Aperiodic Sampled-Data Control for Stabilization of Memristive Neural Networks With Actuator Saturation: A Dynamic Partitioning Method

This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more infor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 3; pp. 1725 - 1737
Main Authors Yan, Zhilian, Huang, Xia, Liang, Jinling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3108805