Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio

Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequenc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 63; no. 5; pp. 964 - 972
Main Authors Ding, Xiao-Rong, Zhang, Yuan-Ting, Liu, Jing, Dai, Wen-Xuan, Tsang, Hon Ki
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were -0.37 ± 5.21, -0.08 ± 4.06, -0.18 ± 4.13 mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy.
AbstractList Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were -0.37 ± 5.21, -0.08 ± 4.06, -0.18 ± 4.13 mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy.
Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were [Formula Omitted], [Formula Omitted], [Formula Omitted] mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy.
Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were -0.37 ±5.21, -0.08 ±4.06, -0.18 ±4.13 mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy.
Author Dai, Wen-Xuan
Liu, Jing
Zhang, Yuan-Ting
Ding, Xiao-Rong
Tsang, Hon Ki
Author_xml – sequence: 1
  givenname: Xiao-Rong
  surname: Ding
  fullname: Ding, Xiao-Rong
  organization: Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering
– sequence: 2
  givenname: Yuan-Ting
  surname: Zhang
  fullname: Zhang, Yuan-Ting
  organization: Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering
– sequence: 3
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering
– sequence: 4
  givenname: Wen-Xuan
  surname: Dai
  fullname: Dai, Wen-Xuan
  organization: Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering
– sequence: 5
  givenname: Hon Ki
  surname: Tsang
  fullname: Tsang, Hon Ki
  email: hktsang@ee.cuhk.edu.hk
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26415147$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LHDEch4NYdLV-ACmUgBcvs837y7EuaytYKmU9hziT0chMsk0yh_32zXS3Hjz0lASe55_k9zsDxyEGB8AlRkuMkf6yufmxXhKE-ZIwhYTUR2CBOVcN4RQfgwVCWDWaaHYKznJ-rUemmDgBp0QwzDGTCzCuYig-THHKcDX1_eByhjdDjB18SHU_JQfXufjRFh8DfMw-PMOHacgObpIN2Re48aODNlThJZa4HVx52eUxPic7wrtQ3Azt4K95wEfwobfVvTis5-Dxdr1ZfW_uf367W329b1rKdGms7knHOsJbJp18IoQLqztkMbUUESWZpYwh0XHddRz1vZDSattzhyiznZD0HFzv525T_D25XMzoc-uGwQZXf2qwIkIwgpCu6NU79DVOKdTXGSyVxJwpqSr1-UBNT6PrzDbVRNLO_AuyAngPtCnmnFz_hmBk5rLMXJaZyzKHsqoj3zmtL39zLsn64b_mp73pnXNvN0kiqRKM_gETGqGd
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_JSEN_2019_2927993
crossref_primary_10_1007_s13534_019_00096_x
crossref_primary_10_1109_ACCESS_2020_3012384
crossref_primary_10_1080_03091902_2022_2077998
crossref_primary_10_1109_JSEN_2024_3476130
crossref_primary_10_3390_s22166195
crossref_primary_10_18273_revuin_v20n4_2021004
crossref_primary_10_3389_fmed_2022_851172
crossref_primary_10_1002_adma_201700975
crossref_primary_10_1002_adfm_201504560
crossref_primary_10_1016_j_artmed_2019_02_002
crossref_primary_10_1088_1361_6579_ab7d78
crossref_primary_10_1007_s13246_019_00813_x
crossref_primary_10_1109_RBME_2021_3109643
crossref_primary_10_31857_S0006302923060182
crossref_primary_10_3390_app9112236
crossref_primary_10_3390_electronics11091378
crossref_primary_10_1109_JSEN_2020_2990648
crossref_primary_10_1088_2057_1976_ab1a82
crossref_primary_10_12677_JSTA_2019_73009
crossref_primary_10_1109_RBME_2020_2992838
crossref_primary_10_1039_D2MH00892K
crossref_primary_10_1186_s12938_018_0510_8
crossref_primary_10_1002_mds3_10091
crossref_primary_10_1016_j_bspc_2022_104040
crossref_primary_10_1109_JBHI_2019_2919896
crossref_primary_10_1109_JSEN_2023_3288151
crossref_primary_10_1088_1361_6579_aadf17
crossref_primary_10_1016_j_bspc_2024_106104
crossref_primary_10_1109_JBHI_2023_3278168
crossref_primary_10_1109_JBHI_2024_3483301
crossref_primary_10_3390_s18041160
crossref_primary_10_3390_mi13081225
crossref_primary_10_1111_psyp_14173
crossref_primary_10_1038_s41378_023_00590_4
crossref_primary_10_1109_JBHI_2016_2594177
crossref_primary_10_1109_TCE_2022_3174689
crossref_primary_10_7717_peerj_10448
crossref_primary_10_1109_JBHI_2017_2748280
crossref_primary_10_1109_TII_2019_2962546
crossref_primary_10_3390_s21103525
crossref_primary_10_2139_ssrn_4094622
crossref_primary_10_1039_D3MH01999C
crossref_primary_10_1007_s00542_018_3877_3
crossref_primary_10_1109_TIM_2022_3205679
crossref_primary_10_1007_s11517_024_03157_1
crossref_primary_10_1016_j_bspc_2023_105862
crossref_primary_10_1042_EBC20200131
crossref_primary_10_1016_j_artmed_2020_101919
crossref_primary_10_1109_JBHI_2020_3009658
crossref_primary_10_1016_j_bspc_2021_103001
crossref_primary_10_1016_j_bspc_2023_105067
crossref_primary_10_1109_ACCESS_2019_2914498
crossref_primary_10_3390_s19112585
crossref_primary_10_1016_j_bspc_2020_102198
crossref_primary_10_1016_j_inffus_2019_07_001
crossref_primary_10_1038_s41598_022_10244_6
crossref_primary_10_1109_JBHI_2019_2901724
crossref_primary_10_1080_23311916_2016_1221202
crossref_primary_10_3390_bios12080655
crossref_primary_10_1109_TBME_2016_2606538
crossref_primary_10_1109_JSEN_2022_3222588
crossref_primary_10_1109_ACCESS_2021_3070636
crossref_primary_10_1364_BOE_7_003007
crossref_primary_10_1088_1361_6579_aad902
crossref_primary_10_1109_JSEN_2020_3041782
crossref_primary_10_1016_j_artmed_2018_12_005
crossref_primary_10_1016_j_compind_2017_04_003
crossref_primary_10_1016_j_bspc_2020_101942
crossref_primary_10_1109_JBHI_2024_3395445
crossref_primary_10_1016_j_bspc_2022_103891
crossref_primary_10_1002_adma_201705024
crossref_primary_10_1109_ACCESS_2020_2981300
crossref_primary_10_1109_JSEN_2023_3327683
crossref_primary_10_1109_JBHI_2024_3377128
crossref_primary_10_1109_TBME_2018_2865751
crossref_primary_10_1038_s41598_022_16527_2
crossref_primary_10_1109_JSEN_2021_3073850
crossref_primary_10_1109_ACCESS_2019_2942936
crossref_primary_10_1109_JBHI_2016_2614962
crossref_primary_10_1109_TBME_2016_2612639
crossref_primary_10_1109_JTEHM_2020_3000327
crossref_primary_10_1007_s11517_019_02088_6
crossref_primary_10_1088_1361_6579_aa996d
crossref_primary_10_3390_s20082338
crossref_primary_10_1155_2021_8868083
crossref_primary_10_3390_life12010011
crossref_primary_10_3390_electronics12071538
crossref_primary_10_1038_s41598_021_03612_1
crossref_primary_10_1007_s44174_023_00146_0
crossref_primary_10_1109_ACCESS_2019_2942184
crossref_primary_10_1007_s10916_019_1337_y
crossref_primary_10_1109_ACCESS_2021_3065576
crossref_primary_10_1109_JBHI_2017_2691715
crossref_primary_10_1515_bmt_2020_0113
crossref_primary_10_3390_s21051595
crossref_primary_10_1080_08037051_2022_2128716
crossref_primary_10_3390_s21010096
crossref_primary_10_1109_TIM_2020_3035578
crossref_primary_10_1016_j_compeleceng_2024_109319
crossref_primary_10_3390_s18124227
crossref_primary_10_3389_fnins_2019_00339
crossref_primary_10_1088_1361_6579_aba537
crossref_primary_10_1515_bmt_2020_0197
crossref_primary_10_3390_jcm9041203
crossref_primary_10_1109_JBHI_2021_3054597
crossref_primary_10_3390_s20185052
crossref_primary_10_1002_admt_201700222
crossref_primary_10_3390_mi14040804
crossref_primary_10_1109_JSEN_2017_2786301
crossref_primary_10_2174_0118741207322107240808095414
crossref_primary_10_3390_s20082205
crossref_primary_10_1109_JBHI_2022_3172514
crossref_primary_10_1038_s41598_024_84417_w
crossref_primary_10_1109_JBHI_2018_2876087
crossref_primary_10_1109_JSEN_2020_3048118
crossref_primary_10_1109_TBME_2018_2812602
crossref_primary_10_3389_fmedt_2021_695356
crossref_primary_10_1088_1361_6579_aaa454
crossref_primary_10_1109_TIM_2023_3324675
crossref_primary_10_3390_bios8040101
crossref_primary_10_1109_TIM_2017_2745081
crossref_primary_10_1109_TIM_2023_3346527
crossref_primary_10_1109_JSEN_2024_3375915
crossref_primary_10_1109_TBME_2018_2874957
crossref_primary_10_3389_fnins_2022_883693
crossref_primary_10_1016_j_sna_2024_115084
crossref_primary_10_1152_ajpheart_00392_2021
crossref_primary_10_1007_s13534_023_00284_w
crossref_primary_10_1109_ACCESS_2021_3103763
crossref_primary_10_1088_1361_6579_ab1f17
crossref_primary_10_1021_acs_chemrev_9b00437
crossref_primary_10_1109_JSEN_2022_3148415
crossref_primary_10_3390_brainsci10010046
crossref_primary_10_1109_JBHI_2016_2620995
crossref_primary_10_1007_s13534_022_00247_7
crossref_primary_10_3390_s22072684
crossref_primary_10_1016_j_measurement_2022_111211
crossref_primary_10_1109_TIM_2020_3011304
crossref_primary_10_3390_bios12030159
crossref_primary_10_1109_TCE_2023_3316514
crossref_primary_10_1088_2057_1976_ac2ea8
crossref_primary_10_1016_j_patcog_2022_108551
crossref_primary_10_1109_TIM_2021_3122182
crossref_primary_10_1155_2021_9938584
crossref_primary_10_1038_s41746_023_00835_6
crossref_primary_10_1109_ACCESS_2022_3173176
crossref_primary_10_1038_s41598_024_68862_1
crossref_primary_10_1016_j_eswa_2022_116788
crossref_primary_10_3390_technologies5020021
crossref_primary_10_1002_elps_201800295
crossref_primary_10_1088_1361_6579_abf889
crossref_primary_10_1016_j_apacoust_2020_107534
crossref_primary_10_1109_TBME_2018_2874885
crossref_primary_10_1088_1361_6579_abeae8
crossref_primary_10_47093_2218_7332_2021_12_1_39_49
crossref_primary_10_1109_JBHI_2022_3153259
crossref_primary_10_3390_s20195668
crossref_primary_10_1134_S0006350923060088
crossref_primary_10_3390_s19132922
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_1109_TBME_2017_2756018
crossref_primary_10_1038_s41440_021_00795_y
crossref_primary_10_1109_TBME_2022_3148171
crossref_primary_10_1109_JSTQE_2018_2871604
crossref_primary_10_1038_s41598_017_11507_3
crossref_primary_10_1038_s41598_024_76569_6
crossref_primary_10_1155_2022_3549238
crossref_primary_10_1016_j_compbiomed_2023_106900
crossref_primary_10_3390_bios12030150
crossref_primary_10_1016_j_cej_2022_139815
crossref_primary_10_3390_s20071923
crossref_primary_10_1016_j_bspc_2021_102853
crossref_primary_10_3390_pathophysiology30040042
crossref_primary_10_1016_j_jacc_2018_10_069
crossref_primary_10_1109_TIM_2025_3545993
crossref_primary_10_3390_s22051873
crossref_primary_10_3390_mi13091438
crossref_primary_10_3390_app14177451
crossref_primary_10_1016_j_optlastec_2020_106515
crossref_primary_10_1016_j_future_2019_02_032
Cites_doi 10.1109/TBME.2012.2211078
10.1076/brhm.30.2.178.1422
10.1007/s10439-009-9759-1
10.1007/s00421-011-1983-3
10.1111/j.1749-6632.1996.tb26704.x
10.1016/S0140-6736(86)90837-8
10.1113/jphysiol.1961.sp006687
10.1109/IEMBS.2005.1615827
10.1109/TBME.2013.2286998
10.1161/01.CIR.21.5.749
10.1038/hr.2011.41
10.1161/01.HYP.25.6.1276
10.1088/0967-3334/19/1/008
10.1161/01.CIR.6.4.553
10.1183/09031936.00193911
10.1109/TBME.2013.2272699
10.1038/nrcardio.2013.1
10.1016/0161-7346(79)90028-2
10.1007/s10558-009-9070-7
10.1038/jhh.2013.41
10.1016/j.bspc.2011.03.009
10.33549/physiolres.932581
10.1007/s11517-006-0064-y
10.1161/01.CIR.84.2.482
10.1161/HYPERTENSIONAHA.112.194340
10.1001/jama.2013.184182
10.1007/s00421-010-1626-0
10.1016/j.jelectrocard.2010.11.019
10.1109/TBME.2013.2243148
10.1109/IEMBS.2006.260275
10.1007/BF02345755
10.1088/0967-3334/22/3/301
10.1016/j.irbm.2014.07.002
10.1109/IEMBS.2006.259365
10.1109/TBME.2014.2309951
10.1111/j.1440-1681.1995.tb02014.x
10.1007/s11517-008-0359-2
10.1007/s11818-013-0617-x
10.1088/0967-3334/30/7/011
10.1016/0002-9149(94)90617-3
10.1088/0967-3334/36/3/R1
10.1088/0967-3334/29/5/007
10.1161/01.CIR.93.8.1527
10.1152/ajpheart.1987.253.3.H680
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2015.2480679
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 972
ExternalDocumentID 4047023981
26415147
10_1109_TBME_2015_2480679
7273864
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Guangdong Innovation Research Team Fund for Low-cost Healthcare Technologies in China
– fundername: Chinese Academy of Sciences
  grantid: GJHZ1212
  funderid: 10.13039/501100002367
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-a9f2d4d25c47e7b2256a9d0a13a302874a34406d59dd50ff677a9af5e034ad673
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Fri Jul 11 07:25:55 EDT 2025
Mon Jun 30 08:17:39 EDT 2025
Wed Feb 19 02:43:08 EST 2025
Tue Jul 01 03:28:27 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Wed Aug 27 02:53:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords vasomotion
pulse transit time (PTT)
respiration
photoplethysmogram intensity ratio (PIR)
cuffless blood pressure
Arterial diameter change
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a9f2d4d25c47e7b2256a9d0a13a302874a34406d59dd50ff677a9af5e034ad673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26415147
PQID 1787154878
PQPubID 85474
PageCount 9
ParticipantIDs proquest_journals_1787154878
ieee_primary_7273864
proquest_miscellaneous_1826642009
crossref_primary_10_1109_TBME_2015_2480679
pubmed_primary_26415147
crossref_citationtrail_10_1109_TBME_2015_2480679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-May
2016-5-00
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref18
(ref31) 0
ref46
ref45
douniama (ref23) 0
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref36
ref33
ref32
ref2
ref1
ref39
ref38
wibmer (ref19) 2014; 63
ref24
ref26
ref25
ref20
ref22
ref21
ding (ref30) 0
karemaker (ref34) 1987; 253
ref28
ref27
ref29
de boer (ref37) 1985
References_xml – ident: ref20
  doi: 10.1109/TBME.2012.2211078
– ident: ref40
  doi: 10.1076/brhm.30.2.178.1422
– ident: ref11
  doi: 10.1007/s10439-009-9759-1
– year: 0
  ident: ref30
  article-title: Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation
– ident: ref14
  doi: 10.1007/s00421-011-1983-3
– ident: ref36
  doi: 10.1111/j.1749-6632.1996.tb26704.x
– ident: ref41
  doi: 10.1016/S0140-6736(86)90837-8
– ident: ref38
  doi: 10.1113/jphysiol.1961.sp006687
– ident: ref9
  doi: 10.1109/IEMBS.2005.1615827
– ident: ref24
  doi: 10.1109/TBME.2013.2286998
– ident: ref47
  doi: 10.1161/01.CIR.21.5.749
– ident: ref32
  doi: 10.1038/hr.2011.41
– year: 0
  ident: ref31
– ident: ref27
  doi: 10.1161/01.HYP.25.6.1276
– ident: ref48
  doi: 10.1088/0967-3334/19/1/008
– ident: ref42
  doi: 10.1161/01.CIR.6.4.553
– ident: ref46
  doi: 10.1183/09031936.00193911
– ident: ref18
  doi: 10.1109/TBME.2013.2272699
– ident: ref2
  doi: 10.1038/nrcardio.2013.1
– ident: ref6
  doi: 10.1016/0161-7346(79)90028-2
– ident: ref12
  doi: 10.1007/s10558-009-9070-7
– ident: ref17
  doi: 10.1038/jhh.2013.41
– year: 1985
  ident: ref37
  article-title: Beat-to-beat blood-pressure fluctuations and heart-rate variability in man: physiological relationships, analysis techniques and a simple model
– ident: ref29
  doi: 10.1016/j.bspc.2011.03.009
– volume: 63
  start-page: 287
  year: 2014
  ident: ref19
  article-title: Pulse transit time and blood pressure during cardiopulmonary exercise tests
  publication-title: Physiol Res
  doi: 10.33549/physiolres.932581
– ident: ref45
  doi: 10.1007/s11517-006-0064-y
– ident: ref35
  doi: 10.1161/01.CIR.84.2.482
– ident: ref33
  doi: 10.1161/HYPERTENSIONAHA.112.194340
– ident: ref1
  doi: 10.1001/jama.2013.184182
– ident: ref22
  doi: 10.1007/s00421-010-1626-0
– ident: ref13
  doi: 10.1016/j.jelectrocard.2010.11.019
– ident: ref15
  doi: 10.1109/TBME.2013.2243148
– ident: ref8
  doi: 10.1109/IEMBS.2006.260275
– start-page: 201
  year: 0
  ident: ref23
  article-title: Blood pressure tracking capabilities of pulse transit times in different arterial segments: A clinical evaluation
  publication-title: Proc Comput Cardiol Conf
– ident: ref7
  doi: 10.1007/BF02345755
– ident: ref26
  doi: 10.1161/01.CIR.84.2.482
– ident: ref44
  doi: 10.1088/0967-3334/22/3/301
– ident: ref5
  doi: 10.1016/j.irbm.2014.07.002
– ident: ref28
  doi: 10.1109/IEMBS.2006.259365
– ident: ref4
  doi: 10.1109/TBME.2014.2309951
– ident: ref49
  doi: 10.1111/j.1440-1681.1995.tb02014.x
– ident: ref39
  doi: 10.1007/s11517-008-0359-2
– ident: ref16
  doi: 10.1007/s11818-013-0617-x
– ident: ref21
  doi: 10.1088/0967-3334/30/7/011
– ident: ref25
  doi: 10.1016/0002-9149(94)90617-3
– ident: ref3
  doi: 10.1088/0967-3334/36/3/R1
– ident: ref10
  doi: 10.1088/0967-3334/29/5/007
– ident: ref43
  doi: 10.1161/01.CIR.93.8.1527
– volume: 253
  start-page: 680h
  year: 1987
  ident: ref34
  article-title: Hemodynamic fluctuations and baroreflex sensitivity in humans: A beat-to-beat model
  publication-title: Amer J Physiol -Heart Circulation Physiology
  doi: 10.1152/ajpheart.1987.253.3.H680
SSID ssj0014846
Score 2.5894709
Snippet Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 964
SubjectTerms Accuracy
Adult
Algorithm design and analysis
Algorithms
Arterial diameter change
Biomedical measurement
Blood Pressure
Blood Pressure Determination - methods
Calibration
cuffless blood pressure
Estimation
Female
Humans
Male
Mathematical model
Monitoring
photoplethysmogram intensity ratio
Photoplethysmography - methods
pulse transit time
Pulse Wave Analysis - methods
Respiration
Signal Processing, Computer-Assisted
Spectral analysis
vasomotion
Young Adult
Title Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio
URI https://ieeexplore.ieee.org/document/7273864
https://www.ncbi.nlm.nih.gov/pubmed/26415147
https://www.proquest.com/docview/1787154878
https://www.proquest.com/docview/1826642009
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEp76CPpw20SVOip1BtpJcvWMQkbQmFLKQnkZmQ9aEjiLYl9aH99NZLWhNCW3gyWZJkZzUPzzQzAh4a62jpjS2weUgrPTKmD1sZrDilF5Z2LRVyXX-Tpufh8UV1swKcpF8Y5F8FnboaPMZZvV2bEq7ID1LWNFJuwGRy3lKs1RQxEk5JyKAsHeK5EjmAyqg7OjpYLBHFVs7lo8OIEKwDLoLkYNlW5p45if5W_m5pR5Zw8g-V6swlpcjUbh25mfj2o4_i_f_McnmbbkxwmZnkBG67fhif3KhJuw6NljrXvwA0Wrrrsx9V4R45H76-DTCRHiHMnKafw1pFFEBAp95FE7AH5OgZVS6ICvBwI5pcQ3YcJ31cDItWRK24iIIxk7Pzwk3zDBV7C-cni7Pi0zM0ZSsOFGkqt_NwKO6-MqF3dBbEgtbJUM645xSL6motgLNhKWVtR72Vda6V95SgX2sqav4KtftW7N0Cs76iWnCvJjHCNVLpjTJpGayG58V0BdE2j1uTK5dhA47qNHgxVLVK4RQq3mcIFfJym_EhlO_41eAepMw3MhClgd80IbT7Ydy0LAi56eU0B76fX4UhinEX3LtCkRZctuHXBei3gdWKgae0137398zffweOwM5kQlbuwNdyObi9YPUO3H9n9Nya0--0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GihhBYwEidEtvbGceJjW221QFMhtJV6ixw_REWbRW1yoL--HscbVQgQt0ixHUcznofnmxmA9yW1hbHapNg8JOWO6VR5rY3XHELw3FkbirhWJ2J-yj-f5Wdr8HHMhbHWBvCZneBjiOWbpe7xqmwPdW0p-D247_V-zoZsrTFmwMshLYcyf4SnkscYJqNyb3FQzRDGlU-mvMSrE6wBLLzuYthW5Y5CCh1W_m5sBqVz9ASq1XYHrMmPSd81E33zWyXH__2fp_A4Wp9kf2CXZ7Bm2014dKcm4SY8qGK0fQsusXTVedsv-2ty2Dt34aUiOUCkOxmyCq8smXkRMWQ_koA-IF97r2xJUIHnHcEME6JaP-H7skOsOvLFZYCEkYie736Rb7jAczg9mi0O52lsz5DqjMsuVdJNDTfTXPPCFo0XDEJJQxXLVEaxjL7KuDcXTC6NyalzoiiUVC63NOPKiCJ7AevtsrUvgRjXUCWyTAqmuS2FVA1jQpdKcZFp1yRAVzSqdaxdji00Lurgw1BZI4VrpHAdKZzAh3HKz6Fwx78GbyF1xoGRMAnsrhihjkf7umZexAU_r0zg3fjaH0qMtKjWeprU6LR5x87brwlsDww0rr3iu1d__uZbeDhfVMf18aeTLzuw4XcpBnzlLqx3V7197W2grnkTWP8Wbjz_Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Cuffless+Blood+Pressure+Estimation+Using+Pulse+Transit+Time+and+Photoplethysmogram+Intensity+Ratio&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Ding%2C+Xiao-Rong&rft.au=Zhang%2C+Yuan-Ting&rft.au=Liu%2C+Jing&rft.au=Dai%2C+Wen-Xuan&rft.date=2016-05-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=63&rft.issue=5&rft.spage=964&rft.epage=972&rft_id=info:doi/10.1109%2FTBME.2015.2480679&rft_id=info%3Apmid%2F26415147&rft.externalDocID=7273864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon