Aperiodic Sampled-Data Control for Stabilization of Memristive Neural Networks With Actuator Saturation: A Dynamic Partitioning Method

This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more infor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 3; pp. 1725 - 1737
Main Authors Yan, Zhilian, Huang, Xia, Liang, Jinling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results.
AbstractList This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results.
This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results.This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results.
Author Liang, Jinling
Huang, Xia
Yan, Zhilian
Author_xml – sequence: 1
  givenname: Zhilian
  orcidid: 0000-0002-9289-7200
  surname: Yan
  fullname: Yan, Zhilian
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Xia
  orcidid: 0000-0002-4955-8318
  surname: Huang
  fullname: Huang, Xia
  email: huangxia_qd@126.com
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Jinling
  orcidid: 0000-0001-6910-7285
  surname: Liang
  fullname: Liang, Jinling
  organization: School of Mathematics, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34543215$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi3UipbSH4CQkCUuXLL1R-w43LbbQiuVD6lFiJPlOBPqksSL7RSVH8DvxmG3PfSAJWtGM887tuZ9hnZGPwJCLyhZUErqo6vVt-MFI4wuOCVKEfEE7TMqVcFYJXYeclntocMYb0g-Kpdq9RTt8VKUnFGxj_4s1xCcb53Fl2ZY99AWJyYZvPJjCr7HnQ_4MpnG9e63Sc6P2Hf4AwzBxeRuAX-EKZg-h_TLhx8Rf3XpGi9tmkyalSbl9ix7i5f45G40Q37oswnJzUU3fs-z0rVvn6PdzvQRDrfxAH15d3q1OisuPr0_Xy0vCsvLOhVGgSoFV4RzJRpbWVU2pGsU42Wbe0wqKeuSUCGNZI1QreESbCvrrqw7aDk_QG82c9fB_5wgJj24aKHvzQh-ipqJShCphKgz-voReuOnMObfaVZVsspXsky92lJTM0Cr18ENJtzp-w1noNoANvgYA3TauvRvJSkY12tK9Gynnu3Us516a2dW0kfK--H_07zcaBwAPPC1KCnPO_sLJ_eqlg
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TFUZZ_2022_3185711
crossref_primary_10_1109_TSMC_2022_3207353
crossref_primary_10_1016_j_cnsns_2025_108690
crossref_primary_10_3390_math11224592
crossref_primary_10_1007_s11063_022_10943_1
crossref_primary_10_1088_1402_4896_ad6c8f
crossref_primary_10_1088_1402_4896_ac6e99
crossref_primary_10_1016_j_cnsns_2024_108188
crossref_primary_10_1007_s12555_022_0092_x
crossref_primary_10_1016_j_jfranklin_2024_107252
crossref_primary_10_1016_j_jfranklin_2024_106680
crossref_primary_10_1016_j_ins_2024_120149
crossref_primary_10_1007_s11071_024_10709_5
crossref_primary_10_1016_j_jfranklin_2025_107552
crossref_primary_10_1109_TSMC_2024_3407793
crossref_primary_10_1109_TFUZZ_2023_3276818
Cites_doi 10.1109/TCYB.2017.2765343
10.1016/j.jfranklin.2020.07.034
10.1016/j.neucom.2017.02.063
10.1016/j.ins.2015.07.047
10.1007/s11432-019-2664-7
10.1016/j.neunet.2010.05.001
10.1016/j.sysconle.2007.10.009
10.1109/TNNLS.2017.2700321
10.1109/TFUZZ.2019.2906040
10.1109/TAC.2015.2508286
10.1016/j.neunet.2014.10.011
10.1016/j.nahs.2016.11.006
10.1016/j.sysconle.2012.07.008
10.1109/TNNLS.2012.2219554
10.1109/TCT.1971.1083337
10.1109/TNNLS.2012.2236356
10.1016/j.neunet.2019.11.008
10.1007/s11432-016-0555-2
10.1109/TNNLS.2017.2728639
10.1137/1.9781611970777
10.1109/TAC.2004.832203
10.1109/TCSII.2020.2983803
10.1109/TFUZZ.2008.928598
10.1109/TCST.2016.2519838
10.1109/TCYB.2017.2711496
10.1016/j.automatica.2004.03.003
10.1007/978-94-015-7793-9
10.1016/j.automatica.2009.11.017
10.1109/TSMC.2017.2732503
10.1109/37.898794
10.1016/j.automatica.2017.04.051
10.1016/j.apm.2018.08.012
10.1109/TNNLS.2020.3027862
10.1109/TNNLS.2019.2938774
10.1016/j.sysconle.2012.09.003
10.1109/TCSI.2011.2161360
10.1007/978-3-642-69512-4
10.1109/TNNLS.2014.2345125
10.1016/j.ins.2019.01.046
10.1002/rnc.4068
10.1109/TCYB.2017.2729581
10.1080/00207720802300370
10.1109/TCYB.2018.2839686
10.1016/j.automatica.2015.10.010
10.1016/j.amc.2020.125041
10.1109/TFUZZ.2011.2174242
10.1016/j.automatica.2011.09.033
10.1016/j.neunet.2013.08.002
10.1109/TCYB.2014.2312004
10.1109/TCYB.2019.2912890
10.1109/TSMC.2020.2964605
10.1109/37.898792
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3108805
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1737
ExternalDocumentID 34543215
10_1109_TCYB_2021_3108805
9541303
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973199; 62173214
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-a8e8453803385bc7c84b0fb8234da8e26866940156a62b58da36ecd69f49fed33
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 01:27:17 EDT 2025
Mon Jun 30 05:58:02 EDT 2025
Thu Jan 02 22:51:38 EST 2025
Tue Jul 01 00:54:00 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Wed Aug 27 02:14:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a8e8453803385bc7c84b0fb8234da8e26866940156a62b58da36ecd69f49fed33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4955-8318
0000-0001-6910-7285
0000-0002-9289-7200
PMID 34543215
PQID 2776777662
PQPubID 85422
PageCount 13
ParticipantIDs ieee_primary_9541303
crossref_citationtrail_10_1109_TCYB_2021_3108805
proquest_miscellaneous_2575068559
pubmed_primary_34543215
crossref_primary_10_1109_TCYB_2021_3108805
proquest_journals_2776777662
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
Aubin (ref45) 1984
ref17
ref16
ref19
ref18
Seuret (ref46) 2016; 61
ref51
ref50
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
Filipov (ref44) 1988
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref3
  doi: 10.1109/TCYB.2017.2765343
– ident: ref51
  doi: 10.1016/j.jfranklin.2020.07.034
– ident: ref38
  doi: 10.1016/j.neucom.2017.02.063
– ident: ref19
  doi: 10.1016/j.ins.2015.07.047
– ident: ref17
  doi: 10.1007/s11432-019-2664-7
– ident: ref5
  doi: 10.1016/j.neunet.2010.05.001
– ident: ref26
  doi: 10.1016/j.sysconle.2007.10.009
– ident: ref47
  doi: 10.1109/TNNLS.2017.2700321
– ident: ref32
  doi: 10.1109/TFUZZ.2019.2906040
– volume: 61
  start-page: 3221
  issue: 10
  year: 2016
  ident: ref46
  article-title: Event-triggered H∞ control: A switching approach
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2508286
– ident: ref16
  doi: 10.1016/j.neunet.2014.10.011
– ident: ref22
  doi: 10.1016/j.nahs.2016.11.006
– ident: ref29
  doi: 10.1016/j.sysconle.2012.07.008
– ident: ref13
  doi: 10.1109/TNNLS.2012.2219554
– ident: ref1
  doi: 10.1109/TCT.1971.1083337
– ident: ref49
  doi: 10.1109/TNNLS.2012.2236356
– ident: ref11
  doi: 10.1016/j.neunet.2019.11.008
– ident: ref2
  doi: 10.1007/s11432-016-0555-2
– ident: ref7
  doi: 10.1109/TNNLS.2017.2728639
– ident: ref50
  doi: 10.1137/1.9781611970777
– ident: ref20
  doi: 10.1109/TAC.2004.832203
– ident: ref35
  doi: 10.1109/TCSII.2020.2983803
– ident: ref43
  doi: 10.1109/TFUZZ.2008.928598
– ident: ref36
  doi: 10.1109/TCST.2016.2519838
– ident: ref41
  doi: 10.1109/TCYB.2017.2711496
– ident: ref24
  doi: 10.1016/j.automatica.2004.03.003
– volume-title: Differential Equations With Discontinuous Righthand Sides
  year: 1988
  ident: ref44
  doi: 10.1007/978-94-015-7793-9
– ident: ref27
  doi: 10.1016/j.automatica.2009.11.017
– ident: ref4
  doi: 10.1109/TSMC.2017.2732503
– ident: ref18
  doi: 10.1109/37.898794
– ident: ref31
  doi: 10.1016/j.automatica.2017.04.051
– ident: ref33
  doi: 10.1016/j.apm.2018.08.012
– ident: ref34
  doi: 10.1109/TNNLS.2020.3027862
– ident: ref9
  doi: 10.1109/TNNLS.2019.2938774
– ident: ref30
  doi: 10.1016/j.sysconle.2012.09.003
– ident: ref6
  doi: 10.1109/TCSI.2011.2161360
– volume-title: Differential Inclusions
  year: 1984
  ident: ref45
  doi: 10.1007/978-3-642-69512-4
– ident: ref15
  doi: 10.1109/TNNLS.2014.2345125
– ident: ref39
  doi: 10.1016/j.ins.2019.01.046
– ident: ref42
  doi: 10.1002/rnc.4068
– ident: ref23
  doi: 10.1109/TCYB.2017.2729581
– ident: ref48
  doi: 10.1080/00207720802300370
– ident: ref8
  doi: 10.1109/TCYB.2018.2839686
– ident: ref40
  doi: 10.1016/j.automatica.2015.10.010
– ident: ref52
  doi: 10.1016/j.amc.2020.125041
– ident: ref25
  doi: 10.1109/TFUZZ.2011.2174242
– ident: ref28
  doi: 10.1016/j.automatica.2011.09.033
– ident: ref14
  doi: 10.1016/j.neunet.2013.08.002
– ident: ref37
  doi: 10.1109/TCYB.2014.2312004
– ident: ref10
  doi: 10.1109/TCYB.2019.2912890
– ident: ref12
  doi: 10.1109/TSMC.2020.2964605
– ident: ref21
  doi: 10.1109/37.898792
SSID ssj0000816898
Score 2.462643
Snippet This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1725
SubjectTerms Actuator saturation
Actuators
aperiodic sampled-data control (SDC)
Artificial neural networks
Asymptotic stability
Closed loop systems
Closed loops
Control systems design
Delays
Dynamic stability
Feedback control
Linear matrix inequalities
local stabilization
Mathematical analysis
memristive neural networks (MNNs)
Neural networks
Optimization
Partitioning
Sampling
Saturation
Stability analysis
Stability criteria
Symmetric matrices
Thermal stability
Time dependence
two-side looped functional (TSLF)
Upper bounds
Title Aperiodic Sampled-Data Control for Stabilization of Memristive Neural Networks With Actuator Saturation: A Dynamic Partitioning Method
URI https://ieeexplore.ieee.org/document/9541303
https://www.ncbi.nlm.nih.gov/pubmed/34543215
https://www.proquest.com/docview/2776777662
https://www.proquest.com/docview/2575068559
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGBlvKRUpCROAAi26zjODG3ZUtVIbVCohXlFMX2RK2gG8RmkeAH8LuZcbwRQoA4RIoUO040M_aMPfMewBMrM9dOLaYUPPBuFVm69VWeWi3ROI-Fw5Age6qPz9Wbi-JiA16MtTCIGJLPcMK34Szfd27FW2UHpghT7iZsUuA21GqN-ymBQCJQ30q6ScmrKOMh5jQzB2fzD68oGJRTilHJrjImrMlVoXLJfLi_rEiBYuXv3mZYdY5uwcn6e4dkk4-TVW8n7vtvUI7_-0PbcDO6n2I26MsObODiNuxEA1-KpxGF-tku_JgxBnLnr5x41zCEsE8Pm74R8yG3XZCzK8hT5dzaoZJTdK04weswaXxFwagfNNLpkGa-FO-v-ksx43KVnnsynmjo9lLMxOG3RXNNA71lPY47xPQu5ra-A-dHr8_mx2kkbUhdrkyfNhVWimbRjGLfwrrSVcpmra1krjw9k7rS2igu4G60tEXlm1yj89q0yrTo8_wubC26Bd4HUeLUSlouDfpKNcbYVistXYnkZpgytwlka8HVLiKaM7HGpzpENpmpWew1i72OYk_g-djl8wDn8a_GuyyysWGUVgL7a-2oo8Eva8moSHRpmcDj8TGZKp-_NAvsVtSGXONMVxTDJXBv0Krx3Wtl3PvzmA_gBvPcD8lv-7DVf1nhQ_KGevsomMFP048Dfg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOcAFKOUjUMBIHACRbdZxnJjbsqVaoLtCYivaUxTbE1FBE8RmkeAH8LuZcbwRQoA4RIoUO040M_aMPfMeY4-MSGw9NhBj8EC7VWjpxhVpbJQAbR1kFnyC7ELNjuXrk-xkiz0bamEAwCefwYhu_Vm-a-2atsr2dean3AvsIq77meirtYYdFU8h4clvBd7E6Ffk4RhznOj95fT0BYaDYoxRKlpWQpQ1qcxkKogR95c1yZOs_N3f9OvO4VU233xxn27ycbTuzMh-_w3M8X9_6Rq7EhxQPuk1ZodtQXOd7QQTX_HHAYf6yS77MSEU5NadWf6uIhBhFx9UXcWnfXY7R3eXo69K2bV9LSdvaz6Hcz9tfAVOuB840qJPNF_x92fdBz6hgpWOehKiqO_2nE_4wbemOseB3pImhz1ifBexW99gx4cvl9NZHGgbYptK3cVVAYXEeTTB6DczNreFNEltCpFKh8-EKpTSkkq4KyVMVrgqVWCd0rXUNbg0vcm2m7aB24znMDYCF0wNrpCV1qZWUgmbAzoaOk9NxJKN4EobMM2JWuNT6WObRJck9pLEXgaxR-zp0OVzD-jxr8a7JLKhYZBWxPY22lEGk1-VgnCR8FIiYg-Hx2isdAJTNdCusQ06x4kqMIqL2K1eq4Z3b5Txzp_HfMAuzZbzo_Lo1eLNXXaZWO_7VLg9tt19WcM99I06c9-bxE-CeAbI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aperiodic+Sampled-Data+Control+for+Stabilization+of+Memristive+Neural+Networks+With+Actuator+Saturation%3A+A+Dynamic+Partitioning+Method&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yan%2C+Zhilian&rft.au=Huang%2C+Xia&rft.au=Liang%2C+Jinling&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=3&rft.spage=1725&rft_id=info:doi/10.1109%2FTCYB.2021.3108805&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon