10.1016/j.bone.2007.11.001 – ident: ref59 doi: 10.1007/s00223-015-9952-1 – year: 2008 ident: ref31 article-title: Automated analysis of metacarpal cortical thickness in serial hand radiographs – ident: ref70 doi: 10.1186/1471-2342-5-4 – ident: ref10 doi: 10.1007/s001980070088 – year: 0 ident: ref110 article-title: Statistics on availability of CT machines in different countries – ident: ref24 doi: 10.1007/s00198-002-1358-z – ident: ref26 doi: 10.1002/jmri.20807 – ident: ref92 doi: 10.1109/IEMBS.2008.4649193 – ident: ref123 doi: 10.1136/ard.2007.083618 – volume: 14 start-page: 6 year: 2013 ident: ref36 article-title: Trabecular bone segmentation by using an adaptive contour publication-title: Rigas Tehniskas Universitates Zinatniskie Raksti – ident: ref71 doi: 10.1134/S1054661815020108 – volume: 44 year: 2015 ident: ref106 article-title: Fracture risk prediction and treatment thresholds using FRAX, Garvan and QFracture in an osteoporosis clinic population publication-title: Age Ageing doi: 10.1093/ageing/afv108.02 – ident: ref54 doi: 10.1016/j.micron.2005.07.007 – ident: ref68 doi: 10.1109/BIBMW.2011.6112540 – ident: ref91 doi: 10.1118/1.1319375 – ident: ref43 doi: 10.1109/SITIS.2017.38 – ident: ref44 doi: 10.1097/01.rli.0000244343.27431.26 – ident: ref85 doi: 10.1016/j.bspc.2016.10.009 – ident: ref78 doi: 10.1359/jbmr.2001.16.4.697 – ident: ref69 doi: 10.1007/s00198-004-1829-5 – ident: ref120 doi: 10.1016/S8756-3282(02)00919-5 – year: 0 ident: ref49 – ident: ref124 doi: 10.1097/00006254-200204000-00018 – ident: ref119 doi: 10.1016/j.bone.2005.06.024 – year: 1999 ident: ref65 article-title: Texture analysis of the radiographic trabecular bone pattern in osteoporosis – ident: ref122 doi: 10.1177/1759720X15621227 – ident: ref7 doi: 10.1007/s00198-016-3894-y – ident: ref79 doi: 10.1007/s00198-007-0532-8 – ident: ref4 doi: 10.1007/s00198-004-1702-6 – year: 0 ident: ref99 – ident: ref83 doi: 10.1007/s10044-012-0288-4 – year: 0 ident: ref98 – ident: ref117 doi: 10.1002/jbmr.2998 – ident: ref115 doi: 10.1007/s10067-015-2943-9 – ident: ref38 doi: 10.1006/cviu.1995.1004 – ident: ref72 doi: 10.7763/IJCTE.2013.V5.760 – ident: ref112 doi: 10.1007/s40520-016-0562-1 – ident: ref93 doi: 10.23919/ICCAS.2017.8204241 – ident: ref52 doi: 10.2106/00004623-197052030-00005 – ident: ref96 doi: 10.1016/j.ecl.2016.09.005 – ident: ref53 doi: 10.1016/S0300-595X(73)80038-6 – ident: ref107 doi: 10.1007/s001980170072 – ident: ref84 doi: 10.1109/EMBC.2016.7590879 – ident: ref30 doi: 10.1016/0165-1684(94)90060-4 – ident: ref9 doi: 10.1590/1806-9282.62.04.368 – ident: ref81 doi: 10.1109/ISBI.2012.6235853 – ident: ref56 doi: 10.1118/1.3622600 – ident: ref3 doi: 10.1001/jama.297.4.387 – ident: ref95 doi: 10.1016/j.bone.2007.11.018 – ident: ref108 doi: 10.1007/s11657-013-0136-1 – ident: ref15 doi: 10.1002/mp.12632 – ident: ref118 doi: 10.1359/JBMR.040109 – ident: ref67 doi: 10.1109/ISBI.2008.4541215 – ident: ref58 doi: 10.1016/j.media.2006.11.001 – year: 0 ident: ref109 article-title: Statistics on availability of MRI machines in different countries. – ident: ref114 doi: 10.3390/nu9060616 – volume: 13 year: 2018 ident: ref14 publication-title: J Instrum – ident: ref48 doi: 10.1007/s00198-009-1085-9 – volume: 9 start-page: 683 year: 2015 ident: ref60 article-title: Trabecular texture analysis using fractal metrics for bone fragility assessment publication-title: Int J Biol Biomed Eng – ident: ref88 doi: 10.1007/s11548-016-1438-8 – ident: ref63 doi: 10.1166/jmihi.2016.1812 – ident: ref19 doi: 10.1002/jbmr.2766 – ident: ref37 doi: 10.1016/j.compbiomed.2017.06.016 – ident: ref55 doi: 10.1007/s007740170035 – ident: ref82 doi: 10.1109/ISBI.2014.6868111 – ident: ref12 doi: 10.1148/radiol.12110462 – ident: ref35 doi: 10.1007/BF00133570 – ident: ref23 doi: 10.1007/s00198-006-0297-5 – ident: ref41 doi: 10.1587/transinf.E94.D.363 – ident: ref57 doi: 10.1259/dmfr.20170006 – ident: ref121 doi: 10.1007/s00586-015-4035-6 – ident: ref5 doi: 10.1359/jbmr.2000.15.12.2309 – ident: ref33 doi: 10.1109/ICIT.2018.8352401 – ident: ref21 doi: 10.1007/s00198-005-2008-z – year: 0 ident: ref6 article-title: Chronic rheumatic conditions – ident: ref76 doi: 10.1007/s00198-006-0306-8 – ident: ref104 doi: 10.1136/bmj.i6755 – ident: ref28 doi: 10.7763/LNSE.2013.V1.44 – ident: ref27 doi: 10.1007/s001980170026 – ident: ref86 doi: 10.1109/TMI.2017.2708988 – ident: ref32 doi: 10.1109/SPCOM.2016.7746608 – ident: ref47 doi: 10.1016/S0009-9260(60)80012-8 – ident: ref25 doi: 10.1007/s001980070027 – ident: ref75 doi: 10.1109/TBME.2013.2256908 – ident: ref62 doi: 10.1109/CDC.1971.271084 – year: 0 ident: ref100 – ident: ref8 doi: 10.1016/j.ejrad.2009.04.074 – year: 0 ident: ref101 – ident: ref50 doi: 10.1302/0301-620X.65B2.6826630 – ident: ref77 doi: 10.1259/bjr.20101115 – ident: ref80 doi: 10.5405/jmbe.1294 – ident: ref22 doi: 10.1385/JCD:8:4:386 – ident: ref90 doi: 10.1109/ISBI.2017.7950498 – year: 0 ident: ref102 |
SSID | ssj0000547180 |
Score | 2.2625966 |
SecondaryResourceType | review_article |
Snippet | Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 254 |
SubjectTerms | Algorithms Biocompatibility Biomedical measurement Bone Density - physiology Bone Diseases, Metabolic - diagnostic imaging Bone Diseases, Metabolic - physiopathology Bone mass Bones Computer architecture Density measurement Diagnosis Diagnostic Imaging - trends Diagnostic radiography Diagnostic software Diagnostic systems fracture risk prediction Fractures Fragility Geriatrics Health risk assessment Hip Hip Fractures - diagnostic imaging Hip Fractures - physiopathology Humans Image segmentation image texture analysis Imaging Imaging techniques medical diagnostic imaging Medical imaging Morbidity Older people Osteoporosis Osteoporosis - diagnostic imaging Osteoporosis - physiopathology Osteoporotic Fractures - diagnostic imaging Osteoporotic Fractures - physiopathology Risk Assessment Risk Factors Spinal Fractures - diagnostic imaging Spinal Fractures - physiopathology State-of-the-art reviews |
Title | Current and Emerging Diagnostic Imaging-Based Techniques for Assessment of Osteoporosis and Fracture Risk |
URI | https://ieeexplore.ieee.org/document/8402109 https://www.ncbi.nlm.nih.gov/pubmed/29994405 https://www.proquest.com/docview/2184578008 https://www.proquest.com/docview/2068339660 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5BAoyEidEtt7ETpxjC10VpAWpaqXeIj8m0qolQc3mwq9n7DhRhQCRU6TYjq0Z29_M2N8AvPMcVoZ2nlQLxVNRZphWjmMqC7PMHTe5DVlL1l-Ls0vx5Upe7cCH-S4MIobDZ7jwryGW7zo7eFfZERkjZKFUu7BLhtt4V2v2pxD0oGWWj0Fkmjf0xCAm1Tg6P1mf-nNcapEp6TnYPQkwYSMhfN66OztSSLHyd7QZdp3VI1hP_R0Pm1wvhq1Z2J-_UTn-74Aew8MIP9nxqC9PYAfbfXhwh5RwH-6tY7j9ADaRvYnp1jHvvvIZjdin8XQetcA-fw9JjtIT2gsdu5j4YHtGUJgdz6SfrGvYN1KnjsB-12_60N7K388abpGdb_rrp3C5Or34eJbG3AypzUW1TbXOpDKuQYVWVRJFYY2VOhO5bXSVZU0pzRKFNFw1qtGlo3U0R02DFaWR0uTPYK_tWnwBTGqHhZLWB_REI61xApcNQUOOPHPlMgE-yae2kbjc58-4qYMBw6vaS7f20q2jdBN4P1f5MbJ2_KvwgZfMXDAKJYHDSQnqOK_72hvEtMYRcErg7fyZZqQPs-gWu4HK8ELluWc9TeD5qDxz25POvfzzP1_BfepZNbp4DmFvezvgawI9W_MmaPsvTHL6qA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GihBAoYiRMiWyexN86xha620BSp2kq9RX5MpFVpgprNhV_POC9VCBA5RYrt2Jqx5_OM_Q3Ae89hZcjyhFooHoo0xjBzHEM5N1HiuElsl7UkP5svL8SXS3m5BR-nuzCI2B0-w5l_7WL5rratd5Ud0GaEdijZHbhLdl9G_W2tyaNC4IMWWt6HkWnm0DOEManOwflRfuxPcqlZrKRnYfc0wISOhPCZ627ZpC7Jyt_xZmd3Fo8hH3vcHze5mrUbM7M_fyNz_N8hPYFHAwBlh73GPIUtrHbg4S1awh24lw8B911YD_xNTFeOeQeWz2nEPvfn86gFdnLdpTkKj8gaOrYaGWEbRmCYHU60n6wu2TdSqJrgft2sm669hb-h1d4gO183V8_gYnG8-rQMh-wMoU1Etgm1jqUyrkSFVmUSxdwaK3UsElvqLI7LVJoIhTRclarUqaOVNEFNgxWpkdIkz2G7qit8AUxqh3MlrQ_piVJa4wRGJYFDjjx2aRQAH-VT2IG63GfQ-F50WxieFV66hZduMUg3gA9TlR89b8e_Cu96yUwFB6EEsD8qQTHM7KbwW2Ja5Qg6BfBu-kxz0gdadIV1S2X4XCWJ5z0NYK9XnqntUede_vmfb-H-cpWfFqcnZ19fwQPqZdY7fPZhe3PT4muCQBvzptP8X4OZ_fE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+and+Emerging+Diagnostic+Imaging-Based+Techniques+for+Assessment+of+Osteoporosis+and+Fracture+Risk&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Areeckal%2C+Anu+Shaju&rft.au=Kocher%2C+Michel&rft.au=S.%2C+Sumam+David&rft.date=2019-01-01&rft.issn=1937-3333&rft.eissn=1941-1189&rft.volume=12&rft.spage=254&rft.epage=268&rft_id=info:doi/10.1109%2FRBME.2018.2852620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_RBME_2018_2852620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon |