Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio
Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequenc...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 63; no. 5; pp. 964 - 972 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were -0.37 ± 5.21, -0.08 ± 4.06, -0.18 ± 4.13 mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy. |
---|---|
AbstractList | Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were -0.37 ± 5.21, -0.08 ± 4.06, -0.18 ± 4.13 mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy. Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were [Formula Omitted], [Formula Omitted], [Formula Omitted] mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy. Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were -0.37 ±5.21, -0.08 ±4.06, -0.18 ±4.13 mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy. |
Author | Dai, Wen-Xuan Liu, Jing Zhang, Yuan-Ting Ding, Xiao-Rong Tsang, Hon Ki |
Author_xml | – sequence: 1 givenname: Xiao-Rong surname: Ding fullname: Ding, Xiao-Rong organization: Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering – sequence: 2 givenname: Yuan-Ting surname: Zhang fullname: Zhang, Yuan-Ting organization: Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering – sequence: 3 givenname: Jing surname: Liu fullname: Liu, Jing organization: Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering – sequence: 4 givenname: Wen-Xuan surname: Dai fullname: Dai, Wen-Xuan organization: Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering – sequence: 5 givenname: Hon Ki surname: Tsang fullname: Tsang, Hon Ki email: hktsang@ee.cuhk.edu.hk organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26415147$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LHDEch4NYdLV-ACmUgBcvs837y7EuaytYKmU9hziT0chMsk0yh_32zXS3Hjz0lASe55_k9zsDxyEGB8AlRkuMkf6yufmxXhKE-ZIwhYTUR2CBOVcN4RQfgwVCWDWaaHYKznJ-rUemmDgBp0QwzDGTCzCuYig-THHKcDX1_eByhjdDjB18SHU_JQfXufjRFh8DfMw-PMOHacgObpIN2Re48aODNlThJZa4HVx52eUxPic7wrtQ3Azt4K95wEfwobfVvTis5-Dxdr1ZfW_uf367W329b1rKdGms7knHOsJbJp18IoQLqztkMbUUESWZpYwh0XHddRz1vZDSattzhyiznZD0HFzv525T_D25XMzoc-uGwQZXf2qwIkIwgpCu6NU79DVOKdTXGSyVxJwpqSr1-UBNT6PrzDbVRNLO_AuyAngPtCnmnFz_hmBk5rLMXJaZyzKHsqoj3zmtL39zLsn64b_mp73pnXNvN0kiqRKM_gETGqGd |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_JSEN_2019_2927993 crossref_primary_10_1007_s13534_019_00096_x crossref_primary_10_1109_ACCESS_2020_3012384 crossref_primary_10_1080_03091902_2022_2077998 crossref_primary_10_1109_JSEN_2024_3476130 crossref_primary_10_3390_s22166195 crossref_primary_10_18273_revuin_v20n4_2021004 crossref_primary_10_3389_fmed_2022_851172 crossref_primary_10_1002_adma_201700975 crossref_primary_10_1002_adfm_201504560 crossref_primary_10_1016_j_artmed_2019_02_002 crossref_primary_10_1088_1361_6579_ab7d78 crossref_primary_10_1007_s13246_019_00813_x crossref_primary_10_1109_RBME_2021_3109643 crossref_primary_10_31857_S0006302923060182 crossref_primary_10_3390_app9112236 crossref_primary_10_3390_electronics11091378 crossref_primary_10_1109_JSEN_2020_2990648 crossref_primary_10_1088_2057_1976_ab1a82 crossref_primary_10_12677_JSTA_2019_73009 crossref_primary_10_1109_RBME_2020_2992838 crossref_primary_10_1039_D2MH00892K crossref_primary_10_1186_s12938_018_0510_8 crossref_primary_10_1002_mds3_10091 crossref_primary_10_1016_j_bspc_2022_104040 crossref_primary_10_1109_JBHI_2019_2919896 crossref_primary_10_1109_JSEN_2023_3288151 crossref_primary_10_1088_1361_6579_aadf17 crossref_primary_10_1016_j_bspc_2024_106104 crossref_primary_10_1109_JBHI_2023_3278168 crossref_primary_10_1109_JBHI_2024_3483301 crossref_primary_10_3390_s18041160 crossref_primary_10_3390_mi13081225 crossref_primary_10_1111_psyp_14173 crossref_primary_10_1038_s41378_023_00590_4 crossref_primary_10_1109_JBHI_2016_2594177 crossref_primary_10_1109_TCE_2022_3174689 crossref_primary_10_7717_peerj_10448 crossref_primary_10_1109_JBHI_2017_2748280 crossref_primary_10_1109_TII_2019_2962546 crossref_primary_10_3390_s21103525 crossref_primary_10_2139_ssrn_4094622 crossref_primary_10_1039_D3MH01999C crossref_primary_10_1007_s00542_018_3877_3 crossref_primary_10_1109_TIM_2022_3205679 crossref_primary_10_1007_s11517_024_03157_1 crossref_primary_10_1016_j_bspc_2023_105862 crossref_primary_10_1042_EBC20200131 crossref_primary_10_1016_j_artmed_2020_101919 crossref_primary_10_1109_JBHI_2020_3009658 crossref_primary_10_1016_j_bspc_2021_103001 crossref_primary_10_1016_j_bspc_2023_105067 crossref_primary_10_1109_ACCESS_2019_2914498 crossref_primary_10_3390_s19112585 crossref_primary_10_1016_j_bspc_2020_102198 crossref_primary_10_1016_j_inffus_2019_07_001 crossref_primary_10_1038_s41598_022_10244_6 crossref_primary_10_1109_JBHI_2019_2901724 crossref_primary_10_1080_23311916_2016_1221202 crossref_primary_10_3390_bios12080655 crossref_primary_10_1109_TBME_2016_2606538 crossref_primary_10_1109_JSEN_2022_3222588 crossref_primary_10_1109_ACCESS_2021_3070636 crossref_primary_10_1364_BOE_7_003007 crossref_primary_10_1088_1361_6579_aad902 crossref_primary_10_1109_JSEN_2020_3041782 crossref_primary_10_1016_j_artmed_2018_12_005 crossref_primary_10_1016_j_compind_2017_04_003 crossref_primary_10_1016_j_bspc_2020_101942 crossref_primary_10_1109_JBHI_2024_3395445 crossref_primary_10_1016_j_bspc_2022_103891 crossref_primary_10_1002_adma_201705024 crossref_primary_10_1109_ACCESS_2020_2981300 crossref_primary_10_1109_JSEN_2023_3327683 crossref_primary_10_1109_JBHI_2024_3377128 crossref_primary_10_1109_TBME_2018_2865751 crossref_primary_10_1038_s41598_022_16527_2 crossref_primary_10_1109_JSEN_2021_3073850 crossref_primary_10_1109_ACCESS_2019_2942936 crossref_primary_10_1109_JBHI_2016_2614962 crossref_primary_10_1109_TBME_2016_2612639 crossref_primary_10_1109_JTEHM_2020_3000327 crossref_primary_10_1007_s11517_019_02088_6 crossref_primary_10_1088_1361_6579_aa996d crossref_primary_10_3390_s20082338 crossref_primary_10_1155_2021_8868083 crossref_primary_10_3390_life12010011 crossref_primary_10_3390_electronics12071538 crossref_primary_10_1038_s41598_021_03612_1 crossref_primary_10_1007_s44174_023_00146_0 crossref_primary_10_1109_ACCESS_2019_2942184 crossref_primary_10_1007_s10916_019_1337_y crossref_primary_10_1109_ACCESS_2021_3065576 crossref_primary_10_1109_JBHI_2017_2691715 crossref_primary_10_1515_bmt_2020_0113 crossref_primary_10_3390_s21051595 crossref_primary_10_1080_08037051_2022_2128716 crossref_primary_10_3390_s21010096 crossref_primary_10_1109_TIM_2020_3035578 crossref_primary_10_1016_j_compeleceng_2024_109319 crossref_primary_10_3390_s18124227 crossref_primary_10_3389_fnins_2019_00339 crossref_primary_10_1088_1361_6579_aba537 crossref_primary_10_1515_bmt_2020_0197 crossref_primary_10_3390_jcm9041203 crossref_primary_10_1109_JBHI_2021_3054597 crossref_primary_10_3390_s20185052 crossref_primary_10_1002_admt_201700222 crossref_primary_10_3390_mi14040804 crossref_primary_10_1109_JSEN_2017_2786301 crossref_primary_10_2174_0118741207322107240808095414 crossref_primary_10_3390_s20082205 crossref_primary_10_1109_JBHI_2022_3172514 crossref_primary_10_1038_s41598_024_84417_w crossref_primary_10_1109_JBHI_2018_2876087 crossref_primary_10_1109_JSEN_2020_3048118 crossref_primary_10_1109_TBME_2018_2812602 crossref_primary_10_3389_fmedt_2021_695356 crossref_primary_10_1088_1361_6579_aaa454 crossref_primary_10_1109_TIM_2023_3324675 crossref_primary_10_3390_bios8040101 crossref_primary_10_1109_TIM_2017_2745081 crossref_primary_10_1109_TIM_2023_3346527 crossref_primary_10_1109_JSEN_2024_3375915 crossref_primary_10_1109_TBME_2018_2874957 crossref_primary_10_3389_fnins_2022_883693 crossref_primary_10_1016_j_sna_2024_115084 crossref_primary_10_1152_ajpheart_00392_2021 crossref_primary_10_1007_s13534_023_00284_w crossref_primary_10_1109_ACCESS_2021_3103763 crossref_primary_10_1088_1361_6579_ab1f17 crossref_primary_10_1021_acs_chemrev_9b00437 crossref_primary_10_1109_JSEN_2022_3148415 crossref_primary_10_3390_brainsci10010046 crossref_primary_10_1109_JBHI_2016_2620995 crossref_primary_10_1007_s13534_022_00247_7 crossref_primary_10_3390_s22072684 crossref_primary_10_1016_j_measurement_2022_111211 crossref_primary_10_1109_TIM_2020_3011304 crossref_primary_10_3390_bios12030159 crossref_primary_10_1109_TCE_2023_3316514 crossref_primary_10_1088_2057_1976_ac2ea8 crossref_primary_10_1016_j_patcog_2022_108551 crossref_primary_10_1109_TIM_2021_3122182 crossref_primary_10_1155_2021_9938584 crossref_primary_10_1038_s41746_023_00835_6 crossref_primary_10_1109_ACCESS_2022_3173176 crossref_primary_10_1038_s41598_024_68862_1 crossref_primary_10_1016_j_eswa_2022_116788 crossref_primary_10_3390_technologies5020021 crossref_primary_10_1002_elps_201800295 crossref_primary_10_1088_1361_6579_abf889 crossref_primary_10_1016_j_apacoust_2020_107534 crossref_primary_10_1109_TBME_2018_2874885 crossref_primary_10_1088_1361_6579_abeae8 crossref_primary_10_47093_2218_7332_2021_12_1_39_49 crossref_primary_10_1109_JBHI_2022_3153259 crossref_primary_10_3390_s20195668 crossref_primary_10_1134_S0006350923060088 crossref_primary_10_3390_s19132922 crossref_primary_10_1007_s10462_022_10353_8 crossref_primary_10_1109_TBME_2017_2756018 crossref_primary_10_1038_s41440_021_00795_y crossref_primary_10_1109_TBME_2022_3148171 crossref_primary_10_1109_JSTQE_2018_2871604 crossref_primary_10_1038_s41598_017_11507_3 crossref_primary_10_1038_s41598_024_76569_6 crossref_primary_10_1155_2022_3549238 crossref_primary_10_1016_j_compbiomed_2023_106900 crossref_primary_10_3390_bios12030150 crossref_primary_10_1016_j_cej_2022_139815 crossref_primary_10_3390_s20071923 crossref_primary_10_1016_j_bspc_2021_102853 crossref_primary_10_3390_pathophysiology30040042 crossref_primary_10_1016_j_jacc_2018_10_069 crossref_primary_10_1109_TIM_2025_3545993 crossref_primary_10_3390_s22051873 crossref_primary_10_3390_mi13091438 crossref_primary_10_3390_app14177451 crossref_primary_10_1016_j_optlastec_2020_106515 crossref_primary_10_1016_j_future_2019_02_032 |
Cites_doi | 10.1109/TBME.2012.2211078 10.1076/brhm.30.2.178.1422 10.1007/s10439-009-9759-1 10.1007/s00421-011-1983-3 10.1111/j.1749-6632.1996.tb26704.x 10.1016/S0140-6736(86)90837-8 10.1113/jphysiol.1961.sp006687 10.1109/IEMBS.2005.1615827 10.1109/TBME.2013.2286998 10.1161/01.CIR.21.5.749 10.1038/hr.2011.41 10.1161/01.HYP.25.6.1276 10.1088/0967-3334/19/1/008 10.1161/01.CIR.6.4.553 10.1183/09031936.00193911 10.1109/TBME.2013.2272699 10.1038/nrcardio.2013.1 10.1016/0161-7346(79)90028-2 10.1007/s10558-009-9070-7 10.1038/jhh.2013.41 10.1016/j.bspc.2011.03.009 10.33549/physiolres.932581 10.1007/s11517-006-0064-y 10.1161/01.CIR.84.2.482 10.1161/HYPERTENSIONAHA.112.194340 10.1001/jama.2013.184182 10.1007/s00421-010-1626-0 10.1016/j.jelectrocard.2010.11.019 10.1109/TBME.2013.2243148 10.1109/IEMBS.2006.260275 10.1007/BF02345755 10.1088/0967-3334/22/3/301 10.1016/j.irbm.2014.07.002 10.1109/IEMBS.2006.259365 10.1109/TBME.2014.2309951 10.1111/j.1440-1681.1995.tb02014.x 10.1007/s11517-008-0359-2 10.1007/s11818-013-0617-x 10.1088/0967-3334/30/7/011 10.1016/0002-9149(94)90617-3 10.1088/0967-3334/36/3/R1 10.1088/0967-3334/29/5/007 10.1161/01.CIR.93.8.1527 10.1152/ajpheart.1987.253.3.H680 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2015.2480679 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 972 |
ExternalDocumentID | 4047023981 26415147 10_1109_TBME_2015_2480679 7273864 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Guangdong Innovation Research Team Fund for Low-cost Healthcare Technologies in China – fundername: Chinese Academy of Sciences grantid: GJHZ1212 funderid: 10.13039/501100002367 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-a9f2d4d25c47e7b2256a9d0a13a302874a34406d59dd50ff677a9af5e034ad673 |
IEDL.DBID | RIE |
ISSN | 0018-9294 |
IngestDate | Fri Jul 11 07:25:55 EDT 2025 Mon Jun 30 08:17:39 EDT 2025 Wed Feb 19 02:43:08 EST 2025 Tue Jul 01 03:28:27 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Wed Aug 27 02:53:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | vasomotion pulse transit time (PTT) respiration photoplethysmogram intensity ratio (PIR) cuffless blood pressure Arterial diameter change |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-a9f2d4d25c47e7b2256a9d0a13a302874a34406d59dd50ff677a9af5e034ad673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26415147 |
PQID | 1787154878 |
PQPubID | 85474 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1787154878 ieee_primary_7273864 proquest_miscellaneous_1826642009 crossref_primary_10_1109_TBME_2015_2480679 pubmed_primary_26415147 crossref_citationtrail_10_1109_TBME_2015_2480679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-May 2016-5-00 2016-05-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-May |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref18 (ref31) 0 ref46 ref45 douniama (ref23) 0 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref36 ref33 ref32 ref2 ref1 ref39 ref38 wibmer (ref19) 2014; 63 ref24 ref26 ref25 ref20 ref22 ref21 ding (ref30) 0 karemaker (ref34) 1987; 253 ref28 ref27 ref29 de boer (ref37) 1985 |
References_xml | – ident: ref20 doi: 10.1109/TBME.2012.2211078 – ident: ref40 doi: 10.1076/brhm.30.2.178.1422 – ident: ref11 doi: 10.1007/s10439-009-9759-1 – year: 0 ident: ref30 article-title: Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation – ident: ref14 doi: 10.1007/s00421-011-1983-3 – ident: ref36 doi: 10.1111/j.1749-6632.1996.tb26704.x – ident: ref41 doi: 10.1016/S0140-6736(86)90837-8 – ident: ref38 doi: 10.1113/jphysiol.1961.sp006687 – ident: ref9 doi: 10.1109/IEMBS.2005.1615827 – ident: ref24 doi: 10.1109/TBME.2013.2286998 – ident: ref47 doi: 10.1161/01.CIR.21.5.749 – ident: ref32 doi: 10.1038/hr.2011.41 – year: 0 ident: ref31 – ident: ref27 doi: 10.1161/01.HYP.25.6.1276 – ident: ref48 doi: 10.1088/0967-3334/19/1/008 – ident: ref42 doi: 10.1161/01.CIR.6.4.553 – ident: ref46 doi: 10.1183/09031936.00193911 – ident: ref18 doi: 10.1109/TBME.2013.2272699 – ident: ref2 doi: 10.1038/nrcardio.2013.1 – ident: ref6 doi: 10.1016/0161-7346(79)90028-2 – ident: ref12 doi: 10.1007/s10558-009-9070-7 – ident: ref17 doi: 10.1038/jhh.2013.41 – year: 1985 ident: ref37 article-title: Beat-to-beat blood-pressure fluctuations and heart-rate variability in man: physiological relationships, analysis techniques and a simple model – ident: ref29 doi: 10.1016/j.bspc.2011.03.009 – volume: 63 start-page: 287 year: 2014 ident: ref19 article-title: Pulse transit time and blood pressure during cardiopulmonary exercise tests publication-title: Physiol Res doi: 10.33549/physiolres.932581 – ident: ref45 doi: 10.1007/s11517-006-0064-y – ident: ref35 doi: 10.1161/01.CIR.84.2.482 – ident: ref33 doi: 10.1161/HYPERTENSIONAHA.112.194340 – ident: ref1 doi: 10.1001/jama.2013.184182 – ident: ref22 doi: 10.1007/s00421-010-1626-0 – ident: ref13 doi: 10.1016/j.jelectrocard.2010.11.019 – ident: ref15 doi: 10.1109/TBME.2013.2243148 – ident: ref8 doi: 10.1109/IEMBS.2006.260275 – start-page: 201 year: 0 ident: ref23 article-title: Blood pressure tracking capabilities of pulse transit times in different arterial segments: A clinical evaluation publication-title: Proc Comput Cardiol Conf – ident: ref7 doi: 10.1007/BF02345755 – ident: ref26 doi: 10.1161/01.CIR.84.2.482 – ident: ref44 doi: 10.1088/0967-3334/22/3/301 – ident: ref5 doi: 10.1016/j.irbm.2014.07.002 – ident: ref28 doi: 10.1109/IEMBS.2006.259365 – ident: ref4 doi: 10.1109/TBME.2014.2309951 – ident: ref49 doi: 10.1111/j.1440-1681.1995.tb02014.x – ident: ref39 doi: 10.1007/s11517-008-0359-2 – ident: ref16 doi: 10.1007/s11818-013-0617-x – ident: ref21 doi: 10.1088/0967-3334/30/7/011 – ident: ref25 doi: 10.1016/0002-9149(94)90617-3 – ident: ref3 doi: 10.1088/0967-3334/36/3/R1 – ident: ref10 doi: 10.1088/0967-3334/29/5/007 – ident: ref43 doi: 10.1161/01.CIR.93.8.1527 – volume: 253 start-page: 680h year: 1987 ident: ref34 article-title: Hemodynamic fluctuations and baroreflex sensitivity in humans: A beat-to-beat model publication-title: Amer J Physiol -Heart Circulation Physiology doi: 10.1152/ajpheart.1987.253.3.H680 |
SSID | ssj0014846 |
Score | 2.5894709 |
Snippet | Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 964 |
SubjectTerms | Accuracy Adult Algorithm design and analysis Algorithms Arterial diameter change Biomedical measurement Blood Pressure Blood Pressure Determination - methods Calibration cuffless blood pressure Estimation Female Humans Male Mathematical model Monitoring photoplethysmogram intensity ratio Photoplethysmography - methods pulse transit time Pulse Wave Analysis - methods Respiration Signal Processing, Computer-Assisted Spectral analysis vasomotion Young Adult |
Title | Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio |
URI | https://ieeexplore.ieee.org/document/7273864 https://www.ncbi.nlm.nih.gov/pubmed/26415147 https://www.proquest.com/docview/1787154878 https://www.proquest.com/docview/1826642009 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEp76CPpw20SVOip1BtpJcvWMQkbQmFLKQnkZmQ9aEjiLYl9aH99NZLWhNCW3gyWZJkZzUPzzQzAh4a62jpjS2weUgrPTKmD1sZrDilF5Z2LRVyXX-Tpufh8UV1swKcpF8Y5F8FnboaPMZZvV2bEq7ID1LWNFJuwGRy3lKs1RQxEk5JyKAsHeK5EjmAyqg7OjpYLBHFVs7lo8OIEKwDLoLkYNlW5p45if5W_m5pR5Zw8g-V6swlpcjUbh25mfj2o4_i_f_McnmbbkxwmZnkBG67fhif3KhJuw6NljrXvwA0Wrrrsx9V4R45H76-DTCRHiHMnKafw1pFFEBAp95FE7AH5OgZVS6ICvBwI5pcQ3YcJ31cDItWRK24iIIxk7Pzwk3zDBV7C-cni7Pi0zM0ZSsOFGkqt_NwKO6-MqF3dBbEgtbJUM645xSL6motgLNhKWVtR72Vda6V95SgX2sqav4KtftW7N0Cs76iWnCvJjHCNVLpjTJpGayG58V0BdE2j1uTK5dhA47qNHgxVLVK4RQq3mcIFfJym_EhlO_41eAepMw3MhClgd80IbT7Ydy0LAi56eU0B76fX4UhinEX3LtCkRZctuHXBei3gdWKgae0137398zffweOwM5kQlbuwNdyObi9YPUO3H9n9Nya0--0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GihhBYwEidEtvbGceJjW221QFMhtJV6ixw_REWbRW1yoL--HscbVQgQt0ixHUcznofnmxmA9yW1hbHapNg8JOWO6VR5rY3XHELw3FkbirhWJ2J-yj-f5Wdr8HHMhbHWBvCZneBjiOWbpe7xqmwPdW0p-D247_V-zoZsrTFmwMshLYcyf4SnkscYJqNyb3FQzRDGlU-mvMSrE6wBLLzuYthW5Y5CCh1W_m5sBqVz9ASq1XYHrMmPSd81E33zWyXH__2fp_A4Wp9kf2CXZ7Bm2014dKcm4SY8qGK0fQsusXTVedsv-2ty2Dt34aUiOUCkOxmyCq8smXkRMWQ_koA-IF97r2xJUIHnHcEME6JaP-H7skOsOvLFZYCEkYie736Rb7jAczg9mi0O52lsz5DqjMsuVdJNDTfTXPPCFo0XDEJJQxXLVEaxjL7KuDcXTC6NyalzoiiUVC63NOPKiCJ7AevtsrUvgRjXUCWyTAqmuS2FVA1jQpdKcZFp1yRAVzSqdaxdji00Lurgw1BZI4VrpHAdKZzAh3HKz6Fwx78GbyF1xoGRMAnsrhihjkf7umZexAU_r0zg3fjaH0qMtKjWeprU6LR5x87brwlsDww0rr3iu1d__uZbeDhfVMf18aeTLzuw4XcpBnzlLqx3V7197W2grnkTWP8Wbjz_Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Cuffless+Blood+Pressure+Estimation+Using+Pulse+Transit+Time+and+Photoplethysmogram+Intensity+Ratio&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Ding%2C+Xiao-Rong&rft.au=Zhang%2C+Yuan-Ting&rft.au=Liu%2C+Jing&rft.au=Dai%2C+Wen-Xuan&rft.date=2016-05-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=63&rft.issue=5&rft.spage=964&rft.epage=972&rft_id=info:doi/10.1109%2FTBME.2015.2480679&rft_id=info%3Apmid%2F26415147&rft.externalDocID=7273864 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |