Aperiodic Sampled-Data Control for Stabilization of Memristive Neural Networks With Actuator Saturation: A Dynamic Partitioning Method
This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more infor...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 53; no. 3; pp. 1725 - 1737 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results. |
---|---|
AbstractList | This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results. This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results.This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results. |
Author | Liang, Jinling Huang, Xia Yan, Zhilian |
Author_xml | – sequence: 1 givenname: Zhilian orcidid: 0000-0002-9289-7200 surname: Yan fullname: Yan, Zhilian organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China – sequence: 2 givenname: Xia orcidid: 0000-0002-4955-8318 surname: Huang fullname: Huang, Xia email: huangxia_qd@126.com organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China – sequence: 3 givenname: Jinling orcidid: 0000-0001-6910-7285 surname: Liang fullname: Liang, Jinling organization: School of Mathematics, Southeast University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34543215$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi3UipbSH4CQkCUuXLL1R-w43LbbQiuVD6lFiJPlOBPqksSL7RSVH8DvxmG3PfSAJWtGM887tuZ9hnZGPwJCLyhZUErqo6vVt-MFI4wuOCVKEfEE7TMqVcFYJXYeclntocMYb0g-Kpdq9RTt8VKUnFGxj_4s1xCcb53Fl2ZY99AWJyYZvPJjCr7HnQ_4MpnG9e63Sc6P2Hf4AwzBxeRuAX-EKZg-h_TLhx8Rf3XpGi9tmkyalSbl9ix7i5f45G40Q37oswnJzUU3fs-z0rVvn6PdzvQRDrfxAH15d3q1OisuPr0_Xy0vCsvLOhVGgSoFV4RzJRpbWVU2pGsU42Wbe0wqKeuSUCGNZI1QreESbCvrrqw7aDk_QG82c9fB_5wgJj24aKHvzQh-ipqJShCphKgz-voReuOnMObfaVZVsspXsky92lJTM0Cr18ENJtzp-w1noNoANvgYA3TauvRvJSkY12tK9Gynnu3Us516a2dW0kfK--H_07zcaBwAPPC1KCnPO_sLJ_eqlg |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TFUZZ_2022_3185711 crossref_primary_10_1109_TSMC_2022_3207353 crossref_primary_10_1016_j_cnsns_2025_108690 crossref_primary_10_3390_math11224592 crossref_primary_10_1007_s11063_022_10943_1 crossref_primary_10_1088_1402_4896_ad6c8f crossref_primary_10_1088_1402_4896_ac6e99 crossref_primary_10_1016_j_cnsns_2024_108188 crossref_primary_10_1007_s12555_022_0092_x crossref_primary_10_1016_j_jfranklin_2024_107252 crossref_primary_10_1016_j_jfranklin_2024_106680 crossref_primary_10_1016_j_ins_2024_120149 crossref_primary_10_1007_s11071_024_10709_5 crossref_primary_10_1016_j_jfranklin_2025_107552 crossref_primary_10_1109_TSMC_2024_3407793 crossref_primary_10_1109_TFUZZ_2023_3276818 |
Cites_doi | 10.1109/TCYB.2017.2765343 10.1016/j.jfranklin.2020.07.034 10.1016/j.neucom.2017.02.063 10.1016/j.ins.2015.07.047 10.1007/s11432-019-2664-7 10.1016/j.neunet.2010.05.001 10.1016/j.sysconle.2007.10.009 10.1109/TNNLS.2017.2700321 10.1109/TFUZZ.2019.2906040 10.1109/TAC.2015.2508286 10.1016/j.neunet.2014.10.011 10.1016/j.nahs.2016.11.006 10.1016/j.sysconle.2012.07.008 10.1109/TNNLS.2012.2219554 10.1109/TCT.1971.1083337 10.1109/TNNLS.2012.2236356 10.1016/j.neunet.2019.11.008 10.1007/s11432-016-0555-2 10.1109/TNNLS.2017.2728639 10.1137/1.9781611970777 10.1109/TAC.2004.832203 10.1109/TCSII.2020.2983803 10.1109/TFUZZ.2008.928598 10.1109/TCST.2016.2519838 10.1109/TCYB.2017.2711496 10.1016/j.automatica.2004.03.003 10.1007/978-94-015-7793-9 10.1016/j.automatica.2009.11.017 10.1109/TSMC.2017.2732503 10.1109/37.898794 10.1016/j.automatica.2017.04.051 10.1016/j.apm.2018.08.012 10.1109/TNNLS.2020.3027862 10.1109/TNNLS.2019.2938774 10.1016/j.sysconle.2012.09.003 10.1109/TCSI.2011.2161360 10.1007/978-3-642-69512-4 10.1109/TNNLS.2014.2345125 10.1016/j.ins.2019.01.046 10.1002/rnc.4068 10.1109/TCYB.2017.2729581 10.1080/00207720802300370 10.1109/TCYB.2018.2839686 10.1016/j.automatica.2015.10.010 10.1016/j.amc.2020.125041 10.1109/TFUZZ.2011.2174242 10.1016/j.automatica.2011.09.033 10.1016/j.neunet.2013.08.002 10.1109/TCYB.2014.2312004 10.1109/TCYB.2019.2912890 10.1109/TSMC.2020.2964605 10.1109/37.898792 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3108805 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 1737 |
ExternalDocumentID | 34543215 10_1109_TCYB_2021_3108805 9541303 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973199; 62173214 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-a8e8453803385bc7c84b0fb8234da8e26866940156a62b58da36ecd69f49fed33 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 01:27:17 EDT 2025 Mon Jun 30 05:58:02 EDT 2025 Thu Jan 02 22:51:38 EST 2025 Tue Jul 01 00:54:00 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Wed Aug 27 02:14:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-a8e8453803385bc7c84b0fb8234da8e26866940156a62b58da36ecd69f49fed33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4955-8318 0000-0001-6910-7285 0000-0002-9289-7200 |
PMID | 34543215 |
PQID | 2776777662 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9541303 crossref_citationtrail_10_1109_TCYB_2021_3108805 proquest_miscellaneous_2575068559 pubmed_primary_34543215 crossref_primary_10_1109_TCYB_2021_3108805 proquest_journals_2776777662 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 Aubin (ref45) 1984 ref17 ref16 ref19 ref18 Seuret (ref46) 2016; 61 ref51 ref50 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 Filipov (ref44) 1988 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref3 doi: 10.1109/TCYB.2017.2765343 – ident: ref51 doi: 10.1016/j.jfranklin.2020.07.034 – ident: ref38 doi: 10.1016/j.neucom.2017.02.063 – ident: ref19 doi: 10.1016/j.ins.2015.07.047 – ident: ref17 doi: 10.1007/s11432-019-2664-7 – ident: ref5 doi: 10.1016/j.neunet.2010.05.001 – ident: ref26 doi: 10.1016/j.sysconle.2007.10.009 – ident: ref47 doi: 10.1109/TNNLS.2017.2700321 – ident: ref32 doi: 10.1109/TFUZZ.2019.2906040 – volume: 61 start-page: 3221 issue: 10 year: 2016 ident: ref46 article-title: Event-triggered H∞ control: A switching approach publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2508286 – ident: ref16 doi: 10.1016/j.neunet.2014.10.011 – ident: ref22 doi: 10.1016/j.nahs.2016.11.006 – ident: ref29 doi: 10.1016/j.sysconle.2012.07.008 – ident: ref13 doi: 10.1109/TNNLS.2012.2219554 – ident: ref1 doi: 10.1109/TCT.1971.1083337 – ident: ref49 doi: 10.1109/TNNLS.2012.2236356 – ident: ref11 doi: 10.1016/j.neunet.2019.11.008 – ident: ref2 doi: 10.1007/s11432-016-0555-2 – ident: ref7 doi: 10.1109/TNNLS.2017.2728639 – ident: ref50 doi: 10.1137/1.9781611970777 – ident: ref20 doi: 10.1109/TAC.2004.832203 – ident: ref35 doi: 10.1109/TCSII.2020.2983803 – ident: ref43 doi: 10.1109/TFUZZ.2008.928598 – ident: ref36 doi: 10.1109/TCST.2016.2519838 – ident: ref41 doi: 10.1109/TCYB.2017.2711496 – ident: ref24 doi: 10.1016/j.automatica.2004.03.003 – volume-title: Differential Equations With Discontinuous Righthand Sides year: 1988 ident: ref44 doi: 10.1007/978-94-015-7793-9 – ident: ref27 doi: 10.1016/j.automatica.2009.11.017 – ident: ref4 doi: 10.1109/TSMC.2017.2732503 – ident: ref18 doi: 10.1109/37.898794 – ident: ref31 doi: 10.1016/j.automatica.2017.04.051 – ident: ref33 doi: 10.1016/j.apm.2018.08.012 – ident: ref34 doi: 10.1109/TNNLS.2020.3027862 – ident: ref9 doi: 10.1109/TNNLS.2019.2938774 – ident: ref30 doi: 10.1016/j.sysconle.2012.09.003 – ident: ref6 doi: 10.1109/TCSI.2011.2161360 – volume-title: Differential Inclusions year: 1984 ident: ref45 doi: 10.1007/978-3-642-69512-4 – ident: ref15 doi: 10.1109/TNNLS.2014.2345125 – ident: ref39 doi: 10.1016/j.ins.2019.01.046 – ident: ref42 doi: 10.1002/rnc.4068 – ident: ref23 doi: 10.1109/TCYB.2017.2729581 – ident: ref48 doi: 10.1080/00207720802300370 – ident: ref8 doi: 10.1109/TCYB.2018.2839686 – ident: ref40 doi: 10.1016/j.automatica.2015.10.010 – ident: ref52 doi: 10.1016/j.amc.2020.125041 – ident: ref25 doi: 10.1109/TFUZZ.2011.2174242 – ident: ref28 doi: 10.1016/j.automatica.2011.09.033 – ident: ref14 doi: 10.1016/j.neunet.2013.08.002 – ident: ref37 doi: 10.1109/TCYB.2014.2312004 – ident: ref10 doi: 10.1109/TCYB.2019.2912890 – ident: ref12 doi: 10.1109/TSMC.2020.2964605 – ident: ref21 doi: 10.1109/37.898792 |
SSID | ssj0000816898 |
Score | 2.462643 |
Snippet | This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1725 |
SubjectTerms | Actuator saturation Actuators aperiodic sampled-data control (SDC) Artificial neural networks Asymptotic stability Closed loop systems Closed loops Control systems design Delays Dynamic stability Feedback control Linear matrix inequalities local stabilization Mathematical analysis memristive neural networks (MNNs) Neural networks Optimization Partitioning Sampling Saturation Stability analysis Stability criteria Symmetric matrices Thermal stability Time dependence two-side looped functional (TSLF) Upper bounds |
Title | Aperiodic Sampled-Data Control for Stabilization of Memristive Neural Networks With Actuator Saturation: A Dynamic Partitioning Method |
URI | https://ieeexplore.ieee.org/document/9541303 https://www.ncbi.nlm.nih.gov/pubmed/34543215 https://www.proquest.com/docview/2776777662 https://www.proquest.com/docview/2575068559 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGBlvKRUpCROAAi26zjODG3ZUtVIbVCohXlFMX2RK2gG8RmkeAH8LuZcbwRQoA4RIoUO040M_aMPfMewBMrM9dOLaYUPPBuFVm69VWeWi3ROI-Fw5Age6qPz9Wbi-JiA16MtTCIGJLPcMK34Szfd27FW2UHpghT7iZsUuA21GqN-ymBQCJQ30q6ScmrKOMh5jQzB2fzD68oGJRTilHJrjImrMlVoXLJfLi_rEiBYuXv3mZYdY5uwcn6e4dkk4-TVW8n7vtvUI7_-0PbcDO6n2I26MsObODiNuxEA1-KpxGF-tku_JgxBnLnr5x41zCEsE8Pm74R8yG3XZCzK8hT5dzaoZJTdK04weswaXxFwagfNNLpkGa-FO-v-ksx43KVnnsynmjo9lLMxOG3RXNNA71lPY47xPQu5ra-A-dHr8_mx2kkbUhdrkyfNhVWimbRjGLfwrrSVcpmra1krjw9k7rS2igu4G60tEXlm1yj89q0yrTo8_wubC26Bd4HUeLUSlouDfpKNcbYVistXYnkZpgytwlka8HVLiKaM7HGpzpENpmpWew1i72OYk_g-djl8wDn8a_GuyyysWGUVgL7a-2oo8Eva8moSHRpmcDj8TGZKp-_NAvsVtSGXONMVxTDJXBv0Krx3Wtl3PvzmA_gBvPcD8lv-7DVf1nhQ_KGevsomMFP048Dfg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOcAFKOUjUMBIHACRbdZxnJjbsqVaoLtCYivaUxTbE1FBE8RmkeAH8LuZcbwRQoA4RIoUO040M_aMPfMeY4-MSGw9NhBj8EC7VWjpxhVpbJQAbR1kFnyC7ELNjuXrk-xkiz0bamEAwCefwYhu_Vm-a-2atsr2dean3AvsIq77meirtYYdFU8h4clvBd7E6Ffk4RhznOj95fT0BYaDYoxRKlpWQpQ1qcxkKogR95c1yZOs_N3f9OvO4VU233xxn27ycbTuzMh-_w3M8X9_6Rq7EhxQPuk1ZodtQXOd7QQTX_HHAYf6yS77MSEU5NadWf6uIhBhFx9UXcWnfXY7R3eXo69K2bV9LSdvaz6Hcz9tfAVOuB840qJPNF_x92fdBz6hgpWOehKiqO_2nE_4wbemOseB3pImhz1ifBexW99gx4cvl9NZHGgbYptK3cVVAYXEeTTB6DczNreFNEltCpFKh8-EKpTSkkq4KyVMVrgqVWCd0rXUNbg0vcm2m7aB24znMDYCF0wNrpCV1qZWUgmbAzoaOk9NxJKN4EobMM2JWuNT6WObRJck9pLEXgaxR-zp0OVzD-jxr8a7JLKhYZBWxPY22lEGk1-VgnCR8FIiYg-Hx2isdAJTNdCusQ06x4kqMIqL2K1eq4Z3b5Txzp_HfMAuzZbzo_Lo1eLNXXaZWO_7VLg9tt19WcM99I06c9-bxE-CeAbI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aperiodic+Sampled-Data+Control+for+Stabilization+of+Memristive+Neural+Networks+With+Actuator+Saturation%3A+A+Dynamic+Partitioning+Method&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yan%2C+Zhilian&rft.au=Huang%2C+Xia&rft.au=Liang%2C+Jinling&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=3&rft.spage=1725&rft_id=info:doi/10.1109%2FTCYB.2021.3108805&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |